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Abstract: Although estuarine diatoms have a wide range of salt tolerance, they are often severely
stressed by elevated salt concentrations. It remains poorly understood how estuarine diatoms
maintain ionic homeostasis under high-salinity conditions. Using a scanning ion-selective electrode
technique, this study determined the fluxes of H+, Na+, and K+ involved in the acclimatization of
the estuarine diatom Coscinodiscus centralis Ehrenberg after an elevation in salinity from 15 psu to
35 psu. The C. centralis cells exhibited marked H+ effluxes after a transient treatment (TT, 30 min) and
short-term treatment (ST, 24 h). However, a drastic shift of H+ efflux toward an influx was induced in
the long-term treatment (LT, 10 days). The Na+ flux under TT, ST, and LT salinity conditions was
found to accelerate the Na+ efflux. More pronounced effects were observed under the ST and LT
salinity conditions compared to the TT salinity condition. The K+ influx showed a significant increase
under the LT salinity condition. However, the salinity-induced Na+/H+ exchange in the estuarine
diatom was inhibited by amiloride and sodium orthovanadate. These results indicate that the Na+

extrusion in salt-stressed cells is mainly the result of an active Na+/H+ antiport across the plasma
membrane. The pattern of ion fluxes under the TT and ST salinity conditions were different from
those under the LT salinity conditions, suggesting an incomplete regulation of the acclimation process
in the estuarine diatom under short-term salinity stress.

Keywords: estuarine diatom; salinity; ion flux; the scanning ion-selective electrode technique

1. Introduction

Diatoms are able to live in waters containing different concentrations of dissolved
salts, from freshwater to brackish and marine waters [1]. Individual diatom taxa have
characteristic salinity optima and ranges, and particular groups of diatoms seem to prefer
environments with specific levels of salinity [2,3]. Freshwater diatom species are negatively
affected by an increase in salinity [4,5], whereas oceanic species fail to grow under low-
salinity or freshwater conditions [6]. However, estuarine diatom species often demonstrate
a broad tolerance to salinity and correspond well with the salinities observed in their
natural habitats [7]. Although they seem to be euryhaline, the reproduction rates in many
estuarine taxa are inhibited by an increase in salinity [6,8]. Salinity is often considered an
important determinant in the distribution of diatoms in estuaries [9]. The succession of
diatoms along the estuarine salinity gradient has generally been ascribed to the fact that
these species suffer salinity stress upon exposure to enhanced salt concentrations [10,11].

Salinity has an ion toxic effect on cells because the high intracellular concentrations
of chloride and Na+ are deleterious to cellular systems [12,13]. Moreover, cellular ion
homeostasis can be disturbed by a permanent influx of inorganic ions [14]. Accordingly,
maintaining a low concentration of salt in the cytosol is of the utmost importance in cells’
tolerance to salinity stress. The internal Na+ concentration in the green alga Dunaliella salina
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(Dunal) Teodoresco does not change significantly during salt acclimation, indicating that
Na+ ions were actively exported out of the cytoplasmic space against the electrochemical
Na+ gradient by cells living under elevated salt concentrations [15]. The active export of
Na+ to the apoplast or external environment is essential for sustaining Na+ homeostasis
in the cytosol. This is chiefly carried out by Na+/H+ antiporters secondarily energized by
the proton motive force, which is generally generated by a plasma membrane (PM) H+-
ATPase [16]. The activity of PM Na+/H+ antiporters has been reported in microalgae and
cyanobacteria [17,18]. Therefore, H+ pumping is fundamental to the Na+/H+ exchange and
salinity stress. However, the active Na+/H+ antiport across the PM and its contribution to
salt exclusion in microalgae are still lacking. Aside from its function in salt acclimation, the
Na+/H+ antiporter plays a principal role in intercellular pH regulation [19] and becomes
active when intracellular acidification is induced [20].

