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Abstract: Lipases have valuable potential for industrial use, particularly those mostly active against
water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However,
in most cases, engineered variants often need to be constructed to achieve optimal performance
for such substrates. Protein engineering techniques have been reported as strategies for improving
lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid
domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a
lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database
and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed
mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus
delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF).
The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides,
such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89
(LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also
achieved with lid swapping. This study reinforces the importance of the lid domains and their amino
acid compositions in determining the substrate specificity of lipases, but the generalization of the
lid domain swapping between lipases or the introduction of specific mutations in the lid domain to
improve lipase activity may require further investigation.

Keywords: lipase; lid domain; protein engineering; rational design

1. Introduction

Ester hydrolases (Enzyme Commission (EC) number 3.1.-.-) are enzymes responsible
for the cleavage (under hydrolysis conditions) or formation (under synthetic conditions,
e.g., transesterification) of ester bonds [1]. Specifically, those enzymes that carry out the
hydrolysis of carboxylic esters into their respective acid and alcohol are known as carboxylic
ester hydrolases (EC 3.1.1.1.-). This group is further divided into esterases (EC 3.1.1.1)
and lipases (EC 3.1.1.3), which have been differentiated on the basis of their sequences
and substrate specificity. Esterases hydrolyse water-soluble short-chain (<10–12 carbon
atoms) acyl esters (e.g., p-nitrophenyl butyrate, p-NP butyrate) and are mostly inactive
against water-insoluble long-chain (>12–18 carbon atoms) triacylglycerols (e.g., triolein),
which, in turn, are specifically hydrolysed by lipases [2,3]. The difference between lipases
and esterases has been a subject of continuing controversy, although most of the “true
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lipases” are proteins that carry out interfacial activation so that they attack insoluble drops
of substrate [4].

Interfacial activation is the increase in enzyme activity when substrates change from
being soluble in an aqueous medium to an aggregated state (such as an emulsion) due to
insolubility [4,5]. From the discovery of this behaviour, the idea that there must be some
structural explanation was postulated. In 1990, two lipases, the triacylglycerol lipase from
the fungus Rhizomucor miehei [6] and the human pancreatic lipase [7], were crystallized and
allowed the observation of a lid domain covering the active site. It was suggested that the
lid plays a crucial role in interfacial activation, as its conformational change is needed to
expose the active site to the entry of insoluble drops of substrates. This hypothesis was
subsequently supported by the structural resolution of two lipase complexes, namely, that
of Rhizomucor miehei lipase with n-hexylphosphonate ethyl ester [8] and that of the complex
of human pancreatic lipase and procolipase with mixed micelles of phosphatidylcholine
and bile salt [9]. This behaviour can be achieved due to the amphipathic nature of the lid
domain, where the hydrophilic residues face the solvent and the hydrophobic residues
face the catalytic site in the closed conformation. Once the enzyme opens the lid domain,
the hydrophobic side helps in binding lipophilic substrates around the active site, and the
lipase is the so-called active conformation [10,11]. However, it was later shown that not all
lipases carried out this interfacial activation phenomenon. Examples are the cutinase from
Fusarium solani [12], the pancreatic phospholipase from guinea pig [13], and the lipase from
Pseudomonas aeruginosa [14], which lacked the lid. Additionally, the triacylglycerol lipase
from P. glumae [15] and lipase B from Candida antarctica [16], both with a lid, do not show
interfacial activation [17].

Recent studies have demonstrated that the presence of specific residues in the lid
domain is closely correlated with the activity and specificity of lipases and the preference
for substrates with a long carbon chain in the acyl region that are insoluble in water, such
as triolein [18–26]. This has been widely proven by different studies on lid engineering that
show how dramatically the activity and specificity of lipases can change [27–29]. Thus, the
lid domain is an essential “hot spot” for tailoring lipases towards the user’s needs for many
applications [30–32].

Here, we present the engineering of the lid domain of a lipase from the Actinoalloteichus
genus (NCBI Accession Number: WP_075743487.1) to switch from the hydrolysis of
small/medium-carbon chain triglycerides to large-carbon chain ones. This hydrolase
was identified in the frame of sequence-based metagenomic bioprospecting for novel en-
zymes, particularly from marine environments, and it was selected as a target (i) because
lipases from species of actinobacteria are known to be versatile and (ii) because of its good
protein solubility upon expression in Escherichia coli. With the aim of increasing lipase
activity, we used two alternative approaches. First, we computationally characterized
the lid opening of the wild type, and by incorporating two mutations in the lid domain,
activity against glyceryl tridecanoate (TriC10:0), as well as coconut, palm, and olive oil
was achieved. Second, we used a lid swapping approach with which we also achieved a
significant increase in the length of the triglyceride carbon chain being hydrolysed.

