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Abstract: Single-nucleotide polymorphism rs71327024 located in the human 3p21.31 locus has been
associated with an elevated risk of hospitalization upon SARS-CoV-2 infection. The 3p21.31 locus
contains several genes encoding chemokine receptors potentially relevant to severe COVID-19. In
particular, CXCR6, which is prominently expressed in T lymphocytes, NK, and NKT cells, has
been shown to be involved in the recruitment of immune cells to non-lymphoid organs in chronic
inflammatory and respiratory diseases. In COVID-19, CXCR6 expression is reduced in lung resident
memory T cells from patients with severe disease as compared to the control cohort with moderate
symptoms. We demonstrate here that rs71327024 is located within an active enhancer that augments
the activity of the CXCR6 promoter in human CD4+ T lymphocytes. The common rs71327024(G)
variant makes a functional binding site for the c-Myb transcription factor, while the risk rs71327024(T)
variant disrupts c-Myb binding and reduces the enhancer activity. Concordantly, c-Myb knockdown
in PMA-treated Jurkat cells negates rs71327024’s allele-specific effect on CXCR6 promoter activity.
We conclude that a disrupted c-Myb binding site may decrease CXCR6 expression in T helper cells of
individuals carrying the minor rs71327024(T) allele and thus may promote the progression of severe
COVID-19 and other inflammatory pathologies.

Keywords: 3p21.31 locus; COVID-19; CXCR6; T helpers; c-Myb; non-coding SNP

1. Introduction

Genome-wide association studies reported multiple associations between single-
nucleotide polymorphisms (SNPs) and COVID-19 outcome and severity [1]. Among
multiple non-coding SNPs involved, several SNPs in the 3p21.31 locus were associated
with severe COVID-19, including rs13078854, rs35081325, rs2271616, rs10490770, and
rs11385942 [2–4]. The 3p21.31 locus contains putative SARS-CoV-2 coreceptors (SCL6A20,
LZTFL1, and FYCO1) as well as several chemokine receptors (CXCR6, XCR1, CCR1, CCR2,
CCR3, CCR5, and CCR9), whose involvement in COVID-19 infection has been recently
suggested [5–9].
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Chemokines and their receptors are crucial for the recruitment of effector immunocytes
to the site of inflammation, a critical stage in the effective response to respiratory pathogens.
However, in COVID-19, modulation of chemokine response can be a direct cause of acute
respiratory disease syndrome, a serious complication leading to death in approximately
40% of severe cases [10]. Likewise, CXCR6 may be involved in tumor progression [11]
and participate in the recruitment of immune cells to non-lymphoid organs during chronic
inflammation [12,13] and acute respiratory diseases [14,15]. This receptor is expressed on a
variety of lymphocytes such as NK cells, NKT cells, naive CD8+ T cells, activated CD4+ and
CD8+ T cells, as well as γδT cells [11]. CXCR6 acts as a receptor for the pro-inflammatory
chemokine CXCL16, which is highly expressed in the lungs, spleen, and whole blood
(https://www.gtexportal.org/home/gene/CXCL16, accessed on 1 August 2022) [16].

Recent studies revealed that the CXCR6/CXCL16 axis plays an important role in
severe COVID-19 immunopathogenesis [17]. CXCR6 expression by lung-resident memory
CD8+ T cells was lower in patients with severe COVID-19, indicating the possible protective
role of CXCR6+ killer T cells [18,19]. In addition, according to single-nucleus RNA-seq data,
CXCR6 expression was dysregulated in lung samples from the cohort of patients who have
died from COVID-19, with marked downregulation in some of the samples [20]. COVID-19
is characterized by a decreased number of CD8+ and CD4+ T cells in the blood and in lung
tissue [21,22], and the severity of the disease is directly related to the lymphocytopenia
grade [23]. The decreased CD4+ T cell level is even used as an independent predictor for in-
hospital death in COVID-19 patients [24]. CD4+ T cells function during acute SARS-CoV-2
infection is an intriguing, widely discussed question that is left to be answered [25].