K+ homeostasis also plays a crucial role in the salt adaptation of microalgae [21,22].
Levels of intracellular K+ increased significantly with increases in salinity in the diatom
Chaetoceros muelleri Lemmermann [23]. The intracellular K+ content in D. salina cells is kept
fairly constant over a wide range of salinities, suggested that the cells possess efficient
mechanisms to eliminate Na+ and accumulate K+ and that the intracellular concentrations
of Na+ and K+ are carefully regulated [24]. The reduction in the intracellular K+ pool is
often correlated with a massive K+ efflux and a significant impairment of cell metabolism,
and this K+ efflux is initiated within seconds of acute NaCl stress and may last for several
hours [25,26].

Estuarine diatoms are subjected to salinity variations influenced by periodical tides,
and temporary salt increases may change their growth conditions in an unfavorable manner,
such as through the accumulation of toxic ions [2]. The diatoms’ acclimation to the altered
internal ion situation is managed by the transport of ions at the plasma membrane [27].
Despite the importance of ion homeostasis, there is only a limited understanding of the
fluxes at the plasma membranes of microalgae under saline conditions. Coscinodiscus
centralis Ehrenberg is a dominant species in the Jiulong River Estuary, and it is a good
material for studying how estuarine diatoms maintain ionic homeostasis under high-
salinity conditions. In this study, we measure the fluxes of H+, Na+, and K+ in the estuarine
diatom Coscinodiscus centralis Ehrenberg under saline conditions, using a non-invasive ion
flux technique. The aim of this study was to compare the alternations in ion fluxes in an
estuarine diatom with different exposure times to an enhanced salt concentration.

2. Results
2.1. Salinity Optima for Growth in Cultures

The effects of different salinities on the growth response curves of the estuarine diatom
C. centralis are shown in Figure 1. C. centralis were able to reproduce between salinities
of 10 and 35, and the optimum salinity was 15 psu. C. centralis responded similarly to
the 10 psu, 15 psu, and 20 psu treatments before day 6. After that, differences among the
growth responses in three treatments were pronounced. However, the growth of C. centralis
was more strongly inhibited by 35 psu than the other treatments from the beginning.

2.2. Response of Fv/Fm to Salinity Stress

The influences of TT salinity, ST salinity, and LT salinity on Fv/Fm are presented in
Figure 2. Compared to the control treatment, the TT-stressed, ST-stressed, and LT-stressed
cells showed significantly lower Fv/Fm values. However, no significant changes were
observed among the TT-stressed, ST-stressed, and LT-stressed cells. It is interesting that
the Fv/Fm value showed a small increase after 24 h of salinity stress. We also measured the
valve diameters of C. centralis in three treatments. The diameters of C. centralis ranged from
52.9 to 71.0 µm, from 54.9 to 74.9 µm, and from 56.2 to 74.5 µm, with mean diameters of
62.2 ± 5.0 µm, 65.0 ± 5.7 µm, and 64.6 ± 5.5 µm for the TT, ST, and LT treatments, respectively.
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Figure 1. Effects of different levels of salinity on the growth of the estuarine diatom Coscinodiscus centralis.
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Figure 2. Effects of transient-treatment (TT) salinity (35 psu for 15 min), short-term (ST) salinity
(35 psu for 24 h) and long-term (LT) salinity (35 psu for 10 days) on the Fv/Fm value of the estuarine
diatom Coscinodiscus centralis.

2.3. Ion Fluxes in Response to Salt Stress in the Estuarine Diatom C. centralis: H+ Fluxes

For the control treatment, the scanning ion-selective electrode technique (SIET) data
showed a stable and constant efflux, with a mean value of 5.7 × 10−3 pmol cm−2 s−1

(Figure 3A). There were marked differences in H+ fluxes with salinity between the TT-
stressed, ST-stressed, and LT-stressed cells. The TT-stressed cells exhibited a drastic H+ ef-
flux, ranging from 13.7 × 10−3 to 17.4 × 10−3 pmol cm−2 s−1 (Figure 3B). In the ST-stressed
cells, the H+ efflux decreased rapidly after 24 h from 6.3 × 10−3 to 9.4 × 10−3 pmol cm−2 s−1

