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Abstract: The interaction between the microbial communities in the human body and the onset and
progression of cancer has not been investigated until recently. The vast majority of the metagenomics
research in this area has concentrated on the composition of microbiomes, attempting to link the
overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour,
and its resistance to therapies. However, studies elucidating the functional implications of the
microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of
studies assessing such implications directly, through analysis of the transcriptome of the bacterial
community. This review summarises the contributions of metagenomics and metatranscriptomics to
the knowledge of the microbial environment associated with several cancers; most importantly, it
highlights all the advantages that metatranscriptomics has over metagenomics and suggests how
such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
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1. Introduction

The symbiotic relationship between humans and the plethora of bacteria inhabiting
the human body has gained much-deserved attention in the past twenty years [1,2] and it is
now evident that the various consortia of microorganisms present in our body have direct
consequences on our health [3]. In particular, the presence/absence of certain microbes [4], a
lack of balance in the overall species’ abundances [5], their specific functional capabilities [6],
and shifts in the downstream metabolic pathways [7] are all factors that can favour the
onset or the progression of a number of diseases. Cancer is no exception: alterations of
the microbiome have been linked to breast cancer [8], cervical cancer [9], colorectal cancer
(CRC) [10], gastric cancer [11], oral carcinoma [12], lung cancer [13], melanoma [14], and
others [15].

The advent of -omics technologies has enabled the surveying of entire molecular
landscapes (e.g., the whole transcriptome) in cells [16–18], advancing the knowledge of
how the combined make-up of several genes or the concerted activities of several proteins
can affect more macroscopic phenotypes [19]. The application of such approaches to
communities of organisms spurred meta-omics experiments, i.e., experiments whose goal is
to characterise in one or several ways a bacterial community. Meta-omics experiments can
be broadly categorised into four groups:

(1) 16S rRNA metagenomics amplifies and sequences the ribosomal 16S RNA gene, a
small section of the bacterial genome (about 1.6 Kb) which contains a mixture of conserved
and variable sequences [20]. The conserved parts ensure that the majority of the bacteria
are represented, while the variable parts allow one to distinguish between microorganisms
and therefore determine their relative abundances and the diversity of the community.

(2) In a shotgun metagenomics (MGx) experiment [21], one extracts, shears, and
sequences whole genomes from bacterial cells in the community. Therefore, through the
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production of full genome assemblies, this is the method that is most capable of accurately
locating a genome in a phylogenetic tree and thus identifying novel species. However, the
functional potential of the members of the community can be only predicted.

(3) Metatranscriptomics (MTx) [22] sequences the whole transcriptomes of the bacterial
cells in a community, thus directly inferring the function and enabling the quantification of
the expression of the transcribed genes.

(4) Metaproteomics [23] captures and quantifies the active proteins in a community. A
summary of the complete workflows for these approaches is shown in Figure 1.
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Figure 1. Graphic summary of the approaches to study the communities of microorganisms inhabiting
an environment.

The purpose of this review is to highlight the major contributions of metagenomics
and metatranscriptomics in the field of cancer research and especially to remark on the
added value of metatranscriptomics relative to 16S rRNA and shotgun metagenomics;
we also review the interaction between the microbial communities and transcriptome of
the host, sometimes also referred to as metatranscriptomics; finally, we summarise some
general guidelines to help exploit the technology to the full.

2. Summary of the Studies Reviewed

A breakdown of the studies included in this review, split by methodology, is shown
in Table 1. The majority of the studies (56%) have used 16S rRNA alone, while MTx alone
and MGx alone each represent a little less than 20% of the total. In the past, 16S rRNA
was often performed alongside MGx and used to establish a “ground truth” regarding the
composition of the microbial community. With improvements in the algorithms devoted to
analysing shotgun data, this is not necessary any longer, and in fact only three studies (2.1%)
combined 16S rRNA with MGx. Lung cancer is analysed in most papers (18), immediately
followed by CRC, breast cancer, and oral carcinoma, which together represent 52% of the
total number of papers analysed. This is not surprising, considering that the gut, oral, and
recently the airways floras are the most studied human microbiomes.
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Table 1. Summary of the studies analysed in this review. 16S: 16S rRNA metagenomics. MGx:
shotgun metagenomics. MTx: metatranscriptomics.

Cancer Type Papers
(Total) 16S MGx MTx MGx + MTx 16S + MTx 16S + MGx 16S + MTx + MGx Other

Breast cancer 17 13 0 1 1 1 0 0 1
Cervical cancer 12 8 1 2 1 0 0 0 0

Colorectal cancer 17 2 6 6 0 0 1 2 0
Gastric cancer 9 8 0 1 0 0 0 0 1

Oral carcinoma 17 12 2 2 0 0 1 0 0
Lung cancer 18 11 2 1 0 2 1 0 1
Melanoma 7 0 4 0 1 0 1 1 0

TOTAL 97 54 15 13 3 3 4 3 3

Across the studies reviewed, some findings have been replicated, and they constitute
the most consistent evidence on the interaction between the various human microbiomes
and cancer. These findings, summarised in Figure 2, include enrichment of specific species
and pathways, difference in the diversity of the microbial community, and relocation of
commensal species.
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3. Breast Cancer

Breast cancer (BC) is the fourth deadliest cancer overall and every year represents
over 40% of all new cancer diagnosed among women [24]. The correlation between human
microbiomes and BC has not been investigated until recently. Three microbiomes have been
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analysed in association with BC: from breast cancer tissue (intraoperatively or aspirate),
breast-adjacent tissue, and faeces. The majority of the research associating microbiomes
to BC is based on 16S rRNA sequencing, while only a few studies analysed the metatran-
scriptome, either sequencing it from scratch or using already available data, such as data
from The Cancer Genome Atlas Program (TCGA) [25]. In some cases, the virulence genes
of the microbiome were identified using PathoChip, a gene array comprising more than
3700 probes from almost 1400 species, covering over 7400 genes [26].