2. Results
2.1. Lipase Sequence-Based Metagenomic Bioprospecting

To discover novel lipases with activity towards large triglycerides, we screened the
Marine Metagenomics MarRef Database [33] (https://mmp2.sfb.uit.no/, accessed on
3 August 2023); ca. 4.7 million protein coding sequences). The sequences were selected by
querying the input sequences using DIAMOND BLASTP, using default parameters (percent
identity > 60%; alignment length > 70; e-value < 1 × 10−5) against the 392 amino acid lipase
from Rhizopus delemar (UniProt accession number I1BGQ3; molecular mass, 42,138 Da;
isoelectric point, 7.06), previously referred to as R. oryzae (acc. no. P61872). Although
other lipases available in the databases could have been used as targets, we selected the
one from R. delemar because (i) its catalytic centre is sheltered by an alpha-helix lid and
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shows significant activity towards large lipid substrates [34,35] (Table 1); (ii) it is a very
versatile enzyme that has attracted the attention of several industrial enzyme producers
due to its broad range of industrial applications for esterification, interesterification, and
transesterification reactions; and, finally, (iii) it has a lid domain of similar size to that of the
lipase identified and characterized in this study (16 amino acids). A total of 20 sequences
were retrieved (e-values from 3.1 × 10−14 to 1 × 10−5 when compared to the lipase from
R. delemar). One such sequence (GenBank accession number, WP_075743487), assigned to a
bacterium of the genus Actinoalloteichus, was confirmed to encode a predicted full-length
271 amino acid-long hydrolase (e-value 2.53 × 10−11 and 33.6% similarity compared to
lipase from R. delemar) with the needed catalytic residues and domains, and it was selected
as a target for further investigation. Within the Marine Metagenomics MarRef Database,
the sequence WP_075743487 originated from a microbiome isolated from marine sponges
in a sea coast area (Norway: Trondheim fjord; ENA BioSample accession SAMN03339750;
ENA BioProject accession PRJNA275157) [36].

Table 1. Substrate specificity of enzyme variants investigated in this study.

Triglyceride Spec. Act. (Units/g) 1,2

LipMRD

Spec. Act. (Units/g) 1

Addzyme RD
Spec. Act. (Units/g) 1,2

LipMRDlid

Spec. Act. (Units/g) 1,2

LipMRDW89M/L60F

TriC3:0 960 ± 20 590 ± 80 630 ± 20 550 ± 70
TriC4:0 1080 ± 10 1080 ± 90 780 ± 70 640 ± 10
TriC8:0 3230 ± 10 13,440 ± 60 2330 ± 90 13,800 ± 290
TriC10:0 580 ± 10 9850 ± 350 2220 ± 60 9220 ± 320

Coconut oil 50 ± 10 6630 ± 180 1460 ± 170 1860 ± 370
Palm oil n.d. 3 1300 ± 250 1290 ± 210 1050 ± 20
Olive oil n.d. 3 3680 ± 270 1210 ± 20 1760 ± 210

1 Specific activity (unit/g; mean ± SD of triplicates calculated using Excel 2019 STDEV.S function) for 7 model
substrates. Activity was determined at 30 ◦C and pH 8.0. In brief, the activity towards TriC3:0 and TriC4:0 was
determined using a pH indicator (Phenol Red®) assay [37–39]; for the other substrates, activity was evaluated by
the NEFA-Kit. For details, see the Materials and Methods section. The raw data can be found in the Supplementary
Material (Raw Dataset). 2 The fact that LipMRD has an initial Td of 46.3 ± 1.8 ◦C suggests that the enzyme does
not denature at the optimal temperature (45 ◦C) under our assay conditions (using p-NP butyrate and 1–7 min
reaction time), although under other assay conditions (e.g., assay time) where stability may play a role, the optimal
temperature plot may differ. This is why, for the determination of specific activity towards triglycerides, where a
30 min reaction assay was used, a temperature of 30 ◦C was set up to ensure protein stability during the assay.
3 No activity was detected (n.d.) under our assay conditions (30 min reaction time, 30 ◦C and pH 8.0) or after 24 h
of incubation. It is possible that under other reaction conditions, including higher temperature and incubation
times, some conversion may be observed.

2.2. Synthesis, Expression, Purification and Characterization of LipMRD

Once identified, the 271 amino acid sequence encoding the wild-type enzyme (Gen-
Bank acc. Nr. WP_075743487; molecular mass, 30,173 Da; isoelectric point, 5.31) was used
as a template for gene synthesis, which was performed as detailed in the Materials and
Methods. After synthesis, a 294 amino acid sequence was obtained encoding an enzyme
with a molecular mass of 32,698 Da and an isoelectric point of 5.40. The soluble N-terminal
hexahistidine (His6)-tagged protein was produced and purified (>98% using SDS–PAGE
analysis; Figure S1) after binding to a Ni-NTA His-Bind resin. From now on, this enzyme is
referred to as LipMRD (Lip refers to lipase; MRD refers to the MarRef Database).

