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Abstract: Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predispos-
ing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification
and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through
apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its
structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene
variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated
Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high.
Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe.
Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults.
The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly.
Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors,
mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean
Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a
reduction of 80–90% appears to be required to achieve a significant decrease in major cardiovascular
events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction.
Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small inter-
fering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to
genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so
far demonstrates that monthly subcutaneous administration of a single dose yields optimal results
with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The
Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future
clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of
Lp(a) levels with these novel agents may not be far off.

Keywords: lipoprotein(a); hyperlipoproteinemia(a); cardiovascular disease; antisense oligonucleotides;
pelacarsen; small interfering RNAs; olpasiran

1. Introduction

Lipid metabolism requires a homeostatic balance between synthesis, circulation, stor-
age and degradation of lipids [1]. Derangement in the metabolism of cholesterol and
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triglycerides (TG), which are the dominant lipids of clinical significance, provoke a clinical
condition known as dyslipidemia. As its etymology suggests, dyslipidemia is defined as
abnormal serum lipid levels, constituting one of the most common chronic conditions that
modern healthcare professionals face with regard to proper management [2]. The World
Health Organization (WHO) estimates that dyslipidemia was responsible for 2.6 million
deaths (4.5% of total) and 29.7 million disability-adjusted life years (DALYs) (2.0% of total)
in 2016 on a global scale [3]. Its prevalence is estimated to be 39% worldwide and higher in
developed countries [4]. The 2017 Global Burden of Disease Study (GBD) pointed out that
increased plasma cholesterol levels tend to correlate with socioeconomic development [5].
In the US, the prevalence of dyslipidemia among adults over 20 years old was found to be
45.4% in 2015–2016 [6].

Dyslipidemia is defined as elevated serum concentrations of total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C) and/or TG; a low concentration of high-density
lipoprotein cholesterol (HDL-C); or a combination of these elements, although there are
more lipoproteins involved, namely very-low-density lipoprotein cholesterol (VLDL-C),
intermediate-density lipoprotein cholesterol (IDL-C) and lipoprotein(a) (Lp(a)). LDL-C is
considered the main atherogenic component, but non-HDL-C is a more precise index of
atherogenicity and comprises the entirety of atherogenic lipoproteins, namely VLDL-C;
IDL-C remnants; and Lp(a), the protagonist of the present review article [2]. Epidemiologic
studies have established the causative link between atherosclerotic cardiovascular disease
(ASCVD) risk and elevated LDL-C levels and low HDL-C levels. In addition, numerous epi-
demiologic studies (for instance, the ARIC study [7]), Mendelian randomization studies and
randomized controlled trials (RCTs) have been taken fully into account in the development
of firm, evidence-based guidelines [8–10]. Moreover, it is noteworthy that the literature
presents dyslipidemia as one of the pathophysiological factors linking insulin resistance
(IR) with cardiovascular disease (CVD) [11]. Remarkably, CVD is the principal cause of
death worldwide, with a staggering 17.9 million losses in 2019 alone and an estimated loss
of 22.2 million lives by 2030 [6].

The prevailing guidelines for classification of CVD risk incorporate the primary estab-
lished risk factors associated with CVD, including age, plasma apo-B-containing lipopro-
teins (primarily LDL-C), hypertension, cigarette smoking and diabetes mellitus. These
guidelines also consider risk predictors, factors that can modify risk, clinical conditions
that might elevate the susceptibility to CVD and, most importantly, the presence or absence
of established CVD. Utilizing these criteria, individuals are categorized as having low,
moderate, high or very high risk, which subsequently guides the appropriate level of
medical intervention [8,9]. In the present review article, Lp(a) is the main subject of interest.

