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Abstract: Autophagy is a self-defense and self-degrading intracellular system involved in the recy-
cling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded
proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Au-
tophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells
by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral
ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associ-
ated with Alzheimer’s disease and their structural changes. Postischemic brain neurodegeneration,
such as Alzheimer’s disease, is characterized by the accumulation of amyloid and tau protein. After
cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some
studies have shown the protective properties of autophagy in postischemic brain, while other studies
have shown completely opposite properties. Thus, autophagy is now presented as a double-edged
sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways
of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This
review aims to provide a comprehensive look at the advances in the study of autophagy behavior in
neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy
in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the
possibility of modulating the autophagy machinery through various compounds on the development
of neurodegeneration after cerebral ischemia.

Keywords: brain ischemia; reperfusion; recirculation; Alzheimer’s disease proteinopathy; autophagy;
necrosis; apoptosis; neurons; glial cells; endothelial cells; neurodegeneration

1. Introduction
1.1. Epidemiology of Brain Ischemia

Ischemic brain injury in humans develops as a result of a sudden partial or complete
occlusion of the cerebrovascular network supplying blood to the brain [1]. Brain ischemia
can occur in individuals with immature and mature brains. Perinatal ischemic stroke occurs
between the 20th week of pregnancy and the 28th day after birth [2,3]. The incidence of
perinatal stroke is 29 per 100,000 live births per year [2–5]. Despite current therapies, at
least 1 in 10 children after the first ischemic stroke have a recurrence in the next 5 years [2].
The annual direct cost of stroke in children in the US, counting inpatient and outpatient
services, is approximately USD 1,000,000 [2]. Perinatal ischemic brain injury is not only
the leading cause of mortality in the early days of life, but also neonates who survive and
develop neurological disabilities, cognitive deficits and behavioral impairments that often
last a lifetime, such as in the form of dementia [3].

It is estimated that ischemic focal brain injury in adults, which accounts for roughly
85–90% of all cases, is the dominant cause of progressive and irreversible disability in
humans and the second cause of death [6–14]. The incidence of ischemic brain alterations
increases with age in developed and developing countries, with the exception of China
and India, where the incidence of brain ischemia has increased sharply in people under
40 years of age [15]. As of 2015, focal ischemic brain injury is the leading cause of death and
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disability in China, posing a very serious threat to the health of the country’s citizens [16].
According to China’s official brain ischemia program, it was estimated that 17.8 million
Chinese citizens had a stroke in 2020, of which 3.4 million had a first-ever stroke and
another 2.3 million died from a stroke [16]. In addition, roughly 12.5% of stroke survivors
remain disabled for life, equivalent to 2.2 million stroke-associated disabilities in 2020 [16].
It was calculated that the cost of hospitalization due to stroke in 2020 was CNY 58.0 billion,
of which patients paid CNY 19.8 billion [16]. These figures are staggering considering that
China makes up only 18% of the world’s population [17]. In fact, stroke incidence and
mortality in China are 28% and 35% higher than the global average, respectively [17]. In
addition, China’s estimated lifetime risk of stroke is 39.3% for people aged 25 and over,
significantly higher than the global average of 24.9% [17].

A meta-analysis of papers on ischemic stroke in India showed that in 18 analyzed
papers in five studies, the age of patients was below 40 years [18]. The age range of
the patients was between 32 and 67 years, with a mean of 54 ± 9 [18]. In the study,
64% was men [18]. Countries such as India estimate that approximately 14% of global
disability-adjusted life years have been lost due to stroke [19]. It has been documented that
50–70% of stroke survivors regain independence, but 15–30% are permanently disabled
and 20% require institutional care, including 3 months after the onset of the stroke [19].
This worrying trend shows that the rate of stroke among people aged 20 to 54 worldwide
has increased from 13% in 1990 to 19% in 2016 [20,21]. In the 21st century, the number
of cases of ischemic stroke in young adults has increased to approximately two million
per year [22].

It should be emphasized that, currently, 70% of ischemic strokes and 87% of related
deaths and irreversible disabilities predominant occur in poor countries [23]. In poor
countries, the number of cases of ischemic stroke has more than doubled over the last
forty years, occurring approximately 15 years earlier and causing more deaths than in
developed countries [23,24]. Approximately 84% of stroke case patients in poor countries
die within three years, compared with only 16% in developed countries [23]. Currently, it
is estimated that there are approximately 15 million cases of ischemic stroke annually, of
which approximately half die within a year [1,6,7,9–11,14]. It is also known that the number
of postischemic patients across the world has reached approximately 33 million [10]. Due
to aging in the European community, it is estimated that by 2025, the incidence of stroke in
this group is likely to increase to 1.5 million [22]. The number of stroke survivors in the
European Union is estimated to increase by 27% by 2047 due to an aging society and higher
survival rates of the population [25].

Over the past 25 years, there has been a decrease in the death rate of ischemic stroke
survivors around the world, despite an increase in the number of cases as a result of in-
creased life expectancy [12]. In rich countries, cerebral ischemia occurs 10 times more often
than hemorrhagic stroke, while in poor countries, the advantage is definitely smaller [12].
The risk of stroke recurrence after a first ischemic stroke in the first month of treatment has
been shown to be high, at 1 in 25 [12]. The data indicate that individuals who have had a
stroke have a high chance of having another stroke in the first year of approximately 10%
and annually in subsequent years of approximately 5% [26]. Symptoms usually depend on
the extent of ischemia and the region of the brain involved, and include sensory and motor
disturbances that are generally permanent. Over 30–50% of people who have experienced
cerebral ischemia are functionally dependent on other people [8]. One year after a stroke,
10% to 15% of survivors require assistance in a specialist facility [27]. Epidemiological
studies indicate that the incidence of stroke in middle-aged people, i.e., 50–70 years old, is
higher compared to people over 70 years old [28]. Stroke patients aged >85 years account
for 17% of all cases, and in this age group, stroke is more common in women than in
men [2]. On the other hand, older patients show a marked decline in overall performance
between 6 and 30 months poststroke [29]. According to recent projections, by 2030, the
number of stroke survivors is predicted increase to 77 million [10,30,31]. Despite this, the
global death rate due to cerebral ischemia has decreased significantly [12]. If these global
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stroke trends continue, by 2030 there is predicted to be approximately 70 million stroke
cases, approximately 12 million deaths and more than 200 million disability-adjusted life
years annually [30,31]. Despite significant progress in the diagnosis and treatment of brain
ischemia, it is assumed that around 2050, the number of brain ischemia cases is likely to
double, and disability after stroke is predicted to also increase due to the increasing number
of patients whom are likely to survive an ischemic episode [32,33].