The hydrolytic activity of purified protein (LipMRD) was initially evaluated against a
series of triglycerides with different carbon chain lengths, namely, glyceryl tripropionate
(TriC3:0), tributyrate (TriC4:0), trioctanoate (TriC8:0), and tridecanoate (TriC10:0), as well as
coconut oil, which is typically dominated by medium-carbon chain triglycerides of lauric
acid (TriC12:0), myristic acid (TriC14:0), palmitic acid (TriC16:0), olive oil (or triolein), which
is mostly composed of long-carbon chain triglycerides of oleic acid (TriC18:1), and palm
oil, which is dominated by long-carbon chain triglycerides of palmitic acid (TriC16:0) and
stearic acid (TriC18:0). The protein was found to be active against short-carbon chain (TriC3:0
and TriC4:0) to medium-carbon chain (TriC10:0 and coconut oil) triglycerides, with specific
activities ranging from 50 to 3230 units/g protein, measured at pH 8.0 and 30 ◦C (Table 1).
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The enzyme showed maximal activity at 45 ◦C, retaining more than 35% of the maxi-
mum activity at 30–55 ◦C (Figure 1A). Analysis by circular dichroism (CD) spectroscopy
revealed that the enzyme showed a sigmoidal curve with two transitions, one with a
denaturation temperature (Td) of 46.3 ± 1.8 ◦C and a second at 82.4 ± 0.2 ◦C (Figure 1B).
We checked whether LipMRD could have a multimeric structure with GalaxyHomomer [40],
a protein homo-oligomer structure prediction method, and a plausible dimeric structure
was obtained using the sequence-based method (Figure S2). Thus, the presence of these
two phases might be due to a multimeric enzyme structure that is disturbed by the thermal
conditions. Thermal denaturation of the protein is a condition in which the unique 3D
structure of a protein is disturbed, and it is possible that due to changes in temperature,
pH, or other chemical conditions, the hydrogen bonds present in the proteins may also be
disturbed. Therefore, we cannot rule out that the two phases could also exist under our
assay conditions (no salt added and pH 7.0) due to a rapid change in protein conformation,
yet to be determined, that impairs but does not inactivate the enzyme, followed by a slow
change in protein multimeric structure that results in complete inactivation. Finally, its
optimal pH for activity is 9.0, and it retains more than 50% of the maximum activity at pH
values from 7.0 to 10.0 (Figure 2).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

is mostly composed of long-carbon chain triglycerides of oleic acid (TriC18:1), and palm oil, 
which is dominated by long-carbon chain triglycerides of palmitic acid (TriC16:0) and stea-
ric acid (TriC18:0). The protein was found to be active against short-carbon chain (TriC3:0 
and TriC4:0) to medium-carbon chain (TriC10:0 and coconut oil) triglycerides, with specific 
activities ranging from 50 to 3230 units/g protein, measured at pH 8.0 and 30 °C (Table 1). 

The enzyme showed maximal activity at 45 °C, retaining more than 35% of the max-
imum activity at 30–55 °C (Figure 1A). Analysis by circular dichroism (CD) spectroscopy 
revealed that the enzyme showed a sigmoidal curve with two transitions, one with a de-
naturation temperature (Td) of 46.3 ± 1.8 °C and a second at 82.4 ± 0.2 °C (Figure 1B). We 
checked whether LipMRD could have a multimeric structure with GalaxyHomomer [40], a 
protein homo-oligomer structure prediction method, and a plausible dimeric structure 
was obtained using the sequence-based method (Figure S2). Thus, the presence of these 
two phases might be due to a multimeric enzyme structure that is disturbed by the ther-
mal conditions. Thermal denaturation of the protein is a condition in which the unique 
3D structure of a protein is disturbed, and it is possible that due to changes in temperature, 
pH, or other chemical conditions, the hydrogen bonds present in the proteins may also be 
disturbed. Therefore, we cannot rule out that the two phases could also exist under our 
assay conditions (no salt added and pH 7.0) due to a rapid change in protein confor-
mation, yet to be determined, that impairs but does not inactivate the enzyme, followed 
by a slow change in protein multimeric structure that results in complete inactivation. 
Finally, its optimal pH for activity is 9.0, and it retains more than 50% of the maximum 
activity at pH values from 7.0 to 10.0 (Figure 2). 

 
Figure 1. Thermal characteristics of LipMRD. (A) Temperature profile. The effect of temperature was 
determined following the hydrolysis of the model ester p-NP butyrate at 348 nm in 40 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer at pH 7.0. Values are plotted as the 
mean of triplicate results (n = 3) with the reported standard deviation (SD) calculated using the 
STDEV.S function in Excel 2019, with control reactions (no enzyme added) considered. (B) The ther-
mal denaturation curve at pH 7.0, as determined by CD spectroscopy measuring the ellipticity 
changes at 220 nm obtained at different temperatures at a rate of 0.5 °C per min. In A, the maximal 
activity was defined as 100% (597.4 ± 1.8 units/mg), and relative activity is shown as the percentage 
of maximal activity (mean ± SD of triplicates) determined under the conditions described in the 
Materials and Methods. The figure was created using SigmaPlot 14.5. The raw data can be found in 
the Supplementary Material (Raw Dataset). 