Lipoprotein(a) is strongly associated with CVD [12–15]. A plethora of studies demon-
strate that Lp(a) is closely linked to coronary heart disease (CHD) [16], peripheral artery disease
(PAD) [17], stroke [18], cardiac valve calcification [19–23] and abdominal aortic aneurysm [24].
Lp(a) is synthesized in hepatocytes, and its structure closely resembles that of LDL-C. It
consists of apolipoprotein B100 (ApoB-100) encircling a lipid core of cholesterol esters (CEs)
and an apolipoprotein(a) [Apo(a)], the latter being covalently connected to the ApoB-100
molecule via a single disulfide bond. Apo(a) is the differentiator between Lp(a) and the other
lipoproteins, aids in Lp(a) measurement and shares homologous structures with plasminogen
(named kringles (K). Plasminogen has five different kringle domains (KI-KV), whereas the
LPA gene, which encodes the Apo(a) protein, is characterized by domains KIV and KV, in-
cluding 10 types of KIV domains: one to forty copies of KIV2 and single copies of KIV1 and
KIV3–10. Proatherogenic and proinflammatory oxidized phospholipids circulating in plasma
bind on KIV10, along with their addition in the lipid phase of the particle, which may partly
be responsible. Other kringle types promote certain interactions with foam cells that result
in local inflammatory response and further formation of atherosclerotic plaque [12,25,26].
The structural similarity of Lp(a) with plasminogen and tissue plasminogen activator (t-PA)
promotes the inhibition of fibrinolysis, influencing the risk for development of ASCVD [27].
Plasma levels of Lp(a) are predominantly genetically predetermined (>90%) rather than af-
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fected by lifestyle, and the size of the apo(a) isoform, resulting from the number of KIV2
copies, is crucially involved. As a general rule, smaller LPA gene variants encode smaller
apo(a) isoforms in greater quantity, as opposed to larger gene variants. The easier secretion of
smaller isoforms may directly elevate the Lp(a) plasma concentration, leading to increased
CVD risk [25]; in fact, Mendelian randomization studies provide evidence that smaller iso-
forms and high Lp(a) plasma levels constitute independent causal risk factors for CHD [28].
Overall, Lp(a) is associated with practically every step in the pathogenesis of atherosclerosis
and has thrombogenic properties. On the other hand, evidence demonstrates hepatic and
renal involvement in the catabolism of Lp(a) [25].

The LPA gene polymorphisms generate highly variable levels of circulating Lp(a)
among the population, ranging from <1 mg/dL to >1000 mg/dL [29]. In a recent large
study analyzing over 530,000 patients across the US, 35% had Lp(a) >30 mg/dL, and 24%
had Lp(a) > 50 mg/dL. These two values represent the upper thresholds for normal Lp(a)
levels in the US and Europe, respectively [30]. The incidence of Lp(a) levels > 30 mg/dL
is estimated to be between 7% and 26% in the European population [31]. The European
Atherosclerosis Society (EAS) 2022 Consensus Statement for Lipoprotein(a) recommends
measuring Lp(a) at least once a lifetime in adults in order to identify those with elevated car-
diovascular risk. Screening is suggested for young people with high Lp(a) and no other risk
factors, those with a history of ischemic stroke and those with a family history of premature
ASCVD. Continuous testing is recommended for cases of familial hypercholesterolemia
and for individuals with a family history of very high Lp(a) levels. In general, situations
such as a family history of premature ASCVD in the absence of prominent, typical risk
factors, as well as instances of recurrent CVD events despite optimal management, are
indicative of the need for Lp(a) measurement. This measurement can potentially enhance
the prediction and improve the classification of CVD risk. Elevated plasma Lp(a) levels
further suggest a potential requirement for more aggressive management of the modifiable
CVD risk factors. Nevertheless, Lp(a) measurement requires better standardization and
harmonization [32,33].

Considering the fact that elevated levels of lipoprotein(a) or hyperlipoproteinemia(a)
represent an independent causal risk factor for CVD strongly influenced by genetics, it is
crucial to explore pharmacological approaches for to reduce Lp(a). Several agents have
been previously suggested and utilized to address elevated Lp(a) but with limited clinical
efficacy. In this narrative review article, we provide an overview of those agents and
primarily concentrate on novel pharmacological agents currently undergoing preclinical
and clinical trials that specifically target Lp(a).