(Figure 3C), while a net H+ influx was observed in the LT-stressed cells that ranged from
−4.1 × 10−3 to −1.3 × 10−3 pmol cm−2 s−1 (Figure 3D). In general, the H+ flux displayed
significant responses to the salinity stresses in the four treatments (Figure 3E).
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conducted for each cell. Each point represents the mean of four to five individual diatoms, and bars 
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shown (E). Columns labeled with different letters (a and b) are significantly different at p < 0.05. 
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control treatment (Figure 4A). A typically greater Na+ efflux was observed in the TT-
stressed cells compared to the control over the period of recording, although it did not 
respond significantly in both treatments (Figure 4B). However, salinity induced a marked 
Na+ efflux in the ST-stressed cells, and the effect was even more pronounced in the LT-
stressed cells (Figure 4C,D). Following the cells’ exposure to the medium containing 35 

Figure 3. Net fluxes of H+ from control (A), TT-stressed, (B) ST-stressed, (C) and LT-stressed
(D) cells of the estuarine diatom Coscinodiscus centralis. A continuous flux recording of 7 to 8 min was
conducted for each cell. Each point represents the mean of four to five individual diatoms, and bars
represent the standard error of the mean. The mean fluxes of H+ within the measuring periods are
shown (E). Columns labeled with different letters (a and b) are significantly different at p < 0.05.

2.4. Na+ Fluxes

As shown in Figure 4, there was a balance between the Na+ efflux and influx in
the control treatment (Figure 4A). A typically greater Na+ efflux was observed in the TT-
stressed cells compared to the control over the period of recording, although it did not
respond significantly in both treatments (Figure 4B). However, salinity induced a marked
Na+ efflux in the ST-stressed cells, and the effect was even more pronounced in the LT-
stressed cells (Figure 4C,D). Following the cells’ exposure to the medium containing 35 psu
for 24 h and 10 days, the mean Na+ efflux rate in the ST-stressed and LT-stressed cells
increased 16-fold and 34-fold, respectively (Figure 4E).
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Figure 4. Net fluxes of Na+ from control (A), TT-stressed, (B) ST-stressed, (C) and LT-stressed
(D) cells of the estuarine diatom Coscinodiscus centralis. A continuous flux recording of 7 to 8 min was
conducted for each cell. Each point represents the mean of four to five individual diatoms, and bars
represent the standard error of the mean. The mean fluxes of Na+ within the measuring periods are
shown (E). Columns labeled with different letters (a and b) are significantly different at p < 0.05.

2.5. K+ Fluxes

A K+ influx with a mean value of −36.6 pmol cm−2 s−1 was recorded in the control
treatment (Figure 5A). Following a slight decrease in the TT-stressed cells, the K+ influx
recovered to its normal value in the ST-stressed cells after 24 h (Figure 5B,C). However,
compared to the control cells, an accelerated K+ influx was observed in the LT-stressed cells
in which the mean flux rate increased to −61.6 pmol cm−2 s−1(Figure 5D,E).
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Figure 5. Net fluxes of K+ from control (A), TT-stressed, (B) ST-stressed, (C) and LT-stressed
(D) cells of the estuarine diatom Coscinodiscus centralis. A continuous flux recording of 7 to 8 min was
conducted for each cell. Each point represents the mean of four to five individual diatoms, and bars
represent the standard error of the mean. The mean fluxes of K+ within the measuring periods are
shown (E). Columns labeled with different letters (a and b) are significantly different at p < 0.05.