Although certain species have been consistently reported as enriched or depleted in can-
cer samples, there is also inconsistent evidence at this regard (Figure 3) and breast cancer is no
exception, especially when comparing it to normal adjacent tissue and healthy tissue. Most of
the studies report higher diversity and richness in BC than in healthy tissue [27–29]. In addition,
there is no clear consensus on whether tumour and tumour-adjacent tissue differ significantly,
as some studies did not find any differences [28,30,31]. In spite of this variability, multiple stud-
ies could reproduce the enrichment of certain bacteria in breast cancer patients. As an example,
phyla Firmicutes [29,32], Fusobacteria [28,32–34], and Bacteroidetes [30,32,34]; families Alcalige-
naceae [27,35], Streptococcaceae [8,32,34], Enterobacteriaceae [8,28,30], Pseudomonadaceae [28,29,32],
Rhodobacteraceae [27,36], Propionibacteriaceae [35,36], and Micrococcaceae [27,36]; and genera
Bacillus [8,27,30] and Staphylococcus [30,35] are among them.
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In contrast, opposite results have also been reported, such as the enrichment of genera
Corynebacterium, Prevotella, Streptococcus, Micrococcus, Propionibacterium, Staphylococcus,
and Lactococcus in healthy tissues and a decrease in the relative abundance of family
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Bacteroidaceae with cancer development [28,30,36,37]. There has been evidence of both
Methylobacterium enrichment and depletion in cancerous tissues [35,38], and many more
microbes have been associated with breast cancer in single studies. PathoChip enabled the
identification of different microbial, viral, and fungal profiles of breast cancer, but of course,
its power is limited by the intrinsic bias of probe-based systems [26]. It was also found that
the microbial load in breast cancer tumours is the highest compared to other cancers [39];
however, in general, tumours seem to have a lower bacterial load than healthy tissues, and
it further decreases with progression [40].

In cancerous tissue, functional pathway predictions using PICRUSt revealed upreg-
ulation of pathways related to glycerophospholipid metabolism, ribosome biogenesis,
and anaerobic respiration, while pathways related to inositol phosphate and flavonoid
metabolism were downregulated [33,36,39].

A number of studies investigated how the functioning of the host molecular ma-
chinery (e.g., gene expression or protein levels, pathways activation, and immune re-
sponse) changed depending on the composition of the microbiomes. For example, a
higher abundance of Listeria spp. has been found to be associated with the expression of
genes involved in epithelial-to-mesenchymal transition (EMT), while that of Haemophilus
influenzae was associated with proliferative pathways, including G2M checkpoints and
E2F transcription factors [41]. In another study based on TCGA data, Parida et al. [25]
reported that environmental-information-processing pathways, oncogenic pathways, and
lipid metabolism pathways are significantly enriched in tumour samples. In particular,
phosphatidylinositol signalling, mTOR signalling, calcium signalling, ABC transporters,
and phosphotransferase system were associated with the ethnicity of the patient, being
upregulated in the tumours of black women but not in those of white or Asian women.
By integrating lipidomic and metagenomic data, Giallourou et al. [37] identified lower
ceramide and diacylglycerol levels in tissues from breast cancer patients; in particular,
the depletion of ceramide was mediated by Gammaproteobacteria and Bacillus bacteria. In
healthy controls, Acinetobacter, Lactococcus, Corynebacterium, Prevotella, Streptococcus, and
Lactococcus had a positive correlation with diacylglycerols.

By combining Nanostring-based gene expression and a Cytokine/Chemokine array,
Tzeng et al. [28] profiled the immunological landscape of breast cancer patients and deter-
mined that cancerous tissue is enriched in T-cells, CD8+ T-cells, natural killer cells (NKC),
neutrophils, and FOXP3+, and depleted in the number of dendritic cells and macrophages.
Moreover, tissue toll-like receptor (TLR) pathways, which are responsible for sensing mi-
crobes, significantly changed in tumour samples through the downregulation of TLR4
and the upregulation of MYD88 and IRAK1. A network analysis of associations between
microbiome and immune-related gene expression and cytokine concentrations revealed
that Methylibium, Pelomonas, and Propionibacterium were likely mediating those alterations
in cellular abundance and gene expression.

4. Cervical Cancer

Almost the entirety of cervical cancers are caused by long-lasting Human Papilloma
Virus (HPV) infection, and some evidence suggests that the microbiome of the cervical
cavity plays a role in the process of infection and clearance [42]. Therefore, HPV-positive
patients are often part of the microbiome analysis of cervical cancer cohorts. Such cohorts
also include patients with precancerous states, such as low- or high-grade cervical intraep-
ithelial neoplasia. Most cervical cancer microbiome studies used vaginal swab samples,
cervicovaginal lavages, or cell biopsies.

Researchers have repeatedly found that the overall abundance of Lactobacillus de-
creases as non-cancerous lesions progress to cancer [43–45]. Such depletion of Lactobacilli
is often associated with other microorganisms such as Sneathia spp., Megasphaera, Shuttle-
worthia, Prevotella, Streptococcus, Porphyromonas, and Fusobacterium spp. proliferating in
precancerous or cancerous environments, [43–48]. An increase in immune mediators in
cancerous tissue was also detected, and one study claims that this could be associated with



Int. J. Mol. Sci. 2023, 24, 13786 6 of 23

the high abundance of Fusobacterium spp. in cancer patients [43,44]. Gardnerella is another
bacterium associated with cervical cancer and HPV infection, although the evidence seems
contrasting. On the one hand, some research mainly found it in HPV-negative samples and
negatively associated with HPV infection and the progression of the disease [46,47]; on the
other hand, Gardnerella was also found only in HPV-positive samples [49] and having a
positive association with the presence of cancer [50].

The functional role of the microbiome in cervical cancer was also evaluated either by
prediction from 16S rRNA or from shotgun metagenomics data [45,47,51,52]. Functional
analysis found that the peptidoglycan synthesis pathway was upregulated in cervical
cancer patients, folate biosynthesis and oxidative phosphorylation was upregulated in
precancerous and cancer groups, whereas degradation of dioxin and 4-oxalocrotonate
tautomerase and metabolism of starch and sucrose were downregulated [47,51]. Many
other pathways, including biofilm formation, benzoate degradation, and others, were found
to be enriched in healthy controls. In spite of this, PCA (Principal Component Analysis)
could not distinguish between healthy and cancer patient samples based on their metabolic
functions [51]. Moreover, cell motility pathways were negatively associated with cancer
progression, while xenobiotic biodegradation and metabolism were positively associated
with it [52].