Temperature (°C)

0 10 20 30 40 50 60 70

Re
la

tiv
e 

ac
tiv

ity
 (%

)

0

20

40

60

80

100

120

Temperature (°C)

0 20 40 60 80 100

C
D

 (m
de

g)

-30

-25

-20

-15

-10

-5

0
A B

Figure 1. Thermal characteristics of LipMRD. (A) Temperature profile. The effect of temperature
was determined following the hydrolysis of the model ester p-NP butyrate at 348 nm in 40 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer at pH 7.0. Values are plotted as
the mean of triplicate results (n = 3) with the reported standard deviation (SD) calculated using the
STDEV.S function in Excel 2019, with control reactions (no enzyme added) considered. (B) The thermal
denaturation curve at pH 7.0, as determined by CD spectroscopy measuring the ellipticity changes at
220 nm obtained at different temperatures at a rate of 0.5 ◦C per min. In A, the maximal activity was
defined as 100% (597.4 ± 1.8 units/mg), and relative activity is shown as the percentage of maximal
activity (mean ± SD of triplicates) determined under the conditions described in the Section 4. The
figure was created using SigmaPlot 14.5. The raw data can be found in the Supplementary Material
(Raw Dataset).

The hydrolase did show maximal activity at a pH of 8.5 and a temperature of 30 ◦C,
values similar to those of the lipase from R. delemar used as a target for bioprospect-
ing [34,35,41]. The substrate specificity of the lipase from R. delemar was further evaluated
under the same assay conditions used to test LipMRD. For that, we used the commer-
cial preparation Addzyme RD (Evoxx Technologies GmBH). As shown in Table 1, under
our assay conditions, this preparation was most effective for hydrolysing TriC8:0 but
also converted larger triglycerides such as triolein (specific activities ranging from 590 to
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13,440 units/g protein); this is in agreement with the results of previous studies in which
this enzyme was tested with triglycerides from tributyrin to triolein [34,35,41]. Note that
the hydrolase LipMRD and the lipase Addzyme RD have entirely different specificities with
regard to their preference for shorter or larger triglycerides, respectively. This may be due
to the low similarity between their sequences (approximately 33%) and the differences in
the architecture of their active sites and the structure of their lid domains; the latter point
will be discussed below.
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Figure 2. Optimal pH for LipMRD lipase activity. The effect of pH was determined at 30 ◦C following
the hydrolysis of the model ester p-NP butyrate at 348 nm in 50 mM Britton-Robinson (BR) buffer at
pH 4.0–11. Values are plotted as the mean of triplicate results (n = 3) with the reported SD calculated
using the STDEV.S function in Excel 2019, with control reactions (no enzyme added) considered.
The maximal activity was defined as 100% (384.0 ± 23.4 units/mg), and relative activity is shown
as the percentage of maximal activity (mean ± SD of triplicates) determined as described in the
Materials and Methods. The figure was created using SigmaPlot 14.5. The raw data can be found in
the Supplementary Material (Raw Dataset).

2.3. Molecular Simulations for Improving Lipase Activity

As shown in Table 1, the enzyme LipMRD was active towards small-carbon chain
triglycerides (glyceryl tributyrate) but had no activity against bulkier triglycerides under
our assay conditions. Since engineering of the lid domain can lead to drastic changes in the
activity and specificity of lipases [19], we visually inspected this structural motif in LipMRD
(Figure 3) to introduce mutations that may allow the hydrolysis of bulkier triglycerides.
For that purpose, we first computationally studied the lid opening of the wild-type enzyme
and that of the R. delemar lipase as a control, and we then tried to design a mutant based on
that analysis.
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Figure 3. AlphaFold 3D models of LipMRD (A) and LipMRDlid (B) highlighting the catalytic triad
(with C atoms coloured in deep-blue and red) and the lid domain (coloured in wheat and orange).

In brief, as detailed in the Materials and Methods, LipMRD was computationally stud-
ied by first obtaining its AlphaFold model and then by preparing and protonating it by
Protein Preparation Wizard under conditions similar to those used in our experimen-
tal setup and by performing Monte Carlo simulations using Protein Energy Landscape
Exploration (PELE).

The original lid domain (FRGTEITQIKDWLTDA) of LipMRD seemed to have a tryp-
tophan residue at the inner side, hindering it from fully opening to bind medium- and



Int. J. Mol. Sci. 2023, 24, 13768 7 of 16

long-carbon chain triglycerides (Figures 4 and S3), in agreement with experimental data
(Table 1). This amino acid is absent in the lid domain (FRGTNSFRSAITDIVF) of R. delemar
lipase (Figure 4). We performed a Monte Carlo simulation with PELE software (version
rev12360) [42,43] to test this hypothesis. The simulation consisted of the lipase being solely
perturbed by a vector between the
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The results of the simulations showed that the wild-type enzyme had a closed
metastable state at 8.99 Å and an open metastable state at 14.43 Å, meaning that the
lid domain opens up to 5.44 Å (Figure 5). On the other hand, the R. delemar lipase had a
closed metastable state at 7.71 Å and an opened state at 15.30 Å, showing a difference in the
opening distance of 2.14 Å (Figure S4). Thus, we created a variant aimed at further opening
the lid domain of the lipase. The designed mutant replaced W89 with a less bulky residue,
methionine, but this was still a reasonable change according to the BLOSUM62 matrix. To
compensate for the increase in volume in the closed conformation of the enzyme due to
the mentioned mutation and to prevent the access of water molecules to the active site,
L60, a residue not placed in the lid domain (Figure 4) was mutated to phenylalanine. Then,
the same type of simulation was performed on the double mutant (W89M/L60F). The
results gave a closed metastable conformation (at 8.81 Å) similar to that of the wild-type
enzyme but a more open conformation (at 15.78 Å) (Figure 5). Thus, the difference in the
opening distance between the double mutant and the wild-type was approximately 1.5 Å,
meaning that the variant appeared to be opening more, potentially allowing it to fit bulkier
triglycerides in the active site.