A set of studies of eQTLs (expression quantitative trait loci) reveals that the COVID-19
severity may be mediated by genetic variants associated with CXCR6 expression [19]. In
this study, we focused on SNP rs71327024, which is an eQTL for the CXCR6 gene. This
SNP is associated with COVID-19-related hospitalization [26] and is located in a non-
coding region with the epigenetic marks of an active regulatory element in the human
3p21.31 locus [27]. We studied the effect of the minor rs71327024(T) allele on the activity
of the human CXCR6 promoter in T helpers using a reporter assay. We showed that
impaired c-Myb binding at the rs71327024(T) allele results in reduced CXCR6 transcription,
providing a possible explanation for the harmful effect of this single-nucleotide variant in
the context of COVID-19 pathogenesis.

2. Results
2.1. The Risk Allele (T) of rs71327024 Decreases the CXCR6 Promoter Activity in Jurkat, CEM
and CD4+ Primary Cells

According to the data of the COVID-19 Host Genetics Initiative [26], rs71327024
is associated with COVID-19-related hospitalization (p < 10−4). This SNP is located in
the 3p21.31 locus and is an eQTL for multiple immune response genes (predominantly
chemokine receptors) in several tissues (according to GTEx) [16]. The minor allele frequency
of rs71327024 is heterogeneous among the global population: the risk T allele is most com-
mon in South Asian and less represented among African (Supplementary Table S1). Accord-
ing to ENCODE [28] and Roadmap epigenomic data [29] visualized by the UCSC Genome
Browser (http://genome.ucsc.edu/, accessed on 1 February 2022), the genomic region
surrounding rs71327024 has epigenetic marks of enhancer regions (chr3:46097185-46099619;
GRCh38/hg38): high level of H3K4me1 and H3K27ac histone modifications [27], DNase I
hypersensitivity sites and clusters of transcription factor binding sites (Figure S1).

Since rs71327024 is an eQTL for the CXCR6 gene that has several RNA splice variants
(Figure S1), we had to choose an isoform expressed predominantly in T helpers, well known
players in COVID-19 pathogenesis [25]. For functional validation of promoter activity in
CD4+ cells, we cloned putative CXCR6 promoter regions (chr3:45942118-45946481, pro-
moter 1; chr3:45939898-45941054, promoter 2; all GRCh38/hg38) (Figure S2a) into a pGL3-
basic reporter vector. Using a luciferase reporter assay, we tested the activity of constructs
in an experimental model of T helper cells, the PMA-treated human T-lymphoblastoid
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http://genome.ucsc.edu/


Int. J. Mol. Sci. 2023, 24, 13790 3 of 11

Jurkat cell line [30–32]. Promoter 1, located in the active chromatin region, showed high
activity, while promoter 2 was significantly less active (Figure S2b). These results can
be connected with the location of the cell-type specific TSSs (transcription start sites), ac-
cording to data from FANTOM5 hg38 human promoterome collection [33]. Promoter 1
contained TSSs with the highest CAGE (Cap Analysis of Gene Expression) tag counts for
CD4+ cells (ENST00000304552.5, ENST00000458629.1, and ENST00000457814.1 isoforms),
whereas promoter 2, located upstream of the isoform ENST00000438735.1, includes a TSS
that predominantly controls isoform expression in chorionic membrane cells (Figure S2a).
Thus, for further experiments, we selected promoter 1, which is common for major CD4+

cell-specific CXCR6 isoforms.
The reporter plasmid with the putative enhancer containing the common rs71327024(G)

allele demonstrated a 2.5-fold increase in luciferase activity compared to the vector contain-
ing an irrelevant sequence in all activated Jurkat, CEM and primary CD4+ cells (Figure 1).
Conversion of the rs71327024(G) variant to the minor T allele abrogated the enhancer
activity, suggesting that the selected region of the 3p21.31 locus acts as an enhancer of the
CXCR6 promoter in T helpers only in the presence of the common rs71327024(G) allele.
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CD4+ primary or Jurkat or CEM cells. Data represent eleven (Jurkat and CD4+ primary cells) and 
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pared to the rs71327024(T) allele, # p < 0.05, ## p < 0.01 compared to the control, as calculated by 
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2.2. The Common rs71327024(G) Makes a c-Myb Binding Site in PMA-Treated Jurkat Cells 
The ADASTRA database [34] reports that rs71327024 serves as a direct allele-specific 