Very few metatranscriptomic studies have been conducted on cervical cancer, and
none of them examined the gene expression levels and associated functional profiles
of cervical microbiomes. Ure et al. compared HPV-positive and HPV-negative cervical
tumours and reported no significant differences in bacterial or viral genera between the
two groups [53]. Arroyo Muhr et al. extracted DNA and RNA (with and without DNase I
treatment) from the same samples and compared the resulting datasets. In general, RNA
samples that were subjected to DNase treatment had significantly higher levels of microbial
reads than DNAseq samples [50], indicating that such an approach leads to an improved
recovery of the microbiome. Of note, analysing RNA allowed the detection of numerous
viruses, including RNA viruses, in tumour and cervical swab samples, which could not be
identified using metagenomics or 16S rRNA methods [50,53]. Moreover, it also led to the
identification of HPV in patients who were HPV-negative based on PCR, confirming how
the unbiased screening of RNA is superior to primer-based search [54].

5. Colorectal Cancer

One of the most extensively scrutinised diseases in terms of microbiome composition
and function is colorectal cancer, which has been analysed using 16S rRNA profiling and
metagenomic analysis, as well as by performing meta-analyses on previous metagenomic
data. However, data based on metatranscriptomics are still scarce. In most studies, authors
have collected faeces to profile microbiome composition and functions, although biopsy
samples have also been used in some instances. Different CRC types, anatomical locations,
and age-at-onset of the disease have been investigated in relation to the microbiome’s
composition as well as how the microbiome impacts the response to treatment [55–57].

The two main findings stemming from CRC microbiome research are associated with
the diversity of the microbial community and the enrichment and depletion of specific
microbes. In particular, the faecal microbiome of colorectal cancer patients has a higher
richness in comparison to healthy individuals, specifically with respect to species which
are typically found in the oral flora [58]. In a meta-analysis of eight different metagenomic
datasets, 29 bacterial species were specifically enriched in faecal samples from cancer
patients. The bacteria included Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus,
Gemella, Prevotella, Solobacterium, Dialister, and Clostridiales [59]. Most of these genera are
indeed oral commensal, and, in some cases, specific species such as Parvimonas micra and
Fusobacterium nucleatum have been predicted to play a major role in CRC [60].

Some microbial species were identified as biomarkers, both geographically localised
as well as global. For example, F. nucleatum, Solobacterium moorei, Cenarchaeum symbiosum,
Gemella morbillorum, and P. micra were reported to be CRC biomarkers in more than one
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study, reinforcing the observation that an overabundance of oral commensal species in the
gut is associated with the disease [58,61,62]. Other studies identified additional species,
including Ruminococcus torques, Porphyromonas asaccharolytica, Pasteurella stomatis, and
Parvimonas spp., as potential CRC biomarkers; however, these results have not yet been
reproduced [58,59,61]. On the other hand, species including Eubacterium eligens, Eubacterium
ventriosum, Eubacterium hallii, Bifidobacterium catenlatum, and Gordonibacter pamelae were
found to be more abundant in controls [58,61,62]. Aside from bacteria, researchers have
also screened for viruses and fungi in CRC microbiomes. They found that viruses are more
prevalent in the gut microbiome of CRC patients relative to that of controls and that specific
viral markers could be used to segregate diseased individuals [36]. Coker et al. profiled the
mycobiome of colorectal cancer patients, and, similarly to the case of viruses, they reported
that fungal members of the gut flora could be also used to discern patients from healthy
individuals [63].

From a functional standpoint, cancer patients’ microbiomes revealed enrichment in
genes involved in protein and mucin catabolism, higher levels of secondary bile acids, and
higher levels of amino acids, cadaverine, and creatin [59,61]. It was also suggested that
the microbes inhabiting CRC patients have enhanced glucogenesis, as well as putrefaction
and fermentation pathways, while non-CRC microbes are associated with stachylose
and starch degradation [58]. Another meta-study has predicted biomarkers primarily
based on microbial function rather than taxonomic profiles, demonstrating that these
biomarkers are superior to taxonomy-based biomarkers. Methylaspartate mutase sigma
subunit activity; heptose II phosphotransferase activity; manganese, zinc, and iron transport
system permease protein; and methyltransferase activity have all been shown to be related
to colorectal cancer [60].

To date, seven metatranscriptomic studies have examined colorectal cancer, but not all
of them quantified gene expression levels or derived active functions from them. Based on
RNA-seq data, the enriched abundance of oral commensal in CRC microbiomes already
recognised through 16S rRNA profiling and shotgun metagenomics has been confirmed.
In particular, F. nucleatum, P. micra, and Porphyromonas gingivalis were the most prominent
microorganisms, together with the gut-commensal Bacteroides fragilis [64,65]. An existing
RNA-sequencing dataset was used to identify toxin genes, but the depth of coverage was
insufficient to make a statistical analysis [66]. The most common form of hereditary CRC,
Lynch syndrome, was also explored using 16S rRNA, metagenomics, and metatranscrip-
tomics [67]. Using random forest (RF) prediction models, this study identified oxidative
metabolic pathways as the major (albeit weak) predictors of disease progression. Some
of those pathways have a protective effect, while others a deleterious one, highlighting
how the microorganisms might mediate in one way or another the influence of oxidative
stress in the progression of the disease. Very importantly, only those predictions based on
transcript expression were significant, while neither taxonomy nor metagenomics-based
functional analysis had any predictive power. Further, this study indicated that some of
the least actively transcribed genes in the microbiome could be of low abundance, which is
in line with a few other studies conducted on healthy individuals or cancer patients [68,69].
This indicates that the knowledge of which specific organism is expressing certain genes is
extremely important.