2. Lipoprotein(a): How Did We Attempt to Manage Its High Levels Hitherto?
2.1. Niacin

Niacin (or vitamin B3) has been acknowledged since the 1950s for its potential an-
tidyslipidemic properties. A recommended dosage range of 1–3 gr of nicotinic acid per
day has been used for the management of dyslipidemia when combined with statins [34].
Concerning Lp(a), niacin’s suggested mechanism of action includes downregulation of LPA
promoter activity and a reduction in the synthesis of apoB-100 in Lp(a) [35]. A meta-analysis
of 14 RCTs involving 9000 patients reported that extended-release niacin (ERN) curtailed
lipoprotein(a) levels by 23%, although not in a dose-dependent manner [36]. Furthermore,
when combined with statins, niacin was found to substantially reduce carotid intima-media
thickness (CIMT) compared to high-intensity statins alone, statins with ezetimibe, and
moderate/low-intensity statins, with a mean relative rank of 1.7 [37].

Data emerging in the last decade have raised concerns about the efficacy of niacin
as an effective pharmacological agent in reducing CVD risk. A recent meta-analysis and
systematic review of 119 clinical trials suggests that although ERN is approved by the
Food and Drug Administration (FDA) as a monotherapy for dyslipidemia, its indications
are based on findings from older trials and may not align with contemporary and more
efficient patient management strategies. Additionally, the occurrence of adverse events
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limits its widespread use [38]. Moderate-to-high-quality evidence from a Cochrane review
that included 23 RCTs does not suggest a significant improvement in cardiovascular events
or mortality with niacin, indicating that niacin should not be considered a preventive
pharmacological option for CVD [39].

The Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High
Triglycerides: Impact on Global Health Outcomes (AIM-HIGH) trial, which investigated
the efficacy of niacin alone or with simvastatin compared to placebo, was discontinued due
to a lack of evidence demonstrating efficacy [40]. A substudy based on this trial concluded
that niacin does not modify CVD risk associated with elevated Lp(a) levels [41]. Another
extensive randomized, placebo-controlled trial, the Heart Protection Study 2-Treatment of
HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial, assessed the efficacy
of niacin/laropiprant in over 25,500 participants at high risk for CVD events who were
already on simvastatin with or without ezetimibe. The results of this trial did not show
any benefit of adding niacin to the standardized cholesterol-lowering regimen [42]. Niacin
administration also induced dermatological, gastrointestinal and musculoskeletal adverse
events, with a significant increase in the risk of myopathy and alanine transferase (ALT)
levels, ultimately leading to the discontinuation of niacin therapy [43,44].

The effectiveness of ERN appears to be influenced by various LPA alleles, although
the evidence is controversial. Another substudy of the HPS2-THRIVE trial concluded that
niacin led to an average reduction of 30% in Lp(a) levels, but the results varied significantly
based on plasma levels of Lp(a) and the size of the apo(a) isoform. The largest isoform
sizes (corresponding to lower Lp(a) levels) showed a reduction of 50% in percentage and
4 nmol/L in absolute terms, whereas the smallest isoform sizes (corresponding to higher
Lp(a) levels) demonstrated a reduction of 16% and 30 nmol/L, respectively [45]. On the
contrary, the AIM-HIGH trial showed a greater reduction in Lp(a) levels among individuals
with higher baseline Lp(a) levels [38], and another separate clinical trial demonstrated an
average Lp(a) reduction of 28% in male subjects with low-molecular-weight (LMW) apo(a)
isoforms, with no significant effects observed in high-molecular-weight isoforms [46].

A recent case report involving individuals with Lp(a) levels exceeding 300 nmol/L
demonstrated a 63% reduction in Lp(a) with niacin treatment compared to a 3.9% reduction
with aggressive statin therapy. Genetic tests were conducted, revealing a specific variant
near the LPA promoter gene that seemed to enhance the effectiveness of niacin treatment,
highlighting the importance of precision medicine in niacin therapy [47]. More recently,
the use of novel niacin receptor agonists has been proposed as a promising strategy for the
treatment of dyslipidemia, including hyperlipoproteinemia(a) [48].