To confirm this hypothesis and evaluate to what extent the mutations and the different
lids affect the catalytic binding of bulkier triglycerides, local explorations of the binding
of triolein (a long-carbon chain triglyceride) in the active state of the wild-type enzyme
(LipMRD) and its double mutant (W89M/L60F) as well as the R. delemar lipase were per-
formed. The ligand was undockable in the open conformation of the wild-type enzyme
(in agreement with the difficulties of the wild-type enzyme in hydrolysing long-carbon
chain triglycerides), so we had to migrate a triolein molecule from the solvent to the active
site with AdaptivePELE [42–44] with a bias that minimizes the distance between the sub-
strate and the catalytic serine residue. The simulation successfully gave catalytic binding
positions of the substrate around the active site (Figure S5). On the other hand, the ligand
was easily docked with Glide software (version 95128) [45] on the open conformations
of the double mutant and the R. delemar lipase (Figure S6). The induced-fit simulations
showed that the substrate spent more time bound in a catalytic conformation in the double
mutant and the R. delemar lipase compared to the wild-type enzyme (Figures 6 and S7).
The wild-type enzyme only had ~56% of PELE poses inside the active site (with the serine-
substrate distance equal to or lower than 5 Å), while the double mutant and the R. delemar
lipase had up to ~82% and 99% of poses within the active site, respectively. The number of
catalytic events, poses where one of the ester C atoms from the substrate molecule is 4 Å
from the nucleophilic O of the catalytic serine residue and the H-bonds of the catalytic triad
have appropriate distances, is similar in the double mutant, with 1696 (and 10.412% of all
accepted PELE steps), and the wild-type enzyme, with 2023 (and 12.687% of all accepted
PELE steps) such events. The R. delemar lipase showed more predicted catalytic events than
the LipMRD wild-type enzyme with 33,604 (and 91.586% of all accepted PELE steps). The
higher number of such catalytic events agrees with the higher catalytic activity of R. delemar
lipase compared with LipMRD, as determined experimentally (see Table 1).

The sequence encoding LipMRD with the two mutations, W89M and L60F (LipMRDW89M/L60F),
was synthesized as for the wild-type. After synthesis, a 294 amino acid-long sequence was
obtained encoding an enzyme with a molecular mass of 32,677 Da and an isoelectric point
of 5.40. The mutant was expressed, purified, and characterized as the wild-type protein.
The protein was found to be active against small- to large-length triglycerides, including
trioctanoate (TriC8:0), tridecanoate (TriC10:0), coconut oil, palm oil, and olive oil (Table 1);
note that the last two substrates were not hydrolysed by the wild-type protein. Specific
activities ranged from 550 (for TriC3:0) to 13,800 (for TriC8:0) units/g protein, showing
the ability to hydrolyse triglycerides as large as olive oil (1760 units/g) and palm oil
(1050 units/g). These results agree with the computational analysis and the role of residue
W89, located in the original lid domain, in the substrate specificity and access of bulkier
triglycerides to the active site.
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2.4. Molecular Simulations: Lid Swapping

As a complementary strategy to further improve the capacity of the lipase to hydrolyse
bulkier triglycerides, and based on the results found by mutating a lid residue, we per-
formed lid swapping. The lid domain (FRGTEITQIKDWLTDA) of LipMRD was replaced by
that (FRGTNSFRSAITDIVF) of R. oryzae lipase, which was used as a template for screening
LipMRD in the Marine Metagenomics MarRef Database and shares 33.2% sequence identity
in a local sequence alignment and an RMSD of ~3 Å with its crystal structure [47] (PDB
code: 1TIC, against LipMRD’s AlphaFold model). This enzyme shows an optimum pH of
8.5 and an optimum temperature of 30 ◦C and can accept short (TriC4:0), medium (TriC8:0),
and large (triolein) triglycerides [34,35,41] (see Table 1). Such substrate specificity of lipases
has been commonly associated with the presence of a lid domain and the residues (e.g.,
hydrophobic amino acids) that conform to it [47,48]. The differences in the hydrophobic
characteristics of the lid domains of the two enzymes raise the question of whether lid
swapping may improve the lipase activity of LipMRD.

First, we performed the same computational analysis for the new lid-swapped mutant,
named LipMRDlid (Figures 3 and 4). The lid opening type of simulation for the LipMRDlid
variant showed a closed metastable conformation at 9.40 Å and a more opened conforma-
tion at 19.61 Å, meaning that this variant had the highest opening distance of all interrogated
species (Figure S8). The induced-fit simulation of the lid-swapped mutant showed that the
substrate stayed bound in a catalytic conformation ~99% of the time (Figure S9). Moreover,
the number of catalytic events was 30,392 (and 91.295% of all accepted PELE steps), the
highest compared to the wild-type enzyme and the double mutant, and with similar values
to the R. delemar lipase.