The role of microorganisms in manipulating oxidative stress in the CRC tumour
microenvironment (TME) was confirmed by Lamaudiere et al. [70], who reported that
pyruvate:ferredoxin/flavodoxin subsystems and H2O2 response are downregulated in
CRC patients. On the other hand, mechanisms associated with positive selection, such
as antibiotic resistance, host colonisation, biofilm formation, and horizontal gene transfer,
were upregulated. At the level of specific transcripts, genes involved in the transport
and uptake of vitamins and minerals, including iron, carnitine, selenium, and B-family
vitamins, had their activity enhanced in CRC patients, which may contribute to often-
observed deficiencies in patients. Finally, transcription patterns of specific genes could
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be associated with specific microbes: in particular, pathogenic bacteria showed enhanced
transcriptional activity during cancerogenesis [69].

On the basis of eight different RNAseq datasets, cancer microbiomes were correlated
with tumour microenvironment and immune cells. Most cancer-associated bacteria are
positively correlated with NKC, whereas CD4+ T-cells, CD8+ T-cells, naive/pro B-cells,
and T-regulatory cells are negatively correlated [71].

6. Gastric Cancer

The microbiome of gastric cancer patients and those with various levels of gastritis
has been extensively investigated; however, the vast majority of the studies employed
16S rRNA sequencing while only one used metatranscriptomics [72]. Different studies on
gastric cancer have also produced different results due to the different samples (gastric
juices or biopsies), the anatomical location of the samples (proximal and distal stomach
parts), and the progression of the disease (superficial gastritis and early or advanced
cancer) [72–76].

A consistent finding across many studies is that, as the disease progresses, both
the diversity and the richness of the microbial community of gastric cancer patients
decline [73,74,77–80]. Also, it is well known that stomach cancer is strongly associated with
Helicobacter pylori infection [81]. In particular, Helicobacter is enriched in precancerous and
tumour-adjacent tissues, but its abundance declines in cancerous tissues, suggesting that the
microbe might play a preparatory role in the onset of the disease [74,76,77]. As for other mi-
crobial species, their role in disease onset and progression is unclear, and several studies re-
port contradictory results. On the one hand, Propionibacterium [77–79], Prevotella [74,76,78],
Streptococcus [76,77,80], Fusobacterium [73,76,77,80], Lactobacillus [73,76,77,80], Acineto
bacter [75,77], Actinobacteria [79], and Atopobium [76,80] have been found to be enriched in
cancerous tissues; on the other hand, Prevotella and Streptococcus are reported in another
study [79] to be underrepresented in the cancer cohort, and the depletion of Actinobac-
teria in cancer samples is replicated in several instances [73,75,76]. Interestingly, many
gastric cancer-enriched bacteria are also found in the oral cavity of patients with superficial
gastritis, including oral commensals Parvimonas, Veillonella, and Peptostreptococcus [74,80].

Looking at the functional landscape encoded by the gastric cancer microbiome (shown
in Figure 4, together with the other cancer types) pathways associated with increased levels
of small molecule synthesis and transport are typically active in the cancer microenviron-
ment, such as peptidoglycan biosynthesis, nucleotide synthesis, transport and metabolism,
amino acid transport and metabolism, and inorganic ion transport [74,77]. The virulence of
H. pylori also plays a role in functional pathway activity [77], as well as the cancer stage:
Park et al. report that typical hallmarks of malfunctioning replication, such as homologous
recombination, mismatch repair, and DNA replication pathways, are overrepresented in
advanced cancer samples [73]. Finally, a metabolomic analysis explored the influence of
the anatomical location of cancer, associating amino acid metabolism-related pathways,
such as arginine biosynthesis, protein digestion and absorption, alanine, aspartate, and
glutamate metabolism, to distal cancer, while hormone-related pathways were enriched in
proximal samples [76].

Thorell K et al., the only metatranscriptomic study, did not evaluate the functional
potential of the microbiome, but detected H. pylori in people classified as H. pylori uninfected.
In addition, they evaluated the expression pattern of H. pylori genes and found that pH
regulation and nickel transport genes were highly expressed [72].
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7. Oral Carcinoma

Oral cancers account for around 2–3% of all cancers and affect the lip, tongue, or mouth.
Approximately 90% of diagnosed oral cancers are oral squamous cell carcinoma (OSCC).
The five-year survival rate of oral cancer continues to hover at around 60% [82,83]. Various
factors, such as smoking, alcohol, or genetic predisposition, are associated with OSCC.
Interestingly, while the modern world saw a substantial decrease in smoking prevalence,
this decrease did not lead to a decline in oral cancer occurrence [84,85]. Thus, other factors
play a significant role in OSCC etiology, including carcinogenic or reactive oxygen species-
producing microbiota [86].

Many studies used 16S rRNA sequencing to profile the microbiome in OSCC patients
and compare it with a healthy cohort [85,87–98]. Often, the same bacteria were identified as
a potential discriminant between healthy and non-healthy individuals. Bacteria belonging
to phyla Actinobacteria [85,89,93–96] and Firmicutes [85,87,89,95,96] were consistently en-
riched in healthy individuals, with Streptococcus [85,87,89–93,95–97], Rothia [85,87–90,95–98],
Actinomyces [85,88,89,93,95,97], Veillonella [87,88,94,95,97], and Haemophillus [90,93,94,98]
representing the most overexpressed genera. Instead, in the microbiome of OSCC pa-
tients, genera Fusobacterium [87,88,90–93,95–98], Campylobacter [88–91,94–97], Peptostrepto-
coccus [87–89,91,94,95,97,98], Prevotella [87–89,91,92,96], Capnocytophaga [89,91,95–98], and
Alloprevotella [92,95,97,98] were predominantly enriched. Individual studies reported con-
trasting results, with Actinomyces [87], Firmicutes [88], and Veillonella [96] found depleted
in healthy controls and Prevotella and Capnocytophaga depleted in OSCC patients [94].
Fusobacterium—the genus that was most consistently over-expressed in OSCC patients—is
considered a normal element of the oral microbiome. Nevertheless, various virulence factors
such as lipopolysaccharides (LPS), RadD (RecA-dependent accessory protein), or adhesins
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are produced by it. These factors have been associated with chronic inflammation, altered
immune response, and cancer progression [99]. Furthermore, studies have shown that
direct interaction between F. nucleatum and the epithelial cells plays a role in enhancing the
progression of oral cancer [100]. F. nucleatum-induced inflammation has been shown to be
impaired by Streptococcus species; hence, it is not surprising that a decline in the Streptococcus
genus in OSCC patients is reported [101]. The enrichment of Peptostreptococcus in OSCC
patients was also widely seen in microbiome profiling studies. It was shown that this genus
upregulates the expression of TLR2 and TLR4 in CRC cells, favouring reactive oxygen
species and enhancing cell proliferation [102].