2.2. Statins

Statins constitute a fundamental therapeutic pharmacological class of agents for
the management of dyslipidemia. They inhibit 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG-CoA) reductase and possess additional anti-inflammatory and immunotropic
activities [49]. Over the past four decades, research has validated their efficacy in the
reduction of LDL-C, which is an independent risk factor for atherogenesis and ASCVD.
Their safety profile allows for their administration in numerous candidates for both pri-
mary and secondary prevention [50]. Statin treatment effectively reduces total TC and TG
levels and increases HDL-C levels [51]. Furthermore, statin therapy safely decreases the
5-year incidence of major cardiovascular events [52]. As a matter of fact, the US Preventive
Services Task Force (USPSTF) recently recommended the use of statins for individuals aged
40–75 years with 10% or greater 10-year risk for CVD and at least one CVD risk factor [53].

Elevated Lp(a) levels have been recognized as an ASCVD risk factor, warranting the
initiation or intensification of statin therapy [54]. They remain a causal risk factor even when
LDL-C levels are well controlled [55]. However, a study demonstrated that lowering LDL-C
levels below 2.5 mmol/L (45 mg/dL) does not significantly reduce the Lp(a)-attributed risk
for CVD in a primary prevention setting [56]. A recent riveting study based on 445,744 partici-
pants proposed practical clinical guidance that quantitively estimates the appropriate LDL-C
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reduction to overcome the increased risk for ASCVD associated with hyperlipoproteinemia(a)
stratified by age, Lp(a) level and hazard ratio for CVD [57].

A meta-analysis of seven statin trials involving approximately 30,000 patients revealed
that elevated lipoprotein(a) levels constitute an independent risk factor for CVD, even
for patients on statin therapy [58]. However, evidence from a meta-analysis suggests
that statins do not improve Lp(a) plasma levels or reduce the CVD risk related to hy-
perlipoproteinemia(a) [59]. In fact, there is evidence indicating that statins may actually
increase Lp(a) levels by roughly 10–20% [26,60]. Interestingly, there is evidence indicating
that this statin-associated increase in Lp(a) levels is observed exclusively in patients with
low-molecular-weight (LMW) apo(a) isoforms [61].

Notwithstanding, statins remain essential for the treatment of elevated serum LDL-C
levels, which are modifiable. The main rationale for the use of statins in hyperlipoproteine-
mia(a) is their ability to reduce the LDL-dependent portion of the risk for CVD in patients
that have an overall higher CVD risk due to increased Lp(a) levels [26].

2.3. Ezetimibe

Ezetimibe is a standard lipid-lowering agent used to manage elevated LDL-C levels in
patients with dyslipidemia. It acts by binding to the intestinal transporter, Niemann–Pick
C1 Like 1 (NPC1L1) protein, thus inhibiting intestinal cholesterol absorption. This agent is
capable of reducing plasma LDL-C levels by up to 20% when administered as a monotherapy.
Its effect on Lp(a) has remained undefined until a recent systematic review and meta-analysis
of seven RCTs involving 2337 patients was conducted. The results revealed that a daily dosage
of 10 mg ezetimibe as a monotherapy for 12 weeks led to a slight reduction in plasma Lp(a)
levels by 7.06% compared to a placebo (−7.06% [95% CI−11.95 to−2.18]; p = 0.005). However,
this reduction, despite being statistically significant, is very minor and does not appear to bear
any clinical significance [62].

2.4. Aspirin

Aspirin permanently inactivates the cyclo-oxygenase activity of prostaglandin (PGH)
synthase, with pleiotropic effects in reducing atherosclerotic complications and colorectal
cancer, while it potentially increases the risk of spontaneous bleeding [63,64]. However, the
net benefit of aspirin in primary prevention is small and, in some cases (adults 60 years or
older or at an increased risk of bleeding), the use of aspirin may even be harmful [65–67].