The engineered LipMRDlid variant was then synthesized as for the wild-type. After
synthesis, a 294 amino acid sequence was obtained, encoding an enzyme with a molecular
mass of 32,635 Da and an isoelectric point of 5.56. The mutant (N-terminal His6-tagged)
was expressed, purified, and characterized as for the wild-type protein. The protein was
found to be active against all triglycerides tested, with specific activities ranging from 630
(for TriC3:0) to 2330 (for TriC8:0) units/g protein, being able to hydrolyse triglycerides as
large as olive oil (1210 units/g) and palm oil (1290 units/g) to an extent similar to that of
the LipMRDW89M/L60F mutant (Table 1).

It should be noted that the two mutants designed in this study showed a preference
for long triglycerides similar to that of the model R. delemar lipase (Table 1), although
the specific activities are not comparable to the latter values derived from a nonpure
commercial sample (Addzyme RD).

3. Discussion

Understanding the mechanisms that modulate the substrate specificity of ester hydro-
lases, both esterases and lipases, and, in particular, the increase in lipase activity in this
type of enzyme, has been the subject of analysis both in native enzymes and in mutants
designed by protein engineering techniques [19–26]. In this context, many ester hydrolases
present a lid domain (in the case of lipases) [10,11,27–29] or a cap domain (in the case of
some esterases) [48] whose function is to allow the entry of substrates to the active site.
This is known as interfacial activation in the case of lipases, with open and closed forms
depending on the displacement of this lid [10,11,27–29]. It has been observed that the lid
described in lipases and the cap domain of esterases have very similar topology, although
in the latter, no biological functionality has been observed. Nevertheless, high flexibility
of the N-terminal end has been observed [49]. Although it is not possible to strictly speak
of open and closed forms in esterases, in the specific case of some members of the family
IV esterases, the opening of the cap domain seems to be a prerequisite for the entry of
substrates into the active centre, something that is reminiscent of the role of the lid domain
in lipases. This occurs, for example, because of the presence in the cap domain of residues
that could act as hinges in the opening of the N-terminal part of the cap to facilitate the
entry of bulky substrates into the active centre [50–53]. Because lipases and esterases come
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from a common ancestor, the high flexibility of the cap domain observed in the latter could
be reminiscent of the interfacial activation of lipases.

Using protein engineering to alter the amino acids of the cap domain in a single
esterase and thus modulate the mobility of the cap domain has allowed us to shape the
entry of bulkier substrates into the active centre and therefore alter the substrate specificity
of the esterase [48]. These advances have not occurred at the same level in lipases [27,29].
Indeed, lipases with different residues and characteristics (e.g., hydrophobicity) or the same
lipase with specific changes introduced in the lid can show very different activity profiles
and specificity. In this study, we have gone further and approached improving the lipase
activity of a lipase, retrieved by metagenomics bioprospecting, through computationally
predicted mutagenesis and lid swapping. Specifically, by introducing a double mutant, we
significantly increased the size of accepted substrates as well as the activity on medium-
carbon chain substrates. Moreover, we changed the lid of a lipase with little lipase activity
to the lid of another enzyme with reported lipase activity. The results provided in this study
demonstrate unequivocally that this method produces a lipase with better characteristics in
terms of broadening the preference or ability to hydrolyse longer and insoluble substrates.
Validation of computation predictions reinforces the idea that the differences in the presence
of key residues between the original and the swapped lid domains play a major role in
improving lipase activity. It cannot be ruled out that other factors derived from the
incorporation of the new lid domain may contribute to the increase in the lipase activity of
the originating enzyme, as shown by the improved lipase activity of the LipMRDlid mutant
compared to the LipMRDW89M/L60F mutant.

4. Materials and Methods
4.1. Source and Production of LipMRD, LipMRDlid and LipMRDW89M/L60F

The sequences of LipMRD, LipMRDlid, and LipMRDW89M/L60F were synthesized by Gen-
Script Biotech (GenScript Biotech, EG Rijswijk, The Netherlands) and codon-optimized to
maximize the expression in E. coli. The genes were flanked by BamHI and HindIII (stop
codon) restriction sites and inserted into a pET-45b(+) expression vector with an ampicillin
selection marker (GenScript Biotech, Rijswijk, The Netherlands), which was further intro-
duced into E. coli BL21(DE3). This plasmid, which was introduced into E. coli BL21(DE3),
supports the expression of N-terminal His6-fusion proteins, with the final amino acid
sequence of the synthetic protein being MAHHHHHHVGTGSNDDDDKSPDP-X (where X
corresponds to the original sequence of the target enzyme). The soluble N-terminal His6-
tagged proteins were produced and purified (>98% purity, as determined by SDS–PAGE
analysis using a Mini PROTEAN electrophoresis system, Bio-Rad, Madrid, Spain) at 4 ◦C
after binding to a Ni-NTA His-Bind resin (Merck Life Science S.L.U., Madrid, Spain), as
previously described [39], and stored at −20 ◦C until use at a concentration of 1.5 mg/mL
in 40 mM HEPES buffer (pH 7.0). Approximately 10–14 mg of purified proteins were
obtained on average from a 1-L culture.