1.2. Medical, Financial and Social Burdens of Brain Ischemia

Therefore, it is no surprise that the socioeconomic impact of stroke worldwide is
massive and growing over time; for example, the annual cost in the European Union was
EUR 38 billion in 2012, EUR 45 billion in 2015 and EUR 60 billion in 2017 [34]. In addition,
the additional cost of treating people with postischemic dementia and other dementias is
estimated to increase from USD 321 billion in 2022 to nearly USD 1 trillion by 2050 [35]. On
top of this, patients suffering from poststroke dementia are more likely to develop various
complications and numerous chronic diseases, which could certainly generate an even
greater financial burden related to the treatment of comorbidities; hence, brain ischemia
has become a global health problem [36]. Finally, human ischemic stroke is associated with
a very low cure rate, negligible full recovery, frequent recurrence, permanent disability and
high mortality [37].

1.3. Postischemic Neurodegeneration

Cerebral ischemia has been found to trigger a sequence of pathological events that
can last from minutes to the remaining years of life [8,38–41]. These pathologies include
energy failure, oxidative stress, excitotoxicity, neuroinflammation, cortical and subcor-
tical infarcts, white matter rarefaction, blood–brain barrier damage, microbleeding and
cerebral amyloid angiopathy [8,14,30,31,42–45]. The consequence of the above changes is
additional hypoperfusion, causing the ischemia of the adjacent areas, gliosis, the accumula-
tion of amyloid plaques and neurofibrillary tangles, neuronal death and, ultimately, brain
atrophy [38,39,41,46–49]. A focal ischemic episode typically damages the brain cortex, hip-
pocampus, temporal lobe, entorhinal cortex, amygdala and parahippocampus to varying
degrees. Postischemia, these structures are involved in cognitive and memory deficits, and
their progressive degeneration also induces behavioral changes. Cognitive impairment
due to ischemia is mild to severe, and has been seen in approximately 35–70% of survivors
one year after a stroke [50–55]. It should be noted, however, that it is common for cognitive
function to fail to return to before stroke levels [55–58]. Dementia has been shown to occur
even in cases with transient cognitive impairment after ischemia [55,59]. Studies show
that cerebral ischemia accelerates the onset of dementia by approximately 10 years [60].
It is estimated that 8–13% of patients develop dementia immediately after a first stroke,
and over 40% after a second stroke [10,54,60]. The estimated progression of dementia in
patients who survive 25 years after a stroke is approximately 48% [46,60].

It is believed that one in six people in the world are likely to suffer a brain ischemia
in their lifetime [1]. This is accompanied by massive neuronal death in vulnerable brain
regions. Thus, understanding the molecular mechanisms of neuronal death arising from
different forms of ischemic insults is a major goal of investigators in the field. Thus
far, three pathways of ischemic neuronal cell death, such as necrotic, apoptotic and au-
tophagocytotic, have been identified. Postischemic brain neurodegeneration, such as that
seen in Alzheimer’s disease, is a progressive neurodegenerative disease with two pro-
gressive pathological changes, i.e., extracellular amyloid plaques composed of β-amyloid
peptide and intracellular neurofibrillary tangles composed of hyperphosphorylated tau
protein. At present, there are no sufficient therapeutic strategies available. As there
are currently no neuroprotective substances known to exist, neuroprotective molecular
mechanisms have not been explained to this day. In contrast to necrosis and apoptosis, au-
tophagy could possibly serve as a potential therapeutic target against ischemia–reperfusion
brain injury [61].



Int. J. Mol. Sci. 2023, 24, 13793 4 of 22

Over the past two decades, it has been proposed that ischemic neuronal death is associ-
ated with folding molecules, such as amyloid and tau protein. Postischemia is characterized
by progressive memory loss and cognitive impairment, which, finally, ends in full-blown
dementia with the Alzheimer’s disease phenotype. Given the facts presented, postis-
chemic therapy strategies should probably focus on two characteristic changes: pathogenic
misfolded amyloid and tau protein with the hope of affecting macroautophagy, also
called autophagy.

1.4. Autophagy as Hope after an Ischemic Episode

There are three types of autophagy in mammalian cells: macroautophagy, microau-
tophagy and chaperon-mediated autophagy. Macroautophagy is the best-studied type
and a widely recognized autophagy in mammalian cells; thus, this review focuses on
macroautophagy [61–70]. The process of the development of macroautophagy, hereinafter
referred to as “autophagy”, consists of a series of successive stages [67,69,70]. The first is the
creation of a phagophore. After autophagy-inducing signals appear, a small liposome-like
membrane structure forms somewhere in the cytoplasm. The membrane then continues
to expand to form a flat lipid bilayer called the phagophore, which is a form of direct
evidence in the initiation of autophagy. In the second stage, the autophagosome is formed.
To this end, the phagophore is constantly stretched to incorporate various components and,
finally, transforms into a spherical double-membrane structure, namely, the autophago-
some [61,67,69,70], which randomly or selectively captures misfolded proteins or damaged
organelles, for example, misfolded tau protein or amyloid [62,69,70]. Regarding autophago-
somal membrane elongation, various ATG vesicles and ubiquitin-like binding systems
are involved in this phenomenon [67,69,70]. Autophagosomes then fuse with lysosomes
to form autophagolysosomes [67,69,70]. Finally, the autophagy cargo is broken down by
lysosomal enzymes and the recovered nutrients, including amino acids, fatty acids, etc., are
transported back into the cytoplasm as part of the recycling mechanism, while residues are
excreted from the cell to the outside. Recently, autophagy has been shown to involve a wide
range of signal regulation pathways, which have mainly been divided into the mammalian
target of rapamycin-dependent and the mammalian target of rapamycin-independent path-
ways, creating a sophisticated and intricate network of signals that regulate autophagy
either positively or negatively [61,67,69,70].