binding site of the transcription factor c-Myb (highlighted in [35]) in Th1 cells. c-Myb is 
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Figure 1. 3p21.31 locus enhancer containing common rs71327024(G) allele but not the rare (T) variant
significantly increased CXCR6 promoter activity in PMA-treated Jurkat, CEM and primary CD4+ T
cells. Left: Enhancer region of 3p21.31 locus containing common (G) or minor (T) alleles of rs71327024
or irrelevant control fragment was cloned downstream of the luciferase gene placed under the CXCR6
promoter in the pGL3-basic vector. Right: Relative luciferase activity in Jurkat, CEM and CD4+

primary cells transfected with constructs containing CXCR6 promoter and enhancer of the 3p21.31
locus with various rs71327024 alleles or control sequence. All data were normalized to Renilla
luciferase internal reference and further normalized to the luciferase activity of controls in CD4+

primary or Jurkat or CEM cells. Data represent eleven (Jurkat and CD4+ primary cells) and three
(CEM cells) independent experiments with mean values ± SEM. * p < 0.05, *** p < 0.001 compared to
the rs71327024(T) allele, # p < 0.05, ## p < 0.01 compared to the control, as calculated by unpaired
Student’s t-test.

2.2. The Common rs71327024(G) Makes a c-Myb Binding Site in PMA-Treated Jurkat Cells

The ADASTRA database [34] reports that rs71327024 serves as a direct allele-specific
binding site of the transcription factor c-Myb (highlighted in [35]) in Th1 cells. c-Myb is one
of the key regulators of mammalian hematopoiesis and is involved in the regulation of fetal
hemoglobin expression and the maturation of T and B lymphocytes [36]. Moreover, c-Myb
appears to be important for the differentiation and maintenance of the Th2 phenotype by
CD4+ T cells [37], and c-Myb expression is increased in PMA-treated Jurkat cells [38].

To test the hypothesis that the regulatory effect of rs71327024 on CXCR6 expression is
mediated through altering c-Myb binding, we performed siRNA-mediated knockdown
of c-Myb in PMA-treated Jurkat cells. c-Myb expression was suppressed almost 4-fold
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(Figure 2a) and resulted in a slight downregulation of CXCR6 (Figure 2b). Knockdown of
c-Myb led to the equalization of the relative activity of the enhancers carrying alternative
rs71327024 alleles in PMA-treated Jurkat cells (Figure 2c).
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deed, the probe carrying the common rs71327024(G) variant bound c-Myb approximately 
15 times more efficiently than the amplicon with the risk rs71327024(T) allele (Figure 3, 
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Figure 2. c-Myb knockdown removes the rs71327024 allele-dependent difference in activity of
enhancer at the 3p21.31 locus and downregulates CXCR6 expression in PMA-treated Jurkat cells.
Relative expression levels of c-Myb (a) and CXCR6 (b) mRNA in PMA-treated Jurkat cells transfected
with anti-c-Myb siRNA and control scrambled siRNA (siRNA scr) according to qRT-PCR data. The
data normalized to β-actin and further normalized to the expression levels mRNA with control
scrambled siRNA. Data represent at least five independent experiments with mean values ± SEM.
** p < 0.01, * p < 0.05, as calculated by unpaired Student’s t-test. (c) Relative luciferase activity in
cells transfected with constructs containing CXCR6 promoter and enhancer at 3p21.31 locus with
alternative rs71327024 alleles or control irrelevant sequence and also transfected with anti-c-Myb
siRNA and control scrambled siRNA (siRNA scr). All data were normalized to Renilla luciferase
internal reference. Data represent four independent experiments with mean values ± SEM. * p < 0.05,
as calculated by unpaired Student’s t-test, # p < 0.05, unpaired Student’s t-test compared to the control,
ns, not significant.

To validate the allele-specific c-Myb binding to rs71327024, amplicons containing the
enhancer sequence with alternative variants of rs71327024 were mixed with nuclear extracts
of PMA-treated Jurkat cells and were immunoprecipitated with antibodies against c-Myb
(DNA pull-down assay). This method includes immunoprecipitation of DNA–protein
complexes in vitro with subsequent quantitation of the bound amplicons by real-time PCR
(Figure S3).