This work reinforces that the presence and movement of the lid domain are key
for lipase activity. Having the His6-tag on the protein may influence lid movement and
therefore activity. Although we did not produce a synthetic variant of the protein without
a His6-tag to prevent any possible effect due to the tag, the distance from the N-terminus to
both the lid domain and the catalytic triad in the AlphaFold model suggests no influence
(Figure S10).

4.2. Source of R. delemar Lipase

Lipase from R. delemar (Addzyme RD) was kindly provided by Evoxx Technologies
GmBH (Monheim am Rhein, Germany). Prior to use, a stock solution of 1 mg/mL in
40 mM HEPES buffer (pH 7.0) was prepared and used for activity tests.
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4.3. Substrate Specificity

The enzymes (20 µg/mL) were incubated with a stock solution of each of the target esters,
TriC8:0 (ref. T9126), TriC10:0 (ref. CRM44897), coconut oil (re. C1758), palm oil (ref. 70905),
and olive oil (ref. O1514) (all provided by Merck Life Science S.L.U., Madrid, Spain), in
100 µL of (4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) buffer, 5 mM, pH, 8.0;
T, 30 ◦C. The reactions were allowed to proceed in 2-mL safe-lock Eppendorf® polypropylene
tubes (ref. 0030 120.094, Greiner Bio-One GmbH, Kremsmünster, Austria) in a thermoshaker
(model Thermomixer comfort, Eppendorf AG, Hamburg, Germany) at 950 rpm. After
30 min of reaction, hydrolysis was measured by using the NEFA Kit (FUJIFILM Wako
Chemicals Europe GmbH, Neuss, Germany) following the manufacturer’s instructions.
Briefly, 10 µL of the reaction solution was mixed with 100 µL of NEFA solution 1 in a 96-well
plate (ref. 655801, Greiner Bio-One GmbH, Kremsmünster, Austria). Following 6 min of
incubation at 37 ◦C, 50 µL of NEFA solution 2 was added, and after 6 min of incubation at
30 ◦C, the samples’ absorbance was measured at 550 nm using a Synergy HT Multi Mode
Microplate Reader (BioTek Instruments, Winooski, VT, USA) with Gen5 2.00 software. Stock
solutions were prepared at concentrations of 282.41 mg/mL for TriC8:0, 332.92 mg/mL for
TriC10:0, 460 mg/mL for coconut oil, 431 mg/mL for palm oil and 431 mg/mL for olive oil
in dimethyl sulfoxide (Merck Life Science S.L.U., Madrid, Spain); this corresponds to 0.6 M
of all esters. The final concentrations in the reaction assays were 11.29 mg/mL for TriC8:0,
13.32 mg/mL for TriC10:0, 18.4 mg/mL for coconut oil, and 17.24 mg/mL for palm oil and
olive oil. The activity was calculated by determining the absorbance per minute and by
using a NEFA standard (oleic acid, ref. 29124-2, Merck Life Science S.L.U., Madrid, Spain)
for calibration. One unit of enzyme activity was defined as 1 µmol of acid produced per
minute under the assay conditions.

The activity towards TriC3:0 (ref. W328618) and TriC4:0 (ref. W222305), whose hydroly-
sis cannot be followed by the NEFA-Kit, was determined using a pH indicator (Phenol Red®)
assay [37–39]. In brief, reactions were performed as follows: [enzyme], 2.8–45.5 µg/mL
(depending on the enzyme); [TriC3:0 or TriC4:0], 4.5 mg/mL; reaction volume, 40 µL (4-(2-
hydroxyethyl)-1-piperazinepropanesulfonic acid, EPPS buffer, 5 mM, phenol red (extinction
coefficient of phenol red, 8450 M−1 cm−1), 0.45 mM, pH 8.0; T, 30 ◦C; assay format, 384-well
plates (ref. 781162, Greiner Bio-One GmbH, Kremsmünster, Austria); and assay wavelength,
550 nm. Datasets were collected with a Synergy HT Multi-Mode Microplate reader (with
Gen5 2.00 software Biotek Instruments, Winooski, VT, USA), with values obtained from
the best linear fit using Excel 2019. In all cases, the activity was calculated by determining
the absorbance per minute from the generated slopes [39]. One unit (U) of enzyme activity
was defined as the amount of enzyme required to transform 1 µmol of substrate in 1 min
under the assay conditions.

All reactions were performed in triplicate (n = 3) with control reactions (no enzyme
added) and background signals considered, and the activity was calculated by determining
the absorbance per minute from the generated slopes, as previously reported [39]. The
threshold for activity was defined as at least twofold the background signal [54].