Various functional pathways were predicted to be associated with OSCC from 16S
rRNA data. While the majority of them were singular findings, some were identified in
multiple studies. Notably, an increase in lipopolysaccharide biosynthesis [87,90,92,96,97],
carbon fixation [88,93], and carbon metabolism [88,89] has been reported in OSCC patients.

Metagenomic studies reported a significantly increased abundance of cancer-related
pathogen species F. nucleatum and a depletion of the genus Streptococcus and Actinomyces
sp. ICM47 in OSCC patients [87,103,104]. Functional differences were also analysed in
these metagenomic studies. Two studies concordantly reported a decrease in nucleotide
metabolism and amino acid metabolism in cancer patients [103,104]. Ganly et al. [103] also
noted an increase in OSCC patients of several biosynthesis pathways, including vitamins,
heme, sugars, and fatty acids (flavin, biotin, and thiamine). In contrast, folate biosynthesis,
anaerobic energy metabolism, and pyruvate fermentation pathways were reported to be
less active in OSCC patients. Liu et al. [104] instead focused on various virulence factors
and identified a group of antimicrobial resistance genes (algR, flhF, ompA, lpxD, and ybtP)
that were highly expressed by the species F. nucleatum and P. endodontalis, both of which
were significantly more abundant in OSCC patients.

Two metatranscriptomic studies on oral cancer patients were performed [105,106]. To
advance early diagnostics for OC patients, Banavar et al. [105] employed machine learning
techniques together with metatranscriptomics to develop a classifier that can accurately
discriminate between oral cancer cases and healthy controls from saliva samples. The
researchers noted a reduced abundance of genera Streptococcus, Haemophilus, and Actino-
myces and high levels of genera Fusobacterium and Prevotella in the saliva of OSCC patients.
Interestingly, a downward shift was observed where 75% of species and 81.6% of microbial
functions were downregulated in cases compared to controls. Numerous functions, includ-
ing biofilm formation, oxidative and non-oxidative metabolic pathways (microbial nitrate
utilization, hydrogen sulphide production, and protein fermentation), and the production
of carcinogenic metabolites such as benzaldehyde and arsenite, were identified among the
strongest classifiers of cancer samples. Yost et al. [106] compared metatranscriptomic data
between cancerous and tumour-adjacent tissues from OSCC patients and matched healthy
tissue. The highest difference in taxonomic abundance was observed when comparing
healthy patients with matched cancer tissues. Significantly overabundant microorganisms
in cancer tissues were Fusobacteria, Selenomonas spp., Capnocytophaga spp., and genera of
Dialister and Johnsonella, while the genus Bacillus and several other species were overrep-
resented in healthy microbiomes. Furthermore, the identification of differently expressed
genes pointed to elevated levels of mineral transport (e.g., iron) and oxidative and non-
oxidative functions, such tryptophanase and superoxide dismutase, in both tumour and
tumour-adjacent samples when compared to the healthy controls. Finally, putative viru-
lence factors expressed in the oral communities linked to OSCC indicated that activities
related to the bacteria adaptation and survival, such as capsule biosynthesis, flagellum
assembly, synthesis, and adhesion, were upregulated at tumour sites. F. nucleatum and
Fusobacterium periodonticum were identified as the most active bacteria species expressing
these virulence factors.
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8. Lung Cancer

Among cancers, lung cancer has the highest mortality rate and is responsible for the
majority of cancer-related deaths worldwide [107]. In contrast to previous assumptions,
lungs are not sterile [108] and studies have shown that sterile mice or mice treated with
antibiotics are significantly protected from lung cancer development caused by mutation of
the p53 or KRAS genes [109], suggesting that the initial genetic trigger highly benefits from
an infection-driven catalyst to fully degenerate into cancer. Therefore, the lung microbiome
was studied to understand its role in carcinogenesis and response to treatment [110,111].
Several types of samples were analysed, including lung tumours and normal-adjacent
tissue, bronchoalveolar lavages (BAL), sputum, saliva, and faeces [112–119]. Similar to all
other cancers, most studies used 16S rRNA microbiome profiling and only a few utilised
shotgun metagenomics or metatranscriptomics.

Based on the sample type (saliva, sputum, BAL, or tissue), the cancer type (small cell
lung carcinoma (SCLC), adenocarcinoma (AC), or squamous cell carcinoma (SCC)) [120],
the stage of the disease [121], and the anatomical location of the sample (upper vs. lower
lobes) [118], the microbiome composition differs significantly. As a result of these differ-
ences, it is particularly difficult to describe lung microbiota comprehensively. Normally, the
lung microbiota of healthy individuals are enriched with phyla Firmicutes and Bacteroidetes
and members from genera Prevotella, Veillonela, and Streptococcus [108]. Despite using
the same sample type, the results from different studies rarely converge, indicating the
need for meta-studies, studies with greater sample sizes, or the integration of functional
information. Microbiota analyses have found an association between lung cancer and the
presence of Streptococcus, Prevotella, Veillonella, and Capnocytophaga in different types of
samples [112,114,119,122–124]. Even though meta-analyses of data from various sample
types found a similar increase in Streptococcus abundance, Prevotella abundance decreased
in cancer patients [113]. A higher fraction of Streptococcus, Prevotella, or Veillonella was asso-
ciated with a worse prognosis of survival [121]. Several other bacteria have also been found
to be overabundant in cancer patients in comparison to non-cancer patients. In cancer
patients’ BAL samples, TM7, Gemminger, Blautia, Oscillapora, Ruminococcacea, Haemophilus,
Fusobacterium, Neisseria, and Porphyromonas have all been found to be enriched; however,
contradictory data regarding the enrichment of these bacteria in cancerous samples have
also been found [112,113,122,123]. As compared to normal-adjacent tissue, a meta-analysis
of 16S rRNA data obtained from lung tissue showed a decrease in the abundance of phyla
Actinobacteria, Corynebacteriaceae, and Halomonadaceae families, and genera Corynebacterium,
Lachnoanaerobaculum, and Holomonas genera [125]. Some studies have also attempted to
use the compositional characteristics of the microbiome as a predictive diagnostic tool to
distinguish cancer patients from healthy individuals [112,123]. Evidence suggests that the
type of cancer influences the composition of the lung microbiota [119]. In particular, a
specific association was reported between Acidovarax and SCC patients, strongly mediated
by smoking status [115], and between Capnocytophaga with AC patients [124]. Apart from
bacteria, fungi might also play a role in the onset and progression of cancer, as reported
by a recent mycobiome metagenomic study by Zhao et al. [126]. The authors reported
that BAL samples from cancer patients possess a higher fungal diversity, and some fungal
species are enriched compared to the controls. In particular, Alternatia arborescens seems to
be the fungus most associated with the progression of the disease.