It has been widely accepted that autophagy is the self-defense of the cellular catabolic
pathway through which some long-lived or misfolded proteins and damaged organelles
are broken down into metabolic substances and recycled to maintain cellular homeosta-
sis [62,67,69,70]. During the process of autophagy, dysfunctional and unnecessary proteins
and cellular elements are surrounded with a double-membrane vesicle called the au-
tophagosome and, next, the autophagosome fuses with the lysosome, which, ultimately,
leads to the recycling and degradation of redundant intracellular structures and pro-
teins [62,67,69,70]. Autophagy is very important for cell and tissue homeostasis and is
actively involved in the aging process, as well as in many human and animal diseases,
including neurodegenerative diseases such as Alzheimer’s disease or postischemic neu-
rodegeneration [62–70].

In experimental cerebral ischemia, autophagy has been shown to have a protective ef-
fect through the inhibition of neuronal apoptosis [71–73]. It has been shown that autophagy
can be a double-edged sword in damage after cerebral ischemia; hence, it can be destructive
or protective [61]. Thus, if the protective effects of autophagy can be controlled, autophagy
can be a valuable therapeutic target, but if it cannot be controlled, it can be a messenger
of death. It seems that the induction of autophagy could become a potential therapeutic
strategy in the treatment of various diseases, including postischemic neurodegeneration.
On the other hand, some scientists suggest that the overinduction of autophagy can lead to
cell death, so-called autophagy cell death, emphasizing that the induction of autophagy
in the treatment of diseases is not without complications. Further research on this topic is
required to avoid such problems. We believe that there is likely to be a flexible adaptive
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capacity in different cells that face endogenous and exogenous stress. In a physiological
situation, autophagy is activated after stress and helps cells survive by controlling the
reuse and removal of dangerous intracellular cargo. In the above situation, autophagy
causes a number of repair phenomena in the cells and even leads to the achievement of
internal homeostasis by the cells, which results in a normal state. In contrast, if autophagy
is impaired by pathogens and autophagy gene mutations, the adaptive capacity of cells
decreases and cells are more susceptible to stress. On the other hand, if prolonged stress
results in excessive or prolonged autophagy that exceeds the adaptive capacity of the cell,
the overinduction of autophagy may trigger necrosis and apoptosis, ultimately, leading to
cell death. Thus, autophagy appears to be a double-edged sword in the phenomenon of
cellular adaptive machinery [74]. Whether autophagy is beneficial or harmful is determined
by the rate of autophagy induction and the duration of its activation [67]. However, the
role of autophagy in these processes is completely unclear and information about it in the
literature is very limited. However, many different factors influence the occurrence and
progression of cerebral ischemia. Although a great challenge has been undertaken to better
understand postischemic brain neurodegeneration, some questions remain unanswered.
Over the past two decades, increasing evidence has accumulated showing that autophagy is
involved in the development of cerebral ischemic sequelae. To understand the contradictory
findings presented above, it is important to pay attention to the level of autophagy, as too
high or too low a level of activity can be harmful. The identification of the pathways that
affect the balanced autophagy system could be of key importance in the development of
therapies for diseases of the nervous system, including the postischemic neurodegeneration
of Alzheimer’s disease proteinopathy. In this review, we present recent knowledge about
the control of autophagy and its specific role in brain ischemia–reperfusion injury, and
focus on the mechanisms and neuropathological processes that regulate autophagy in
postischemic brain. Although great efforts have been undertaken to improve the under-
standing of brain ischemia, there remain unanswered questions. Over the past two decades,
accumulating evidence has demonstrated that autophagy is extensively involved in brain
ischemia. However, the exact role and molecular mechanisms of the autophagy process
in ischemic insults are not fully elucidated. In this review, we provide a comprehensive
overview of the advance in this exciting research field.

2. Search of the Literature

A search of the literature was performed using the following databases: Scopus,
PubMed, Web of Science and Google Scholar. The keywords used in the article quest were
cerebral ischemia, postischemic neurodegeneration, ischemic stroke, autophagy, neuronal
death, necrosis, apoptosis, neuropathology and therapy, in various combinations. Articles
from the databases had to be relevant and up-to-date, and only the most recent research
was used in the review. The search focused mainly on articles published between 2000 and
2023. Previous original papers on the first descriptions of autophagy were also used.

3. Autophagy versus Postischemic Brain Cells

Brain ischemia is mainly caused by a cerebral blood flow blockage due to thrombosis
or embolism, leading to an abnormal energy metabolism, sodium and chlorine influx,
potassium efflux, cell membrane depolarization and cell edema. Subsequently, a series of
damage cascades (calcium overload, excitatory amino acid toxicity, free radical generation,
oxidative stress, neuroinflammation and apoptosis) can trigger irreversible brain damage
and result in a positive feedback loop that, ultimately, causes severe damage to neuronal,
glial and endothelial cells and their interconnections. In recent years, increasingly more
studies have confirmed the important role of autophagy in the pathophysiological mech-
anisms of postischemic brain neurodegeneration [67,69]. Autophagy selectively targets
dysfunctional organelles and intracellular microbes’ pathogenic proteins, and dysregula-
tion in this process may lead to disease. In this review, we present the history of autophagy
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from the perspective of understanding and potentially reversing postischemic pathology in
individual brain cells, as well as in the brain as a whole.

The first evidence that pyramidal neurons of the CA1 region of the hippocampus
displayed membrane-bound vacuoles containing intracellular elements after brain ischemia
with recirculation was documented in 1995 [75]. Additionally, cortical neurons presented
cytoplasmic vacuoles connected with postischemic brain alterations [71,76,77].

The accumulation of autophagy-like vacuoles in astrocytes was identified in the
brain following ischemic injury [78]. It was noted that autophagy was activated in is-
chemic astrocytes, which mildly decreased cell survival, but the braking of autophagy
with 3-methyladenine significantly decreased the death of astrocytes after ischemic in-
jury [79]. In contrast, the autophagy inhibitor 3-methyladenine increased hypoxic astrocyte
death [80]. In the latest research, an explanation to the bidirectional activity of autophagy in
astrocytes after ischemic brain injury was provided [81]. In brain hypoperfusion and focal
brain ischemia, microglia cells activated the autophagy process [82,83]. The induction of
microglial autophagy seemed to be associated with the deterioration of ischemia-induced
neuronal cell injury [84]. The intensification of microglial autophagy activation was shown
to be dependent on the time of both ischemia and reperfusion [85].