2.6. Effects of PM Transport Inhibitors on H+, Na+, and K+ Fluxes

Since a clear Na+/H+ exchange was exhibited in the treatment with 35 psu for 10 days,
LT-stressed cells were used to characterize the effects of PM transport inhibitors on the cell
H+, Na+, and K+ fluxes. Amiloride (25 µM), the specific inhibitor of the Na+/H+ antiporter,
or sodium orthovanadate (100 µM), the specific inhibitor of PM H+-ATPase, significantly
inhibited the Na+ efflux and K+ influx in the LT-stressed cells (Figures 6 and 7). The PM
transport inhibitors amiloride or sodium orthovanadate significantly reduced the salinity-
induced H+ efflux in the TT-stressed treatment (data not shown), although no significant
effect was observed in the LT-stressed cells (Figure 8). However, cells exhibited an unstable
H+ flux with the addition of inhibitors. Particularly, a pronounced shift toward an H+ efflux
was seen after cells were subjected to amiloride (Figure 8B).
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Figure 8. Effects of sodium orthovanadate (100 µM) and amiloride (25 µM) on salt-shock-induced
H+ kinetics in the estuarine diatom Coscinodiscus centralis. Cells were pretreated with sodium
orthovanadate or amiloride for 15 min prior to flux measurements. (A) and (B) H+ kinetics recorded
after increased salinity with 35 psu, and steady H+ fluxes were measured in cells pretreated with
inhibitors. Each point represents the mean of four or five cells, and bars represent the standard error
of the mean; (C) shows the mean H+ flux rates in cells pretreated with inhibitors. Columns labeled
with the same letter (a) are not significantly different at p > 0.05.

3. Discussion
3.1. Growth under Salinity Stress

Our results showed that the estuarine diatom C. centralis demonstrated optimum
growth at 15 psu (Figure 1). Many studies show that optimal salinity levels in cultivated
diatom strains correspond well to the salinities of the samples from which the strains were
isolated [4,7,28]. For example, oceanic strains have a salinity optimum at 33 psu, com-
pared to estuarine species at 15 psu [4]. Diatoms from thalassic hypersaline environments
demonstrate optimal or near-optimal growth rates at salinities as high as three times that
of seawater [28]. Brand (1984) also reported that many oceanic species die at 45 psu, while
all of the estuarine species are able to reproduce at 45 psu, indicating their differences in
salinity acclimation [4]. In the open oceans, salinity varies between 33 psu and 37 psu,
while in estuaries, the salinity may range from 0 psu to the full strength of seawater. Some
field studies show that acclimating to changes in salinity is a prerequisite for most diatoms
living in estuaries and coastal wetlands [7,9].

Although some studies show that estuarine diatoms grow well over a broad range of
salinity [4,8,29], the growth of the estuarine diatom C. centralis at a salinity of 35 psu was
significantly less than at 15 psu in our study, indicating that the diatom experienced salinity
stress with an increase in salinity (Figure 1). Interestingly, the translocation of chloroplasts
to the center of the cell was observed in the LT-stressed cells. The movement of chloroplasts
has been reported in diatoms and is induced by high light irradiance, contact stimulation,
and electric stimulation [30–32]. It is suggested that chloroplast migration may help to
maintain photosynthetic activity or to protect the nucleus under unfavorable conditions [31].
Our results showed that the Fv/Fm ratio was significantly inhibited in the TT, ST, and LT-
stressed cells (Figure 2). Therefore, estuarine diatoms may suffer from frequent short-term
increases in salinity. Using a SIET in this study, we concluded that ion fluxes in TT and ST
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salinity differed from ion fluxes in LT salinity, indicating an incomplete regulation of the
acclimation process in the estuarine diatom under short-term salinity stress.

3.2. Na+/H+ Antiport across the PM under Salinity Stress

In this study, a net H+ efflux was observed in the control (Figure 3). This is in agree-
ment with the results that marine phytoplankton, such as diatoms, coccolithophores, and
dinoflagellates, often show an outward net proton motive force at their plasma mem-
branes [19,33]. The H+ flux at the plasma membrane plays an important role in the regu-
lation of the intracellular pH. Taylor et al. (2011) showed that coccolithophores possess a
voltage-gated H+ channel which removes H+ rapidly from the cell during calcification and
helps maintain a constant intracellular pH [19].

Although protons play many roles in signaling, development, and metabolic regula-
tion, physiological and genomic evidence supports a Na+-energized plasma membrane in
marine phytoplankton [33]. The high extracellular Na+ concentration in the open ocean
environment can be utilized by marine phytoplankton to drive coupled transport processes
across the plasma membrane. This differs from embryophytes and filamentous fungi,
which generally utilize electrogenic PM H+-ATPase to energize secondary transport at
the plasma membrane [34]. However, our results suggested that PM H+-ATPase pumps
protons and maintains electrochemical H+ gradients, thus promoting a secondary active
Na+/H+ antiport at the PM during the process of the estuarine diatom C. centralis accli-
mating to salinity stress. The experimental evidence is briefly listed below. TT and ST
salinity both caused a net H+ efflux in C. centralis, although the more pronounced effect
was observed in the TT-stressed cells (Figure 3C,D). A drastic shift in the H+ efflux toward
an influx was induced after 10 days of salinity stress. A salinity-induced H+ influx was
also seen in plant cells [16]. H+-SO4