There have been very few attempts to evaluate the functional profile of lung micro-
biota. A metabolomics study was conducted on BALs and lung tissue flushings by Liu et al.
Among lung cancer patients and controls, 40 metabolites showed significant differences.
These metabolites were linked to 11 signalling pathways that were differently expressed
in lung cancer patients, including apoptosis, autophagy, necroptosis, and sphingolipid
signalling. An analysis of metagenomic data revealed differential enrichment between
cancer patients and controls in five functional categories—K+ transporting ATPase, DNA
polymerase III, PAS domain, membrane-associated protease RseP, and predicted flavopro-
tein YhiN [123]. Few studies have used 16S rRNA data to predict functional profiles of
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lung cancer microbes. Cancer patients, according to one of these studies, have enriched
pathways related to ribosomes, pyrimidine metabolism, and purine metabolism, while
pulmonary patients have enriched pathways related to two component systems, flagellar
assembly and bacterial secretion [112]. Based on Huang’s study on different cancer stages,
it has been found that pathways related to NAD salvage are significantly enriched in
advanced cancer stages and are associated with Granulicatella, while an incomplete TCA
reductive cycle is associated with Peptostreptococcus and L-valine biosynthesis is associated
with Pseudomonas [116].

A third of the two main types of lung cancers (SC and NSC) involve a mutation in the
Egfr gene, which codes for the epidermal growth factor receptor protein (EGFR) [127]. A
few studies analysed the relationship between the mutational load of Egfr and the lung
microbiome. Chang et al. [117] reported a negative correlation between the abundance of
Pseudomonas aeruginosa in tumour tissue and a higher likelihood of mutations in the EGFR
gene. A study based on 16S rRNA profiling found the degree of EGFR mutations and
the abundance of genera Bacteroidetes and Parvimonas and Actinobacillus [116] positively
correlated, while another did not identify a mediating role of the intratumoural bacterial
burden on Egfr variants [128].

Only two studies claimed to take a metatranscriptomics approach in lung cancer
research, yet their focus was on the correlation between the microbiome composition and
the host’s, not the bacteria’s, transcriptional and functional response. The experiments from
Chang et al. [117] pointed to the positive association of CD8+ T-cells, CD4+ naive T-cells,
dendritic cells, and CD4+ central memory T-cells with patient survival. B-cells, on the other
hand, were negatively correlated. Such high levels of immune cell types were also correlated
with the presence of Brevundimonas diminuta, Mycobacterium chelonae, and Mycobacterium
franklinii in tumour tissue. However, those results are far from being conclusive given
that bacterial species were identified in only a small fraction of samples. Wong-Rolle
and colleagues [128] employed spatial metatranscriptomics to show that tumour tissue
has a higher bacterial burden than normal-adjacent tissue or tertiary lymphoid structures.
Additionally, they found that cancer cells are a deeper reservoir of bacteria than immune
cells. At first, this might seem surprising, considering that the natural role of immune cells
is that of interacting with bacteria; however, immune cells eliminate bacteria, and these
results suggest that cancer cells are instead better at adjusting their microenvironment to
accommodate microbes that are beneficial to their survival and proliferation. Analysis
of host gene expression revealed a positive correlation between intratumoural bacteria
and Wnt/B-catenin, hypoxia, and angiogenesis pathways, while a negative correlation
was found with genes involved in cell cycle (TP73) and pattern recognition (TLR5). This
reinforces the hypothesis that, despite the immune system’s attempts to neutralise its
activity, TME tries to shape its local microbiome and create favourable conditions for
cancer growth.

9. Melanoma

Melanoma, the most dangerous skin cancer, occurs when melanin-producing cells
(melanocytes) undergo malignant mutations. It is estimated that in 2023, around
100 thousand new cases of melanoma will be diagnosed in the United states alone [24].
In the past decade, immunotherapies utilising immune checkpoint inhibitors (ICI), such
as the anti-CTLA-4 antibody ipilimumab (IPI), anti-PD-1 antibodies nivolumab (NIVO),
and pembrolizumab, became a new gold standard in treating advanced melanoma pa-
tients, substantially improving survival rate [129]. However, only around 50% of patients
positively respond to ICI immunotherapies [130]. In order to understand whether the re-
sponse to ICI is mediated by the microbiota composition, various meta-omics studies have
been performed.