Increased autophagy-like cell death was observed in brain microvascular endothe-
lial cells in p50 knockout mice with brain ischemia [86]. An enhancement in autophagy
due to rapamycin has been demonstrated in ischemic brain microvascular endothelial
cells, whereas the suppression of autophagy through 3-methyladenine intensified brain mi-
crovascular endothelial cell apoptosis [87], which indicated a protective effect of autophagy
on brain microvascular endothelial cells and blood–brain barrier integrity after ischemic
brain injury. Other data agree well with the fact that autophagy protects microvascular
endothelial cells during ischemic stress, but autophagy inhibition through chloroquine
increased the blood–brain barrier permeability and intensified brain edema [88]. These
observations imply that the autophagy in the brain microvascular system triggered through
ischemia may influence the outcome following ischemic brain injury. A postmortem inves-
tigation of human ischemic brain tissue presented a growth in staining in sequestosome 1
and the microtubule-associated protein 1 light chain 3, and the elevated appearance of
autophagy vesicles following ischemic stroke [89]. These observations prove that changes
in autophagy take place in animal and human brain tissue following brain ischemia, and
imply that targeting autophagy after ischemia could be of clinical significance. Autophagy
is an evolutionarily conserved process that involves the packaging, sequestration and
delivery of used cytoplasm cargo to lysosomes, where lipids and proteins are degraded
and recycled. Autophagy has been implicated in neuronal death in both acute and chronic
neurodegenerative disorders. Autophagy in living beings is a homeostatic system for
recycling organelles and proteins, and has been increasingly proposed as a treatment target
for neurodegenerative disorders, including brain ischemia in humans called a stroke. A
confirmation that the autophagy process occurs in the human ischemic brain is necessary
before any therapies can begin in clinical trials. There seems to be no consensus regarding
the role of autophagy in ischemic neuronal cells. Some studies have presented that neuronal
death is related to activate autophagy.

4. Dysregulation of Autophagy Genes in Postischemic Brain

Evidence was provided for the lack of changes in the autophagy gene (BECN 1) during
2, 7 and 30 days after ischemia–reperfusion brain injury in hippocampal pyramidal neurons
of the CA1 region [65,66]. These changes were accompanied by a huge overexpression of
the caspase 3 gene, responsible for apoptotic neuronal death [65,66] in neurons in the CA1
area. On the other hand, studies of the BECN 1 gene expression in the CA3 area of the
hippocampus showed a significant increase in its expression on the 30th day after ischemia.
Parallel studies of the CASP 3 gene in this region showed that this gene was significantly
expressed between 7 and 30 days after ischemia [68]. However, in the medial temporal lobe
cortex, autophagy gene overexpression was observed during 30 days of reperfusion after
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a reversible cerebral ischemic episode [63–65]. This overexpression was accompanied by
the downregulation of caspase 3 gene 2 days after brain ischemia [63–65]. Next, on days
7 and 30 after ischemia, the above gene was impressively upregulated [63–65]. Thus, the
presented alterations indicated that the dysregulation of the expression of autophagy and
apoptotic genes may be associated with a different response of neurons in the CA1 and
CA3 areas of the hippocampus and in the medial temporal lobe cortex to transient global
brain ischemia [63–66,68].

5. Autophagy and Neuronal Death in Ischemic Brain Injury

Although autophagy induction is very important following ischemic brain injury,
it is still not the only one mechanism associated with neuronal death. Necrosis and
apoptosis are two other forms of neuronal death with big differences in the mechanism
and morphology involved. Necrosis, recently called necroapoptosis or necroptosis, is
characterized by the swelling and interruption of the cytoplasm membranes [90]. Neurons
undergo necrosis in a programmed fashion as ordered cellular explosions [90]. Apoptosis
is a programmed neuronal cell death characterized by membrane blabbing, an apoptotic
body formation, mitochondrial membrane damage, nuclear condensation, cell shrinkage
and DNA fragmentation [91]. Autophagy, apoptosis and necroptosis are morphologically
and mechanistically different phenomena, but there is important crosstalk that occurs
between them in brain ischemia injury [91]. The autophagy system shares mutual molecular
mediators with apoptosis and necroptosis, such as Bcl-2, AMPK and p62 [92]. These
integrative hubs of cell signaling, membrane trafficking and physiology also regulate both
protein complex formation and the metabolic status sensing of cells, as well as membrane
trafficking in autophagy, apoptosis and necroptosis phenomena through control signaling
transduction [91,92].

6. Crosstalk between Autophagy, Necroptosis and Apoptosis after Brain Ischemia

In recent years, the research of understanding neuronal cell death in brain ischemia
injury has transformed into necroptosis and autophagy machinery, combined with the
understanding of apoptosis phenomena [90–92]. The autophagy process controls neu-
ronal death switching betwixt apoptosis and necroptosis [93]. Neural cell death can be
affected by many factors, such as age, gender and duration of ischemia. Autophagy is
especially severe in adult brains with ischemic injury [94]. It has also been shown that
following ischemic brain injury, female brain neuronal cells displayed a stronger activity
of caspase 3 compared to the male brain [95]. The rapidity and intensity of autophagy
machinery in brain ischemia are not the same in miscellaneous brain areas, e.g., in the
CA1 and CA3 areas of the hippocampus and the temporal lobe of the brain [63–66,68].
Moreover, the autophagy machinery in different brain areas seems to be related to different
forms of neural death [67]. In ischemic neurons in the brain cortex, both autophagy and
apoptosis phenomena occurred following ischemic brain injury [96,97]. The hippocampus
neurons in the CA1 area died in a strong apoptotic way with only a slightly enhanced
autophagy, while neurons in the CA3 sector of the hippocampus experienced a more pure
autophagic neuronal death [96]. Another study complied with the above observations
and demonstrated that autophagy was only induced in the CA3 area of the hippocampus,
but not in the CA1 subfield, following ischemia [65,66,72]. In an animal model of global
brain ischemia, the overexpression of the autophagy gene in the CA1 region of the hip-
pocampus was not noted, but overexpression was found in the CA3 area and temporal
lobe, indicating neuroprotection by autophagy neurons in both structures against ischemic
injury [63–66,68]. On the contrary, necrosis and apoptosis processes, including plasma
membrane burst, DNA fragmentation, caspase 3 gene overexpression, protein activation
and AIF activity, were dominated in hippocampus CA1 neurons at 24–48 h following brain
ischemia [65,66,72]. Thus, the preference for autophagy machinery activation in the CA3
area of the hippocampus and cortical neurons could explain why the CA3 sector of the
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hippocampus and cortical neurons were more resistant to brain ischemia compared with
the pyramidal neurons in the CA1 area of the hippocampus [38,98].