2− symporters have been identified in the diatom
Phaeodactylum tricornutum Bohlin, which may inhabit brackish waters, although there are
several reports of the Na+-coupled uptake of nutrients such as nitrate, ammonia, and
silicon in marine diatoms [35,36]. On the other hand, under the conditions of TT, ST, and LT
salinity, the Na+ flux was found to accelerate the Na+ efflux (Figure 4). More pronounced
effects were observed under the conditions of ST and LT salinity compared to TT salinity
(Figure 4E). Moreover, pharmacological experiments suggested the involvement of PM
H+-ATPase in Na+/H+ antiport. The PM transport inhibitors amiloride (an inhibitor of the
Na+/H+ antiport) and sodium orthovanadate (an inhibitor of PM H+-ATPase) decreased
the H+ efflux in TT-stressed cells (data not shown). The rectification of the Na+ flux was
correspondingly reversed when the inhibitors affected the H+ influx in LT-stressed cells
(Figures 6 and 8). In this study, the changes in the H+ flux corresponding to the Na+ efflux
suggest that Na+ extrusion in salt-stressed cells is mainly the result of an active Na+/H+

antiport across the PM.
Salinity induced a marked Na+ efflux in ST- and LT-stressed cells (Figure 4), indicating

the maintenance of a low internal Na+ concentration in C. centralis. A similar low Na+

concentration has been reported in Dunaliella under high-salinity conditions [24]. Although
it has been clearly established that glycerol plays a crucial role in cell osmoregulation, ion
homeostasis would help to regulate the ionic composition of Dunaliella cells over a wide
range of salinities [37,38]. The almost unchanged NaCl concentrations in Dunaliella clearly
indicate that organisms living under elevated salt concentrations actively export Na+ ions
out of the cytoplasmic space against the electrochemical Na+ gradient [15]. The characteri-
zation of the Na+/H+ antiporter from the plasma membrane of Dunaliella suggests that this
is chiefly carried out by Na+/H+ antiporters secondarily energized by the proton motive
force. The Na+/H+ antiporter has been characterized in all types of organisms including
microalgae [18,20]. Given these results, we suggest that Na+ extrusion in salt-stressed C.
centralis cells is correlated with an increase in the activity of PM Na+/H+ antiporters.
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3.3. K+ Fluxes under Salinity Stress

A slight decrease in K+ influx was observed in the cells after a treatment with 35 psu for
30 min, indicating an increase the K+ efflux (Figure 7). This is in agreement with previous
study, which found that early under high-salinity conditions, Dunaliella cells export K+ into
the surrounding medium [39]. In plant cells, one of the cellular responses to salt stress is a
massive K+ efflux [25]. Such a K+ efflux is initiated within seconds of acute NaCl stress and
may last for several hours, reducing the intracellular K+ pool and significantly impairing
cell metabolism [26]. Maintaining a cytosolic K+ concentration in an environment with a
high Na+ concentration is a key factor in determining the ability to tolerate salinity [40]. In
this study, the K+ influx recovered in ST-stressed cells, indicating that the intracellular K+

concentration in C. centralis would not necessarily change during this period. However, the
K+ influx showed pronounced increase after treatment with 35 psu for 10 days (Figure 7).
The dominance of K+ against Na+ in the cytoplasm and the fast uptake of K+ after an
upshock are fundamental characteristics of bacterial salt acclimation [41]. Pick et al. (1986)
found that limiting the external K+ concentration causes an increase in intracellular Na+

and a decrease in intracellular K+ in Dunaliella salina under high-salinity conditions [24].
A transport mechanism exchanging K ions for Na ions has been already suggested in
Platymonas and Chlorella pyrenoidosa [2,37]. Therefore, we conclude that increasing the K+

influx helped in the regulation of the ionic composition of C. centralis cells under LT salinity.