The DNA amplicon with the common rs71327024(G) allele was expected to provide
a robust c-Myb binding site compared to the risk rs71327024(T) allele (Figure 3, left).
Indeed, the probe carrying the common rs71327024(G) variant bound c-Myb approximately
15 times more efficiently than the amplicon with the risk rs71327024(T) allele (Figure 3,
right). Thus, our data indicate that the activity of the 3p21.31 locus enhancer with the
common rs71327024(G) allele in T-helper cells depends on the active c-Myb binding site.
Introduction of the risk rs71327024(T) allele completely disrupts c-Myb binding.
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Figure 3. The common allele of rs71327024(T) of enhancer at 3p21.31 locus disrupts the c-Myb binding
site in PMA-treated Jurkat cells. Left: The c-Myb motif logo from HOCOMOCO v11 database aligned
with the corresponding segments of the enhancer sequence with different alleles SNP rs71327024. The
motif p-values are indicated below the sequences. Right: Pull-down assay with anti-c-Myb antibodies
and nuclear extract from PMA-treated Jurkat cells. The amplicon amount was quantified by real-time
PCR and normalized to the value obtained with the negative control DNA fragment. The presented
data represents three independent experiments with mean values ± SEM. ** p < 0.01, as calculated
by unpaired Student’s t-test. ## p < 0.01 as calculated by unpaired Student’s t-test compared to the
isotype control.

3. Discussion

The rs71327024 SNP is associated with COVID-19-related hospitalization and is lo-
cated at the locus of immunologically relevant genes, including chemokine receptors. The
functional potential of rs71327024 during COVID-19 progression has also been noted in
other studies, primarily in macrophages and monocytes [39,40]. Our data suggest a possible
mechanistic link explaining the association of the minor rs71327024(T) allele with COVID-19
severity through reduced CXCR6 expression, which is observed in T cells of SARS-CoV2 in-
fected patients. We identified an enhancer region (chr3:46097189-46099620; GRCh38/hg38)
carrying the rs71327024 polymorphism that normally increases CXCR6 promoter activity
in CD4+ T cells but loses its properties in the case of the risk allele rs71327024(T). We
also showed that the binding of transcription factor c-Myb to the rs71327024 region is
allele-specific, concordant with the results of siRNA-knockdown of c-Myb, which abolished
the difference in enhancer activity between rs71327024(G) and rs71327024(T) in PMA-
treated Jurkat cells. Thus, c-Myb binds to the rs71327024(G) while G to T substitution
prevents c-Myb binding and leads to loss of enhancer properties and reduced CXCR6
expression (Figure 4).
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Figure 4. Transcription factor c-Myb binds to the genomic region surrounding the common
rs71327024(G) allele, while the risk rs71327024(T) allele associated with COVID-19 hospitalization
prevents c-Myb binding that lead to loss of enhancer properties and reduced CXCR6 gene expression
(created with BioRender.com).

As noted, despite the fact that the number of T helper cells during COVID-19 decreases
in the blood and lungs, and their reduction is a marker of in-hospital mortality amongst
patients, their function in the acute phase of infection is predominantly unclear [21,24]. In
patients with respiratory diseases, the CXCR6/CXCL16 axis is known to attract T cells to
the lungs [41] and this mechanism appears to play a role in the COVID-19 immunopatho-
genesis as well [42,43]. The number of CD4+ CXCR6+ T cells was reduced in the blood
of patients with severe COVID-19 compared to those with a negative viral load [17]. It is
possible that even a partial decrease in CXCR6 expression in T cells may have a significant
effect on their trafficking during reduced CXCL16 production. Moreover, patients with
severe COVID-19 have fewer lung-resident memory CD8+ T cells with lower expression of
CXCR6, and their lung macrophages produced less CXCL16 compared to moderately ill
patients [18,19]. Taken together, dysregulation of T lymphocyte migration to the lungs due
to reduced expression of CXCR6 may provide an explanation for the exacerbated condition
of COVID-19 patients harboring the risk rs71327024(T) variant.

In the present work, we have shown that the disrupted c-Myb binding site in the
3p21.31 locus may decrease CXCR6 expression in T helper cells of individuals carrying the
risk rs71327024(T) allele and promote the progression of severe COVID-19. Methods used
in our study present apparent limitations. In particular, reporter plasmid assays and in vitro
DNA binding possibly lack proper chromatin context. In addition, siRNA-mediated c-Myb
knockdown may bring about global cellular changes that would affect the regulation of the
CXCR6 gene indirectly. Further analysis of the potential regulatory properties of rs71327024
may be required to uncover the underlying molecular mechanisms. In order to eliminate
some of the limitations mentioned above, seamless genome editing may be employed.