Autophagy is an adaptive mechanism and probably influences the disintegration and
clearance of damaged organelles and/or proteins [61,72,87,99–104]. The literature on this
issue contains contradictory data concerning autophagy (Table 1). Some studies showed the
commitment of autophagy in cell death because of the excessive degradation and clearance
of cellular organelles and proteins [67,71,77,105–108]. Other investigations further pointed
out that autophagy machinery probably protects neurons from apoptosis [67,77,103]. The
underling mechanisms of necroptosis (programmed necrosis) or the necrosis of neurons
after brain ischemia are still not fully understood. The above process was especially
severe in ischemic neurons in the CA1 region of the hippocampus compared with the
CA3 area [109].

Table 1. The role of autophagy in postischemic brain neurodegeneration.

Reference Model Animal Autophagy Induction by Autophagy Inhibition by Role

[72] 4VO Rats Tsc1 induction Protective

[110] 4VO Rats Rapamycin induction Protective

[111] tMCAO Rats Eugenol induction Protective

[87] pMCAO Rats Metformin induction Protective

[112] pMCAO Rats Compound C inhibition Protective

[113] tMCAO Mice GPR30 knockout inhibition Protective

[77] tMCAO Mice ARRB1 knockout inhibition Protective

[114] tMCAO Mice ATF6 knockin induction Protective

[115] pMCAO Mice Immune-related GTPase M1
knockout inhibition Protective

[116] tMCAO Rats Isoflurane induction Protective

[117] tMCAO Rats Schaftoside induction Protective

[118] tMCAO Rats Melatonin inhibition Harmful

[108] pMCAO Rats 3-methyladenine or
wortmannin inhibition Harmful

[119] tMCAO or pMCAO Rats Carnosine inhibition Harmful

[120] tMCAO Rats Homocysteine induction Harmful

[121] pMCAO Rats 3-methyladenine inhibition Harmful

[122] tMCAO Rats Becn1-shRNA or
3-methyladenine inhibition Harmful

[123] pMCAO Rats Bafliomycin A1 or
3-methyladenine inhibition Harmful

[124] tMCAO Mice IL-17A induction Harmful

[105] pMCAO Mice N-acetyl-serotonin inhibition Harmful

[125] pMCAO Mice Silibinin inhibition Harmful

[126] tMCAO Mice Schizandrin inhibition Harmful

[127] tMCAO Mice 3-methyladenine inhibition Harmful

[128] tMCAO Mice CircHECTD1 knockdown inhibition Harmful

[129] tMCAO Mice IL-21 knockout inhibition Harmful

[130] Hypoxic-ischemic Neonatal rats Lithium inhibition Harmful

[131] tMCAO Mice GPR37 knockout induction Harmful

[132] tMCAO Mice TIGAR knockout induction and TIGAR
transgene inhibition Harmful

4VO—four-vessel occlusion; tMCAO—transient middle cerebral artery occlusion; pMCAO—permanent middle
cerebral artery occlusion.
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In the first study of necroptosis after brain ischemia, the necroptosis inhibitor necrostatin-1
was unable to block autophagy [133]. Considering that necrostatin-1 reduced the volume
of brain infarct, it could be concluded that necroptosis contributes to neural damage
after ischemia via a machinery different from that of apoptosis, and necroptosis and
autophagy are activated independent of each other during neuronal death [133]. In a recent
piece of research, it was observed that the receptor-interacting protein 1 kinase regulated
necroptosis-activated autophagy–lysosome machinery, thus, leading to ischemic neurons
and astrocyte cell death in focal brain ischemia [134].

Parthanatos, a unique condition of neuronal death, was presented in 2008 [135].
Parthanatos occurs during the overactivation of the nuclear enzyme poly (ADP-ribose)
polymerase-1. It was recently presented that the use of inhibitors of parthanatos, but
not those against autophagy and/or apoptosis, caused a decrease in neuronal death fol-
lowing hemorrhagic brain ischemia [136]. Notwithstanding, the relationship between
parthanatos and autophagy during brain ischemia–reperfusion injury remains unresolved
even now. The deletion of the autophagy gene Atg5 diminished the SIRT1 activity impor-
tant for parthanatos, while parthanatos could not be influenced by the autophagy inhibitor
BAF [137]. This suggested that parthanatos might have no association with autophagy.
However, the number of reports on the crosstalk between autophagy and necroptosis has
been relatively small thus far, and further studies are in demand on the exploration of
this issue.

7. Autophagy versus Postischemic Brain Injury

There is evidence in the literature that the autophagy gene is dysregulated in the
postischemic brain [63–66,68]. Currently, two opposing activities of autophagy have been
suggested, i.e., neuroprotection and influence on neuronal cell death (Table 1). Some
in vivo studies have demonstrated the protective functions of autophagy in brain ischemia
(Table 1) [102,103], while other studies have presented the detrimental effects of autophagy
in ischemia–reperfusion brain injury (Table 1) [108,112,118,134].