4. Conclusions

The alternations in the ion fluxes in the estuarine diatom with different exposure times
to enhanced levels of salinity were compared in present paper. We found that C. centralis
cells exhibited marked H+ effluxes after TT and ST treatment. However, a drastic shift of
the H+ efflux toward an influx was induced in the LT treatment. Under the TT, ST, and
LT salinity conditions, the Na+ flux was found to accelerate the Na+ efflux. The K+ influx
showed a significant increase under the LT salinity condition. Our results indicate that the
Na+ extrusion in salt-stressed cells is mainly the result of an active Na+/H+ antiport across
the plasma membrane. The patterns of ion fluxes in the TT and ST salinity conditions
were different from those under LT salinity, suggesting an incomplete regulation of the
acclimation process in the estuarine diatom under short-term salinity stress.

5. Materials and Methods
5.1. Culture Conditions

The C. centralis strain (MMDL50816) used in this study was isolated from the estuary
of the Jiulong River in Fujian Province, China, in 2013 (Figure 9) [42]. The C. centralis
cells were maintained in artificial seawater with a salinity of 15 psu [43]. The cultivation
temperature was 20 ◦C, the light/dark cycle was 12:12 h, and the light intensity was
60 µmol photons m−2 s−1.
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5.2. Determination of Optimum Salinity

To investigate its optimum salinity, the estuarine diatom C. centralis was tested at
10 psu, 15 psu, 20 psu, and 35 psu after isolation. These salinities were chosen because
they reflect the conditions under which it was sampled. Artificial sea water [43] at dif-
ferent salinities was prepared for the diatom culture. the salinity was measured via a
refractometer (S-100 portable salinometer, YAMATO, Kanagawa, Japan). The cells were
pre-adapted to different salinities before the start of the experiment. Growth experiments
were carried out in duplicate cultures for all the salinities measured. The cell number was
determined for each sample in a Coulter counter with an inverted light microscope at
×200–400 magnification.

5.3. Treatments

Cells cultured in artificial seawater with a salinity of 15 psu were used as the control
treatment. Then, the cells were subjected to a transient treatment (TT) with 35 psu seawater
for 30 min, a short-term treatment (ST) with 35 psu seawater for 24 h, and a long-term
treatment (LT) with 35 psu seawater for 10 days. NaCl stock (1M) was slowly added
to the medium (15 psu) until the salinity reached 35 psu. With the increase in salinity
stress, a range of chloroplast translocation was observed from relatively little chloroplast
translocation (ST salinity) to the movement of the majority of chloroplasts to the center of
the cell (LT salinity).

5.4. Measurement of Maximal Quantum Yield of Photosystem II (Fv/Fm) under Different
Salinity Stresses

The Fv/Fm value was measured via a Xe-PAM fluorometer (Walz, Effeltrich, Germany).
For fluorescence measurements, the parameters of the fluorometer were set to ensure that
samples from each culture were dark-adapted for 30 min. The minimal fluorescence (F0)
was measured at a low light intensity, and additional background laser-light was used for
the measurement of maximal fluorescence (Fm).

5.5. Measurements of Net H+, Na+, and K+ Fluxes via a Scanning Ion-Selective Electrode
Technique (SIET)

Prior to the ion flux measurement, the cells were first fixed on the bottom of the
measuring chamber to reduce the mobility caused by the movement of the electrode during
the measurements. Briefly, glass slips containing 0.1% poly-l-lysine (Yue Xu Sci. and Tech.
Co. Ltd.) were placed in a measuring chamber containing a measuring solution of H+,
Na+, and K+. Then, 50 L cell suspensions were placed in the middle of the poly-l-lysine
pretreated coverslips. Most cells had been settled on the surface after 10 min. The coverslips
were then washed with the measuring solution in order to remove the unsettled cells. The
ion fluxes were measured after 3 ml of a measuring solution of H+, Na+, and K+ was slowly
added to the measuring chamber. The steady-level ion flux measurements were initiated
and continued for 7 to 8 min. H+, Na+, and K+ were measured in the following solutions,
respectively: (1) H+: 8 mM KCl, 5 mM CaCl2, 20 mM MgCl2, 180 mM NaCl, 10 mM Na2SO4,
10 mM HEPES, pH 8.2; (2) Na+ and K+: 0.1 mM KCl, 0.1 mM CaCl2, 0.1 mM MgCl2, 0.5
mM NaCl, 10 mM HEPES, pH 8.2.