4.4. pH and Thermal Profiles

The hydrolysis of the model ester p-NP butyrate (ref. N-9876; Merck Life Science S.L.U.,
Madrid, Spain) was assessed by monitoring the continuous production of 4-nitrophenol at
348 nm (pH-independent isosbestic point, ε = 4147 M−1 cm−1) using 0.2 µg of total protein,
as previously reported [39]. In all cases, a Synergy HT Multi-Mode Microplate Reader with
Gen5 2.00 software (Biotek Instruments, Winooski, VT, USA) was used. The effect of the pH
on the activity was evaluated in 50 mM BR buffer at pH 4.0–10.0. Note that the BR buffer
consists of a mixture of 0.04 M H3BO3, 0.04 M H3PO4, and 0.04 M CH3COOH that was
titrated to the desired pH with 0.2 M NaOH. Similar assay conditions were used to assay
the effects of temperature on p-NP butyrate hydrolysis, but in this case, the reactions were
performed at 40 mM HEPES buffer pH 7.0. The activity was calculated by determining
the absorbance per minute from the generated slopes, as previously reported [39], with
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all reactions performed in triplicate (n = 3) with control reactions and background signals
considered, as detailed above.

CD spectroscopy was used to determine the thermal denaturation profile. CD spectra
were acquired between 190 and 270 nm with a Jasco J-720 spectropolarimeter (Jasco Inc.,
Tokyo, Japan) equipped with a Peltier temperature controller employing a 0.1-mm cell at
25 ◦C. Spectra were analysed and processed with a Spectra Manager software (Jasco Inc.,
Tokyo, Japan), and the denaturation temperature (Td) values were determined at 220 nm
between 10 and 85 ◦C at a rate of 30 ◦C per hour in HEPES buffer 40 mM, pH 7.0. A
protein concentration of 1.0 mg ml−1 was used. The Td (and standard deviation of the
linear fit) was calculated by fitting the ellipticity (mdeg) at 220 nm at each of the different
temperatures using a 5-parameter sigmoid fit with SigmaPlot 14.0 software.

In this work, HEPES and BR buffers were selected for the activity assay. Although
we did not anticipate any effect of the buffers in the results, since a prevalent feature of
hydrolases is the possibility to show acyltransferase activity with alcohols and amines as
acceptors, care must be taken in buffer selection. Phosphate buffer is generally preferable
because it cannot act as an acyl acceptor.

4.5. Protein and Chemical Preparation for In Silico Analysis

The lipase from the Actinoalloteichus genus model was obtained using AlphaFold [55].
Then, the obtained AlphaFold model was prepared and protonated at pH 8.0, the pH at
which the experimental assays were performed, using the Protein Preparation Wizard. The
ester compound used was triolein. All substrates were modelled using the OPLS2005 force
field [56]. The atomic charges of triolein were calculated with Jaguar [57] using density
functional theory with a B3LYP-D3 exchange-correlation functional and the polarized
double-zeta (pVDZ) basis set.

4.6. PELE Simulations

PELE (version rev12360) was used to model the opening of the lid domain in the
studied lipase, as well as the binding of triolein to the lipase catalytic site. PELE is a Monte
Carlo (MC)-based algorithm coupled with protein structure prediction methods [42,43].
This MC method starts with the sampling of different microstates by applying small
perturbations (translations and rotations) on the ligand. Then, the flexibility of the protein
is considered by applying normal modes through the anisotropic network model (ANM)
approach [58]. Once the system has been perturbed, side chains of the residues near the
ligand are sampled with a library of rotamers to avoid steric clashes. Finally, a truncated
Newton minimization with the OPLS2005 force field [56] is performed, and the new
microstate is accepted or rejected according to the Metropolis criterion. The Variable
Dielectric Generalized Born Non-Polar (VDGBNP) implicit solvent [59] was applied to
mimic the influence of water around the protein.

5. Conclusions

This work provides a rational-based protein engineering approach to improve the
capacity of lipases to hydrolyse large water-insoluble triglycerides. This was achieved by
investigating a lipase isolated from the Marine Metagenomics MarRef Database, which
contains a lid domain but was only capable of hydrolysing triglycerides up to tridecanoate
(TriC10:0) and showed slight activity towards coconut oil. There are examples of lipase
engineering by lid swapping, which results in altered substrate specificity [27–29], and we
therefore engineered a mutant of this hydrolase in which its lid domain was replaced by
that of another lipase capable of degrading large-carbon chain triglycerides. The resulting
lid-swapped construct could increase the range of triglycerides hydrolysed up to palm oil.
Thus, lid swapping can help to tune the substrate profiles of lipases towards large-chain
fatty esters beyond the tunnel and active site engineering [48] and specific mutations at the
lid domain [23]. The results of the present study are complementary to those of a study
that has been conducted to convert a lipase into an esterase capable of better hydrolysing
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water-soluble substrates by modifying the lid region [28] or to improve the lipase activity
of lipases [27–29]. We will continue to explore the biocatalytic potential of lipases other
than those investigated herein by using this approach. That said, whether the strategy
provided here is transferable to other lipases is something to be investigated in the future;
the approach may not be generalizable. Engineering the same lipase with different lid
domains or incorporating the same lid domain into different lipase scaffolds may help to
explore the versatility and potential of these types of lipase designs. This work reinforces the
importance of the lid domain and its amino acid composition in determining and promoting
lipase activity. The possibility of shortening, lengthening, or removing the lid domain may
also emphasize the necessity of the lid domain in the enzyme investigated herein.
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