7.1. The Protective Role of Autophagy in Postischemic Brain

Some studies have presented that autophagy may have a neuroprotective influence in
postischemic brain neurodegeneration. In global brain ischemia in rats, the administration
of the autophagy activator rapamycin decreased neuronal death in the hippocampal CA1
area and coincided with an increase in markers of autophagy, such as beclin 1 [110]. A
single dose of metformin initiated autophagy by activating AMPK in permanent focal
brain ischemia in rats, thus, exerting a protective role [87]. Metformin reduced infarct
size, neurological deficits and neuronal apoptosis in postischemic brain injury [87]. The
neuroprotective action of metformin was fully abolished by compound C and partially
by 3-methyladenine [87]. After transient brain ischemia in rats, the administration of
isoflurane significantly improved the cognitive and memory functions and coincided with
an increase in markers of autophagy, such as beclin 1, and further inhibited the release of
inflammatory factors [116]. In immune-related GTPase M1 knockout mice, severe brain
damage was reported in a postischemic episode and decrease in the activity of autophagy
than in wild-type mice [115]. In addition, the infarct volume in these mice after permanent
local brain ischemia significantly increased compared to that in wild-type mice [115]. Neu-
ropathological studies suggested that, during 24 h of recirculation, the immune-related
GTPase M1-dependent autophagic response is connected through protective action on
neurons from necrosis in the core of infarct and support of neuronal apoptosis in the
penumbra [115]. Other genetic models of mice, such as GPR30 [113] and ARRB1 knockout
mice [77] and ATF6 knockin mice [114], presented that autophagy had a protective role in
postischemic brain neurodegeneration. After global ischemia, hamartin conferred neuro-
protection against ischemia by inducing autophagy and increasing locomotor activity [72].
It was presented that ischemic preconditioning through the activation of AMPK induced
autophagy activity in postischemic brain, which occurred with a reduction in infract size,
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neurological deficits and neuronal apoptosis after permanent focal brain ischemia [112].
Ischemic preconditioning-induced autophagy and autophagy could be abolished by com-
pound C or 3-methyladenine [112]. Next, pretreatment with eugenol attenuated ischemia–
reperfusion brain injury in rats by inducing autophagy via the AMPK/mTOR/P70S6K
signaling pathway [111]. Another study indicated that schaftoside blocked apoptosis and
neuroinflammation, reducing brain edema and improving neurologic deficits by enhancing
autophagy after transient focal brain ischemia in rats [117].

Many studies did not take sex as a variable when analyzing the experimental outcomes
after brain ischemia. However, accumulating data show that sex differences play an impor-
tant role in the regulation of the autophagy pathway, and may lead to different outcomes
between males and females [138–140]. Genes located on the X chromosome are thought to
possibly explain the sex differences between menopausal men and women in morbidity,
mortality and disability rates after an ischemic cerebral event. Although the exact role of
autophagy in the pathogenesis of postischemic brain is ambiguous and inconsistent, it is
unanimously believed that a moderate activation of autophagy is neuroprotective, while ex-
cessive autophagy activation is harmful [141]. The inconsistent results of these studies may
be due to several reasons. First, the time of the activation or inhibition of autophagy was
different among these studies. As a self-protective mechanism, the activation of autophagy
at the early stage of brain ischemia is neuroprotective via degrading misfolded proteins
and damaged organelles to maintain the intracellular environment [142]. Interestingly,
several studies suggested that autophagy participates in ischemic preconditioning-inducing
neuroprotection [74,112,143,144]. Therefore, the activation of autophagy before or during
ischemia is neuroprotective. However, it is known that ischemic stress also continues
during recirculation, therefore, autophagy is constantly activated, causing further damage.
Second, the extent of autophagy activation varied among these studies due to the different
models and modulators. As mentioned before, moderate autophagy activation is protective,
while excessive autophagy activation is deleterious in the ischemic brain. Last, but not
least, the molecules used in some studies were not specific to autophagy. For example,
3-methyladenine is widely used as an inhibitor for autophagy in different studies. However,
3-methyladenine is not specific for targeting autophagy signaling. 3-methyladenine acts as
an autophagy inhibitor [145] by inhibiting the PI3K pathway, which participates in other
biological processes, including necrosis and apoptosis [121,146], besides autophagy activa-
tion [147,148]. Rapamycin, an autophagy activator, initiates autophagy via inhibiting mTOR
signaling. However, the mTOR pathway is also suggested to have immunosuppressive
and antiproliferative impacts [149,150]. Therefore, it is hard to tell which pathway caused
by these molecules actually influences the outcome of postischemic brain. To solve these
problems, standardized protocols of brain ischemia models and more specific molecules
for autophagy need future studies.

7.2. The Deleterious Role of Autophagy in Postischemic Brain

Studies in experimental brain ischemia suggest that autophagy may exhibit dele-
terious effects on postischemic outcome (Table 1). Autophagy inhibitors, wortmannin
and 3-methyladenine, decreased infarction size in rats after permanent local brain is-
chemia [108]. Presenting data suggest that the inhibition of autophagy blocks the cathepsin–
tBid–mitochondrial apoptotic pathway through the stabilization of lysosomal membranes,
possibly due to the upregulation of the lysosomal Hsp70.1B in postischemic cells [108].
Autophagy, which was activated in postischemic astrocytes, mildly decreased cell survival
after focal permanent brain ischemia [79]. The Beclin 1 knockdown gene of autophagy
could prevent secondary thalamic injury after middle cerebral artery occlusion in rats [122].
Another study presented that neuronal injury in permanent local brain ischemia was
associated with autophagy and lysosomal signaling [123]. Blocking autophagy amelio-
rated neurological deficits after focal brain ischemia in estradiol-deficient mice [151]. A
recent study suggested that TIGAR protected against neuronal injury partly by inhibiting
autophagy [132]. Interleukin-21 was shown to promote neuronal injury and autophagy
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activity in neurons postischemia, suggesting that autophagy may exert a harmful impact
on focal brain ischemia [129]. GPR37 knockout mice showed increased infarct volume and
autophagic neuronal death compared with wild-type mice postischemia, which suggested
that autophagy participated in neurodegeneration after ischemia and its consequence
was damaging [131]. The administration of melatonin before ischemia was shown to
protect acute neuronal cell damage postischemia by inhibiting endoplasmic reticulum
stress-dependent autophagy via PERK and IRE1 signaling [118]. Other data presented
the neuroprotective effect of carnosine, which partially mediated a positive effect through
the mitochondria protection and attenuation of negative autophagy processes [119]. The
bafilomycin protection of neuronal damage in rat permanent local brain ischemia has been
associated with the inhibition of autophagy and lysosomal pathways [123]. Next, a study
found that homocysteine may trigger excessive autophagy, thereby facilitating the toxicity
of homocysteine on neural stem cells in postischemic brain injury [120]. Another substance,
silibinin, protected neuronal cells by inhibiting both the mitochondrial and autophagic
cell death pathways after focal brain ischemia in mice [125]. N-acetyl-serotonin offered
neuroprotection by inhibiting mitochondrial death signaling and autophagy activation
in focal brain ischemia in mice [105]. Other interesting substances such as schizandrin
inhibit autophagy through the regulation of AMPK–mTOR signaling, and may have neu-
roprotective value for ischemic neurons [126]. After the administration of lithium in an
experimental model of hypoxia–ischemia, pathology in the hippocampus, cortex, striatum
and thalamus was reduced. Lithium reduced the dephosphorylation of glycogen synthase
kinase-3β and extracellular signal-regulated kinase, the activation of caspase 3 and the
apoptosis-inducing factor, as well as autophagy [130].