After their exposure to the saline (TT, ST, and LT), subsamples were collected to obtain
ion flux measurements. To decrease the influence of the release of salt on the ion flux
recordings (preloaded Na+ would diffuse from the surfaces of salinity-stressed cells in
a buffer containing lower Na+ concentrations), the cells were placed in the measuring
solution to equilibrate for 15 min. Then, the flux rate decreased gradually and reached
a steady state within 10 min. The measuring solutions were removed slowly from the
measuring chamber with a pipette, and 3 ml of a fresh solution was slowly added.

We investigated the inhibitory effects of PM transport inhibitors on the ion fluxes in
C. centralis. LT-stressed cells were subjected to 100 µM of sodium orthovanadate (a PM
H+-ATPase inhibitor) or 25 µM of amiloride (a Na+/H+ aniporter inhibitor) for 15 min in
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the measuring solution. Then, measuring solutions containing sodium orthovanadate were
replaced with 3 mL of fresh measuring solution before measurement. Since the amiloride
had no obvious effect on the Nernstian slopes of the H+, Na+ and K+ electrodes, measuring
solutions containing amiloride were not replaced.

The net fluxes of H+, Na+, and K+ were measured noninvasively using an SIET system
(NMT-100, Younger USA LLC, Amherst, MA 01002, USA) [16,44]. The H+, Na+, and K+

microelectrodes were prepared as follows: pre-pulled and silanized glass micropipettes
were first filled with a backfilling solution (H+: 40 mM KH2PO4 and 15 mM NaCl, pH 7.0;
Na+: 250 mM NaCl; K+: 100 mM KCl) to a length of approximately 1.0 cm from the tip,
and the fronts of the micropipettes were filled with 15 µm columns of selective liquid
ion-exchange cocktails (H+ LIX: Fluka 95293, XY-SJ-H, Younger USA; Na+ LIX: Fluka 71178,
XY-SJ-H, Younger USA; K+ LIX: Fluka 60398, XY-SJ-H, Younger USA). An Ag/AgCl wire-
electrode holder (EHB-1, World Precision Instrument, Sarasota, FL, USA) was inserted
into the back of the electrode to make an electrical connection with the electrolyte solution.
A DRIREF-2 (World Precision Instrument, Sarasota, FL, USA) was used as the reference
electrode. Ion-selective electrodes were calibrated prior to the flux measurements as follows:
H+—pH 7.8, 8.2, and 8.7; Na+—0.05 mM, 0.5 mM, and 5 mM; and K+—0.01 mM, 0.1 mM,
and 1.0 mM. The concentration gradients of the target ions were recorded by moving
an ion-selective microelectrode between two positions close to the cell. Image and data
recording, preliminary processing, and the movement of electrodes controlled by a stepper
motor were carried out using the SIET system. Electrodes with a response of more than
50 mV per decade Nernstian slopes for H+, Na+, and K+ were used in our study. The ion
flux was calculated via Fick’s law of diffusion, as follows:

J = −D (dc/dx) (1)

where J is the ion flux in the x direction, dc/dx represents the ion concentration gradient,
and D represents the ion diffusion constant in a particular medium.

5.6. Data Analysis

Three-dimensional ionic fluxes were calculated using JCal V3.2 software, which was
developed by Yue Xu Sci. and Tech. Co., Ltd. (Beijing, China). The positive values in the
figures represent ion efflux and vice versa. The difference of individual treatments within
an experiment was assessed using a one-way ANOVA and Tukey’s HSD post-hoc test. For
all treatments, the homogeneity of variances was verified, and significance was determined
at p < 0.05. All statistical analyses were performed using SPSS version 16.0 (SPSS Inc.,
Chicago, IL, USA).
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