Human health as a whole has been linked to gut microbiome alpha diversity, with
decreased diversity being related to various acute and chronic diseases [131]. While
most studies conducted so far have not reported an increase in the microbial commu-
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nity diversity within the ICI responders group [132–135], results based on 16S rRNA
sequencing [136] and a combination of 16S and shotgun metagenomics [137] indicated
that bacterial diversity in the gut microbiome can modulate the success of ICI treatment.
When looking at specific microorganisms, some genera have been consistently reported
in multiple studies to be overrepresented in the ICI responders group. These include
Faecalibacterium [132,134,136,137], Veillonella parvula [135,138], Ruminococcaceae [132,137],
Streptococcus [135,137], and Coprococcus [135,136]. Furthermore, members of the order
Bacteroidales seem to have a detrimental effect on anti-cancer immune activation: they
are negatively correlated with the density of the T-cell in pre-treatment tumours and the
peripheral blood and associated with a reduction in peripheral cytokine response and
an increase in immunosuppressive regulatory T-cells and myeloid-derived suppressor
cells [137]. Other studies also identified a negative correlation between Bacteroidales order
and Bacteroides genus prevalence and ICI treatment success, making it the most consistent
negative marker to date [132,136]. As far as other bacteria are concerned, the evidence
is so far contradictory. In some studies, ICI responders exhibited a higher abundance
of Ruminococcus gnavus, Bifidobacterium longum, Bacteroides thetaiotaomicron, Adlercreutzia
equolifaciens, and Holdemania filiformis, while non-responders showed enrichment of the
same bacteria in other studies [132,134–136,138]. The observed variation may be attributed
to a number of factors, such as geographical distribution, patients’ age, lifestyle, genetics,
and variation in statistical approaches or sampling techniques. Moreover, the relatively
low number of patients involved per group in each of these studies (N < 30) could amplify
the effects of all the aforementioned variables.

A functional pathways prediction study from metagenomics shotgun sequencing
(MGS) data by Gopalakrishnan et al. showed that anabolic functions including amino
acid biosynthesis were predominant in responders while catabolic functions were more
prevalent in non-responders [137]. Frankel et al. reported that responders’ microbiomes
were enriched with bacterial enzymes involved in fatty acid synthesis. A strong positive
correlation was also observed with inositol phosphate metabolism [134]. Wind et al. [135]
identified 17 pathways that differed in abundance between responders and non-responders.
Five major pathways in the responders group were aspartate superpathway, superpath-
way of thiamine diphosphate biosynthesis I, phosphorylation and dephosphorylation,
superpathway of glycolysis, pyruvate dehydrogenase, TCA and glyoxylate bypass, and
superpathway of thiamine diphosphate biosynthesis II. Only two pathways were iden-
tified in the non-responders group: namely, the peptidoglycan biosynthesis IV and the
methanogenesis from H2 and CO2. Finally, in their study, Matson et al. failed to include any
functional analysis of their MGS data [138]. A re-analysis of the data from the aforemen-
tioned study [132] indicated an increase in nucleotide biosynthesis among non-responders,
whereas responders demonstrated elevated biosynthesis of complex organic compounds,
such as isoprenoids, polyamines, and coenzymes.

Two metatranscriptomic studies were able to identify the contributors of specific path-
ways’ upregulation and downregulation. Peters et al. [136] observed that Bacteroides spp.
were related to the adverse effects of the dysregulation of certain pathways. In particu-
lar, B. ovatus was associated with shorter progression-free survival via the upregulation
of sugar (L-rhamnose) and vitamin B (pantothenate, pyridoxal 5-phospate, flavin, and
6-hydroxymethyl-dihydropterin diphosphate) biosynthesis pathways. Similarly, B. dorei
and B. massiliensis were the major contributors to the upregulation of guanosine nucleotide
biosynthesis pathways. Contrarily, petroselinate and synthesis pathways were related to
a longer progression-free survival, with the latter being mediated by Coprococcus eutactus.
A study by Usyk et al. [133] demonstrated a link between a patient’s microbiome and
potentially life-threatening immune-related adverse events. The authors established a con-
nection between adenosine metabolism and the increased occurrence of immune-related
adverse events. The link between adenosine signalling and the suppression of tumour
immunity has triggered the targeting of multiple signalling components in ongoing clinical
trials [137].
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Immunosuppressed individuals have a substantially augmented risk of developing
non-melanoma skin cancer (NMSC), with the DNA of HPV commonly found in these
tumours [139]. Arroyo Mühr et al. performed two separate studies [140,141] in which they
investigated the link between HPV virus infections and the development of NMSC. In their
first study, the researchers performed Illumina DNA sequencing on eight different NSCSs
from a single patient that developed over a span of 10 years in comparison to eight different
NMSCs from eight different patients. They concluded that viruses repeatedly found in
independent tumours from a single patient might be more likely to play a role in tumori-
genesis than viruses sporadically found in only a subset of specimens and acknowledged
that the persistence of HPV over an extended period of time is an important factor for the
maintenance of a tumour-conducive ME as well as for tumour progression.

In a subsequent study, they analysed 345 NMSC samples developed after organ
transplantation and identified that only 15/345 NMSCs were positive for HPV. The authors
then concluded that HPV infections are likely unrelated to a significant increase in NMSC
incidence after organ transplantation.

10. Conclusions and Final Outlook

The human microbiome plays an important role in the onset and progression of many
cancers, as well as in the patient’s response to treatments, particularly in therapies tar-
geting the immune system [142]. Up to now, most studies have focused on microbiome
composition using 16S rRNA amplicon sequencing and shotgun metagenomics. Metatran-
scriptomics, on the other hand, has been seldom performed in cancer research.

The identification of the microbiota composition is certainly important. Based on such
information, it seems that the diversity of bacterial communities decreases during cancer de-
velopment and that the physiology of many cancers benefits from high levels of Fusobacteria
spp., especially F. nucleatum, in both the gut microbiome and the microbial environment spe-
cific to the tumour [28,32–34,58,60,61,87,103,106]. Moreover, other oral commensal species
(e.g., Prevotella and Parvimonas) have been consistently reported to be overabundant in the
gut microbiome or tumour tissues of cancer patients [59,74,75,78,87,89,92]. However, there
is a great deal of inconsistency over the vast majority of species, indicating that microbial
composition has limited power in discerning cancerous from healthy tissues.

16S rRNA sequencing delivers no direct functional information, and even if there are
methods to infer it (e.g., PICRUSt), the subsequent biological interpretation is extremely
challenging. Compared to 16S rRNA sequencing, shotgun metagenomics is more powerful
because it leads to the reconstruction of the entire genomes of all the microorganisms
in a community. Data analysis can place fully assembled genomes more accurately on
a phylogenetic tree, so that novel species can be identified. Also, information about
whole genomes can be leveraged to predict the biological functions potentially active
in a microbiome. This enables more consistent and reproducible findings since many
different bacteria benefit from symbiosis with the cancer microenvironment through the
same mechanisms. For example, shotgun metagenomics suggests that there are three
main families of pathways that bacteria take advantage of in order to thrive in a tu-
mour environment: oxidative stress, small molecule transport, and malfunctioning DNA
repair [47,51,60,67,70,73,74,77,105,106]. Meta-analyses of aggregated metagenomics data
could provide even more reliable results [59,61,62]. However, the mere presence of a mi-
crobe’s DNA does not indicate to what extent such a microbe is really active under certain
circumstances, if at all.