4. Materials and Methods
4.1. Cell Cultures

CD4+ primary T cells and the T lymphoblastoid Jurkat cell line (STR genotyping from
May 26, 2022) were cultivated in RPMI 1640 medium (PanEco, Moscow, Russia) supple-
mented with 10% FBS (Corning, NY, USA), 2 mM L-glutamine, 1mM sodium pyruvate,
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100 U/mL penicillin, and 100 µg/mL streptomycin (all PanEco, Moscow, Russia), non-
essential amino acids, and 10 mM HEPES (all GIBCO, Kwartsweg, The Netherlands). CD4+

cells were isolated from peripheral blood mononuclear cells from healthy donors using
a human CD4 MACS Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany).
Cell activation was performed by adding phorbol myristate acetate (PMA; Sigma-Aldrich,
Burlington, MA, USA) at 50 ng/mL concentration to the culture medium the day before
electroporation with test plasmids. All donors signed the informed consent form approved
by the National Research Center for Hematology ethical committee before enrollment.

4.2. Reporter Plasmids

To analyze CXCR6 promoters activity we amplified the CXCR6 putative promoter
regions (chr3:45942118-45946481, promoter 1; chr3:45939898-45941054, promoter 2; all
GRCh38/hg38) by PCR using human genomic DNA (Promega, Madison, WI, USA) as
a template, and specific primers containing KpnI/XhoI restriction sites (Table S1). The
promoter was cloned into a pGL3-basic luciferase reporter vector (Promega, Madison,
WI, USA) using XhoI and KpnI restriction sites. We amplified the putative enhancer
element, including rs71327024 (chr3:46,097,185-46,099,619), and a similarly sized irrelevant
control sequence (an intergenic sequence without any epigenetic features of the regulatory
region; chr3:83,749,648-83,752,164) by PCR using human genomic DNA (Promega, Madison,
WI, USA) as a template, and specific primers containing BamHI/SalI restriction sites for
enhancer and irrelevant control (Table S1). The putative enhancer element or control
sequence was cloned into pGL3-basic vectors containing CXCR6 promoter 1, using BamHI
and SalI restriction sites downstream of the luciferase coding sequence and signal of
polyadenylation. To analyze the influence of rs71327024(G/T), site-specific nucleotide
changes in enhancer regions were introduced by two-stage PCR using internal overlapping
primers (Table S1), as described previously [44]. Plasmid DNA was extracted and purified
with the NucleoBond Xtra Midi Kit (Macherey-Nagel, Düren, Germany) and verified by
Sanger sequencing (EIMB RAS “Genome” center, Moscow, Russia).

4.3. Cell Transfection and Luciferase Reporter Assay

For luciferase assay, 2.5 × 106 cells were transfected with 5 µg of test plasmids com-
bined with 0.5 µg of pRL-CMV Renilla luciferase control vector from the Dual-Luciferase
Reporter Assay System (Promega, Madison, WI, USA). Cells were electroporated using the
Neon Transfection System (Invitrogen, Carlsbad, CA, USA) with appropriate parameters:
three 10 ms 1350 V pulses for Jurkat cells, one 20 ms 1400 V pulse for CEM cells, and
two 15 ms 2000 V pulses for primary CD4+ cells. Luciferase activity was measured 24 h
post-transfection using a 20/20n Luminometer (Turner BioSystems, Sunnyvale, CA, USA).

4.4. siRNA-Mediated c-Myb Knockdown

We used previously published short interfering RNA (siRNA) against the MYB
gene [45]; appropriate sequences of the control scrambled RNA (scrRNA) were obtained by
the InvivoGen siRNA Wizard v3.1 tool (Table S1). Single-stranded RNAs were commercially
synthesized (“DNK-syntez”, Moscow, Russia) and annealed as previously described [46].
For c-Myb knockdown, 2.5 mln cells were transfected by electroporation (as described
above) with 500 pmol c-Myb-specific siRNA or scrRNA duplexes. Cells were cultured for
48 h and then were transfected with 5 µg of test vectors, 0.5 µg of pRL-CMV control, and
300 pmol more of siRNA or scrRNA. Luciferase reporter assay was conducted after cell
cultivation for 24 h.