8. Potential Therapeutic Strategies for Autophagy Modulation Postischemia

According to the aforementioned studies, therapeutic strategies targeting autophagy
modulation may be a possible approach in the management of the postischemic neurode-
generation of Alzheimer’s disease proteinopathy. To date, multiple potential therapeutic
molecules have been explored [152–156]. These molecules influence different processes of
autophagy, including inducing adaptive autophagy and inhibiting excessive autophagy
after brain ischemia (Table 2). A variety of compounds have been shown to induce adap-
tive autophagy. Among these molecules, rapamycin has been widely examined in the
management of ischemic brain injury via the inhibition of mTOR. Recent studies have
indicated that the administration of rapamycin in rodents undergoing focal brain ischemia
could diminish infarct volume, reduce neuronal injury and improve neurological recov-
ery [157–159]. Rapamycin has also been reported to reduce endothelial cell death and
protect blood–brain barrier permeability in local brain ischemia [160]. A recent review
including 17 publications demonstrated that rapamycin significantly decreased infarct
size by 22% and improved neuroscores by 31% [159]. Interestingly, lower doses of ra-
pamycin showed greater efficacy at reducing infarct size than higher doses, which was
potentially due to an optimal level of autophagy activation being reached with a low
dose of rapamycin [159,161,162]. Resveratrol, a common dietary polyphenol, has been
shown to extend the clinical therapeutic window of r-tPA for stroke patients [163]. He
et al. revealed that resveratrol alleviated ischemia–reperfusion brain injury and reduced
infarct volume [164], which was consistent with another study [165]. For the inhibition of
excessive autophagy, several studies demonstrated that dexmedetomidine was capable of
rendering neuroprotection in focal brain ischemia via the inhibition of excessive autophagy.
In the transient middle cerebral artery occlusion, dexmedetomidine protected a mouse
brain from ischemia–reperfusion injury via the inhibition of neuronal autophagy through
the upregulation of HIF-1α [87]. Moreover, dexmedetomidine has been reported to reduce
the autophagy effect and improve learning and memory in a rodent model of local brain
ischemia [166]. A recent study showed that the regulation of miR-199 was a potential
mechanism by which dexmedetomidine inhibited autophagy and promoted neurological
outcome postischemia [167]. Propofol administration decreased the infarct volume and im-
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proved the neurological outcome after acute focal brain ischemia [168,169]. Recent studies
presented that propofol protected against ischemia–reperfusion brain neurodegeneration
through the inhibition of excessive autophagy through the regulation of mTOR/S6K1 or
long noncoding RNA SNHG14 [170,171]. Melatonin was found to significantly alleviate the
consequences of brain insult, such as neuronal apoptosis and brain edema postischemia,
through the inhibition of endoplasmic reticulum stress-induced excessive autophagy [118].
Recently, Gao et al. showed that icariside II protected neurons in a rodent model of focal
brain ischemia by inhibiting excessive autophagy through interfering with PKG/GSK-3β
signaling [172]. Although accumulating evidence has shown that molecules targeting au-
tophagy signaling have neuroprotective potential for the consequences of cerebral ischemia,
there are several limitations in need of consideration. Firstly, the possible side effects of the
agents should be considered. Besides enhancing autophagy, mTORC1 inhibition blocks
nucleotide and protein synthesis, inhibiting metabolism and cell proliferation [173]. Long-
term rapamycin administration may cause immunosuppression, and glucose intolerance
due to mTORC1 is acutely sensitive to rapamycin, whereas mTORC2 is chronically sensitive
to rapamycin in vivo [174]. In addition, current research mainly focuses on the effects of
autophagy regulation on neuronal cell damage, and less on cell growth after ischemia.
Finally, the end result of autophagy-targeted treatments is related not only to the severity
of autophagy, but also to the time of the administration of autophagy regulators, the dose
of the drug and the route of administration.

Table 2. Compounds modulating autophagy after brain ischemia.

References Molecules Effect on Autophagy Action by End Result on Ischemia

[157–162,175] Rapamycin Induction mTOR-dependent activity
↓ Infarct volume, neuronal injury,

neurological deficits, endothelial cell
death, BBB injury

[163–165] Resveratrol Induction Sirt1-dependent autophagy
activity

↓ Infarct volume, inflammation,
brain edema, apoptosis, neurological

deficits. ↑ Therapeutic window

[166,167,176] Dexmedetomidine Inhibition-excessive
autophagy Upregulation of HIF-1α

↓ Neuronal injury, neurological
deficits, beclin 1, caspase 3.
↑ Learning, memory,

neurological outcome

[168–171] Propofol Inhibition-excessive
autophagy Regulation of mTOR/S6K1 ↓ Infarct volume.

↑ Neurological outcome

[118] Melatonin Inhibition-excessive
autophagy

Inhibiting ER
stress-dependent autophagy

↓ Apoptosis, brain edema,
neurological deficits

[172] Icariside II Inhibiting-excessive
autophagy PKG/GSK-3β signaling ↓ Autophagic neuronal death

[72] Hamartin Initiation Inhibition of mTORC1 ↑ Neuroprotective effect

[177] Bexarotene Initiation Inhibition of
autophagosome degradation ↓ Infarct size, behavioral deficits

[178] Melatonin Inhibition

Activating the PI3K/Akt
pro-survival pathway and

inhibiting expression
of beclin-1

↓ Infarct size, neurological deficits

[73] Minocycline Inhibition Suppressing beclin-1 ↓ Cell damage, caspase 3 and 8

[127] Fingolimod Suppression
Activation of mTOR/p70S6K

pathway, decrease in
autophagosome and beclin 1

↓ Infarct volume, neuronal
apoptosis, functional deficits
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Table 2. Cont.