Metatranscriptomics captures all such information (Figure 5). A study of healthy adult
men performed by Abu Ali et al. [68] reported that only 28% of the pathways potentially
available based on metagenomics sequences were actually widely transcribed and consid-
ered as core metatranscriptomes. Basically, these are all housekeeping pathways, indicating
that anything specific to a process and not required for mere survival would not be captured
through metagenomics. Additionally, no quantitative conclusion could be drawn, since
only one third of functional pathways were correlated with microorganism DNA and RNA
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abundance; finally, most functional pathways were enriched via the overexpression of
genes only in specific members of the microbial community. Such a discrepancy was also
observed between DNA abundance and RNA abundance of particular microbiota members
in some cancer studies [70,141].
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The other obvious added value of metatranscriptomics is the identification of bacteria
that are actually responsible for the overexpression of certain genes. A study that analysed
mice with gut inflammation, based on metagenomics data, could not find any statistically
significant difference in pathways usage between the experimental and control groups.
On the other hand, when analysing the metatranscriptomics data, they found immune-
related and tissue damage functions to be highly upregulated through the specific activity
of homeostasis-promoting bacteria, while Proteobacteria played a major role in increased
pathogenicity [143]. In another case [106], the microbiome of oral carcinoma showed
overexpression of virulence factors associated with activities related to bacteria adaptation
and survival. Thanks to metatranscriptomics data, this could be attributed for the most
part to Fusobacterium spp. Finally, in melanoma patients, Bacteriodes spp. and Coprococcus
eutactus have been linked with the alteration of pathways leading to shorter and longer
progression-free survival, respectively [136].

Importantly, there are situations in which the expression of the most biologically
relevant genes comes from organisms that are not present in high abundance [68,70,143].
In these cases, the great importance of those bacteria would be missed without analysing
the metatranscriptome.

The predictive power of metatranscriptomics data is also extremely valuable.
Poore et al. [144] detected specific microbial signatures in TCGA whole-genome and whole-
transcriptome data from tissue and blood samples of most cancer types. Using data from
blood tissues, the authors developed predictive models to differentiate cancer-free individu-
als from cancer patients with different types of cancer, as well as cancer patients at different
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stages. While all the data included had sufficient predictive power, RNA-sequencing data
showed a higher level of robustness, in that the predictions’ accuracy was not affected by
the specificity of the training dataset used in the model. Another study analysed microbial
data from patients affected by CRC and Lynch syndrome (a precursor to CRC). They found
that microbial transcriptional profiles were powerful predictors of LS-to-CRC progression,
whereas taxonomic and metagenomics data were not [67].

Another advantage of metatranscriptomics is its much higher sensitivity in discovering
whether a pathogen theoretically instrumental to cancer is actually an active commensal of
the flora. For example, in a metatranscriptomic study, H. pylori was found to be active in the
microbiome of both gastric cancer patients and healthy individuals initially considered to be
H. pylori infection-free. This suggests that H. pylori may be a normal microbial community
member of the stomach [72]. Similarly, another study found HPV infection in patients
who had HPV-negative PCR results [54], and the authors remarked upon the power of an
unbiased RNA-seq approach.

Although it cannot technically be described as metatranscriptomics, the study of the
interaction between the host molecular machinery (e.g., gene expression or protein levels,
pathways activation, or immune response) and the composition of the microbiota also
seems to be a promising approach, as demonstrated in breast cancer by the mediating
role of Listeria spp. and H. influenzae on EMT and proliferative pathways [41] and that of
Gammaproteobacteria and Bacillus on the depletion of ceramide [37]. Similarly, studies based
on immune cells array [28,71,92] showed that a number of immune cells including NKC
were enriched in breast, colorectal, and lung cancerous tissue, with specific bacteria being
responsible for such upregulation, as well as the overexpression of particular pathways.

Another feature unique to metatranscriptomics is the capability to identify RNA
viruses, antisense RNAs, and small non-coding RNAs [145,146]. Moreover, since transcrip-
tomic changes happen rapidly, repeated experiments at various time points could be used
to determine antimicrobial efficacy as well as to provide deeper insight into the functional
development of microbiota.

Finally, in the context of cancer research, the functional implications of the bacterial
community are often more important than the discovery of novel species. Since metatran-
scriptomics requires, on average, 20 M reads per sample [147], against the 40–50 M reads
recommended for shotgun metagenomics [148], one can sequence twice as many samples
at the same cost, significantly increasing the detection power of the experiment.

Despite all the aforementioned advantages over metagenomics, a metatranscriptomics
experiment has its own limitations and requires careful preparation. First, one needs
to address the requirements of any experiment handling RNA. Sample collection and
preservation are crucial due to the ease of degradation, as well as the appropriate choice of
protocol for extraction and library preparation [149]. In particular, ribosomal depletion is
recommended to minimise RNA contamination by host RNA, microbial ribosomal RNA,
or transfer RNA. DNA contamination can also be an issue, and DNAse treatment is in fact
also good practice in metatranscriptomics [50]. Specific to cancer is the need to obtain a
rather large amount of starting material, given the little bacterial biomass present in tumour
tissues relative to other samples, such as, e.g., faeces or saliva [150].

From a computational standpoint, there are a number of workflows to analyse meta-
transcriptomics data, many of which adapt tools that might not be specifically designed
for the analysis of RNA from microbial communities [151]. In particular, researchers have
not yet made the same efforts towards benchmarking and standardising analysis work-
flow from metatranscriptomics data as they did with metagenomics [152]: such efforts
would certainly lead to increased accuracy, robustness, and reproducibility and allow
for proper meta-analysis. This would, in turn, encourage researchers to more widely
adopt metatranscriptomics and finally maximise its potential, which we believe is still
largely untapped.
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