4.5. DNA Pull-Down Assay

In order to assess c-Myb binding to DNA sequences containing different rs71327024
alleles, we performed a pull-down assay with PCR products based on the method de-
scribed earlier [47]. The “Pull-down” primers (Table S1) were designed to produce 184 bp
amplicons, corresponding to the sequences with minor and common rs71327024 variants;
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plasmids containing enhancer elements with different nucleotide variants were used as
templates for the PCR reaction. Control amplicon was produced by PCR amplification with
the “Pull-down-contr” primers pair (Table S1), including a 167 bp with no predicted c-Myb
binding sites. All PCR products were verified by Sanger sequencing. Nuclear extracts
were prepared from PMA-treated Jurkat cells using NE-PER Nuclear and Cytoplasmatic
Extraction Reagents (Thermo Fisher Scientific, Rockford, IL, USA). DNA amplicons with
rs71327024 T or G variant (100 ng), control DNA fragments (100 ng) and a nuclear extract
(approximately 30 µg of total protein) were mixed in 100 µL of incubation buffer (60 mM
KCl, 12 mM HEPES (pH 8.0), 4 mM TrisHCl (pH 8.0), 0.5 mM EDTA, 5% glycerol, 1 mM
DTT) containing 5 µg Poly(dI-dC) sodium salt (Sigma-Aldrich, Burlington, MA, USA), and
1× protease inhibitor cocktail SIGMAFAST (Sigma-Aldrich, Burlington, MA, USA). After
1 h on ice, the sample was supplemented with 1 µg rabbit polyclonal IgG antibodies to
c-Myb (ab226470, Abcam, Cambridge, MA, USA) or 1 µg rabbit polyclonal IgG anti-EBF1
(Antibodies-online Inc., Atlanta, GA, USA) as an isotypic control and was incubated one
more hour on ice. Immunoprecipitation of DNA–protein complexes was performed us-
ing Protein A Mag Sepharose (GE Healthcare, Chalfont St Giles Buckinghamshire, UK).
Then, 5 µL Protein A Sepharose beads were washed three times with buffer RIPA (50 mM
TrisHCl, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS);
the beads were added to RIPA buffer containing competitor salmon sperm ssDNA (75 ng
per 1 µL of beads), bovine serum albumin (0.1 µg per 1 µL of beads), and protease inhibitor
cocktail SIGMAFAST (Sigma-Aldrich, Burlington, MA, USA). The mixture was incubated
at room temperature for 30 min with continuous rotation. The beads were washed once
with buffer RIPA and were diluted in RIPA to the original volume. The sample containing
DNA fragments, nuclear extracts, and antibodies was combined with 5 µL of Protein A
Mag Sepharose beads prepared as above. The suspension was incubated with overnight
rotation at 4 ◦C. Then beads were washed using magnetic rack consecutively with Wash
Buffer 1 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris (pH 8.0), 150 mM NaCl),
Wash Buffer 2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris (pH 8.0), 500 mM NaCl,
and PBS. The DNA fragments were eluted with 20 µL of 2.5% acetic acid and neutralized
with 7 µL of 10% NaHCO3. Eluted DNA was quantified by real-time PCR.

4.6. RNA Extraction, cDNA Synthesis and Real-Time-PCR

Total RNA was isolated using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) as
described in the manufacturer’s manual. Reverse transcription of total RNA was carried
out using the MMLV RT Kit (Evrogen, Moscow, Russia) and mixed Oligo(dT) and random
hexamers as primers. Real-time PCR analysis was performed using the CFX96 Touch real-
time PCR detection system (Bio-Rad Laboratories, Hercules, CA, USA) and qPCRmix-HS
SYBR (Evrogen, Moscow, Russia). β-Actin (ACTB) was used as a reference gene for CXCR6
and c-Myb expression. The pull-down amplicon amount was normalized to the value
obtained with the negative control DNA fragment. Sequences of oligonucleotide primers
are presented in (Table S2).

4.7. Statistical Analysis

We performed statistical analyses using GraphPad Prism 9 software. Statistical sig-
nificance was estimated using unpaired Student’s t-test. p-values < 0.05 were considered
significant. Data for each sample represent the result of at least three independent experi-
ments. Real-time PCR and luciferase assays were additionally performed in two technical
replicates. All data are presented as mean ± SEM.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241813790/s1.
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