References Molecules Effect on Autophagy Action by End Result on Ischemia

[105] N-acetyl-
serotonin Suppression Reducing the activation of

autophagy
↓Mitochondrial cell death pathway,

autophagic cell death

[123] 3-methyladenine Increase in
autophagos-omes

Inhibition on
ischemia-induced

upregulation of LC3-II

↓ Infarct volume, brain edema,
motor deficits

[119] Carnosine Attenuation Attenuation of deleterious
autophagic process

↑ Improvement in brain
mitochondrial function,

mitophagy signaling

[87] Metformin Initiation Activation of brain AMPK, ↓ Infarct volume, neurological
deficits, cell apoptosis

[175] Lithium
carbonate Induction mTOR-independent ↓ Evans blue extravasation,

brain water

↑—increase; ↓—decrease.

9. Conclusions

The data indicate that autophagy plays an important role in the control of homeostasis
in brain tissue by removing and recycling redundant cell elements and misfolded proteins
after cerebral ischemia, thereby regulating the survival and death of neuronal cells (Table 2).
Some studies have shown the protective properties of autophagy in cerebral ischemia,
while other studies have shown completely opposite properties (Table 1). Thus, autophagy
is now presented as a double-edged sword with possible therapeutic potential in cerebral
ischemia (Table 1). As such, the scientific community must reach a consensus in the near
future on the exact role of autophagy in ischemic brain injury. This review presented
the latest data linking postischemic autophagy to Alzheimer’s disease and the role of the
ischemic regulation of autophagy in the development of full-blown Alzheimer’s disease.
Experimental and clinical evidence shows ischemic brain injury and Alzheimer’s disease
are not just traveling companions, but partners in crime. Regardless of the complexity and
variety of experimental models, such as cell and animal models, ischemia and reperfu-
sion duration and differences in species, sex and age of animals can cause the observed
discrepancies in studies. The data indicate that the physiologically regulated process of
autophagy can increase neuronal viability in an emergency, while exaggerated or prolonged
ischemia-induced autophagy can be lethal. Some studies indicate that the neuroprotective
effect of autophagy is related to the duration of cerebral ischemia, with the prolongation
of ischemic time resulting in neurotoxic effects (Table 1). Another explanation for the
bidirectional action of autophagy can be related separately to ischemia and the subsequent
neuropathology during reperfusion. Thus, autophagy may be neuroprotective during
cerebral ischemia but detrimental during recirculation. Conclusions based on current
research are preliminary and do not conclusively clarify whether autophagy is a friend
or foe in cerebral ischemia. It should also be taken into account that the use of genetic
methods also has limitations due to the nonautophagic roles of autophagy-related proteins
and the behavior of the BNCE 1 gene, which had different expressions in different brain
structures after ischemia [63–66,68]. Regarding the above observation, further research is
needed to understand what causes the differences in neuronal autophagy in different areas
of the brain. In summary, the processes underlying the elimination/recycling of proteins
associated with neurodegeneration are currently completely unclear.

Autophagy is widely believed to be a self-protecting cellular catabolic pathway
through which some long-lived or misfolded proteins and damaged organelles are de-
graded and circulated to maintain cellular homeostasis [179]. Many studies have demon-
strated that autophagy protects cells from death by inhibiting apoptosis. In addition to
preventing apoptosis to inhibit cell death, autophagy also causes excessive cell death.
Therefore, autophagy is called a type II programmed cell death to distinguish it from type I
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programmed cell death apoptosis. Whether autophagy is beneficial or deleterious depends
on the rate of autophagy induction and the duration of autophagy activation. Recent
evidence has shown that autophagy is activated in various cell types in the brain, such
as neuronal, glial and brain microvascular cells, upon ischemic brain injury. Under these
conditions, autophagy participates in the regulation of neuroinflammation and damage to
neurons and cells of cerebral vessels and surrounding tissues, and this regulation may be
positive after ischemia. It can also have a negative effect, and this regulation may be related
to the speed, range and damage of the cell types of the cerebrovascular network. However,
the specific role of autophagy in the development and progression of cerebrovascular dis-
eases, as well as when and how autophagy itself can regulate autophagy’s own regulators
to play a protective role in the process of cerebrovascular diseases, is still unclear.

10. Good or Bad Autophagy: A Matter of Balance?

The controversy surrounding autophagy after cerebral ischemia raises the question
of whether autophagy is good or bad (Table 1). It is probably more appropriate to view
autophagy as a balancing act (Figure 1). Taking into account both experimental and
clinical observations, autophagy is essential during reperfusion to remove dysfunctional
cytoplasmic organelles or convert pathologically altered proteins, e.g., into energy. On the
other hand, excessive autophagy may not meet the cell’s requirements and may lead to cell
death (Figure 1). In the second extreme case, with minimal autophagy activity during cell
starvation, it is not possible to maintain cellular homeostasis. Therefore, the problem is still
debatable because the golden mean has not been found.
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As mentioned above, accumulating evidence indicates that autophagy plays a key
role in the process of brain neurodegeneration after ischemia, indicating a potential ther-
apeutic target in cerebral ischemia. Currently, however, there are many unanswered
questions that need to be thoroughly and critically addressed in future research to translate
autophagy-based cerebral ischemia therapies into clinical practice. First, are there non-
canonical pathways that initiate nonadaptive autophagy that is detrimental to neuronal cell
survival? Postischemic autophagy involves a variety of pathways, but which mechanisms
regulate the degree of autophagy is not clear. Excessive autophagy is characterized by the
accumulation of autophagosomes, but the mechanisms underlying this phenomenon are
still unclear. How can cell-specific autophagy be selectively modulated without activating
undesirable signaling pathways leading to cell death? Given that cerebral ischemia-induced
autophagy has both beneficial and detrimental effects, consideration should be given to
investigating the most likely influencing factors, such as finding the optimal time point for
autophagy manipulation. Finally, the last and most important point is that the transfer of
this therapeutic strategy from the laboratory to the clinic should be accompanied by robust
preclinical studies in appropriate cell cultures and animal models.

11. Challenges

The quality control of the cellular cytoplasm of neuronal and glial cells is important
for homeostasis, and an uninterrupted and constant balance between various cellular
organelles and proteins is required. It has been suggested that changes in the quality of the
cytoplasm are involved in the pathogenesis of cerebral ischemia, leading to the death of
neuronal and other brain cells. The modulation of molecular processes related to autophagy
after ischemia, which was shown in the review, creates opportunities for designing new
therapies. However, to take advantage of this potential opportunity, a better understanding
of the mechanism of autophagy is required with the development of new tools, such as
transgenic animal models, to study this complex phenomenon.
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