Earlier findings regarding the efficacy of aspirin indicated that it may lower plasma
Lp(a) levels to approximately 80% of the baseline values when the baseline Lp(a) levels
are >30 mg/dL. This reduction exceeds the decrease observed in individuals with lower
baseline Lp(a) levels and suggests a favorable downregulation of LPA genes with a higher
rate of transcription [68].

In the Women’s Health Study (WHS), 25,000 initially healthy participants who were
either carriers or non-carriers of a specific LPA allele variant predisposing to hyperlipopro-
teinemia(a) and increased risk for CVD were randomized to receive low-dose aspirin or
placebo. After a 9.9-year follow-up, the results indicated that carriers had double the risk for
major adverse cardiovascular events (MACE), although this risk significantly declined with
aspirin (RR reduction: 56%; p = 0.033). In comparison, non-carriers did not benefit from
aspirin (RR reduction: 9%; p = 0.30). The observed benefit may stem from the interaction of
aspirin with the apo(a) structure of this specific LPA allele variant [69].

Moreover, a turbidimetric assay assessed the WHS, along with two other cohort
studies, and concluded that women with serum Lp(a) levels > 50 mg/dL and total choles-
terol > 200 mg/dL were at an increased risk for CVD, although Lp(a) provided minimal
only improvement in the prediction of cardiovascular risk [70]. In a month-long study
involving 25 patients with ischemic stroke, daily administration of 150 mg of aspirin caused
a 55.63% decline in serum Lp(a) levels from baseline when baseline Lp(a) levels were
>25 mg/dL, as compared to a 26.63% reduction from baseline when baseline Lp(a) levels
were <25 mg/dL [71]. In a case report, a 34-year-old male patient with very high serum
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Lp(a) levels of 212 mg/dL suffered an ischemic stroke attributed to severe carotid artery
stenosis and developed post-carotid endarterectomy thrombosis. Aspirin at a dose of
325 mg reduced Lp(a) levels by 15%, whereas atorvastatin showed no improvement [72].

Finally, a recent study analyzed 12,815 genotyped participants ≥ 70 years of age of Euro-
pean ancestry and without prior CVD events enrolled in the ASPREE (ASPirin in Reducing
Events in the Elderly) study, who were randomized to receive 100 mg aspirin daily or placebo.
After a median follow-up of 4.7 years, the occurrence of MACE was reduced by 1.7 events
per 1000 person years in all subjects. However, in the rs3798220-C and high LPA genomic
risk score subgroups, aspirin decreased MACE by 11.4 and 3.3 events per 1000 person years,
respectively, without an increased risk of clinically significant bleeding [73].

Overall, aspirin can be characterized as moderately beneficial, being a potential ther-
apeutic option that may mostly assist in cases of genotypes that predispose to increased
CVD risk.

2.5. PCSK9 Inhibitors

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein produced by hepa-
tocytes that binds to specific regions of LDL receptors (LDLR), forming a complex. This
complex is then internalized, leading to lysosomal degradation of the LDLR and reducing
the clearance of LDL-C from the circulation.

PCSK9 inhibitors such as evolocumab and alirocumab are monoclonal antibodies that
inhibit PCSK-9 activity, thus reducing circulating LDL-C levels. These inhibitors represent a
potent LDL-C-lowering option. The literature demonstrates that these pharmacological agents
can reduce serum LDL-C levels by up to 60% and also decrease lipoprotein(a) levels, thereby
reducing the risk of MACE, without any significant safety and tolerability concerns [74,75].

PCSK9 possibly interacts with Lp(a) molecules via apoB-100, and the mechanism of
Lp(a) reduction through PCSK9 inhibitors likely involves both Lp(a) synthesis and the
clearance rate [76]. In statin-treated patients receiving alirocumab, this reduction may
result from upregulation of the hepatic LDLR and/or decreased competition between Lp(a)
and LDL particles for the LDLR [77]. Lp(a) primarily binds to mature PCSK9 rather than
furin-cleaved PCSK9, and evolocumab increases the mature form of PCSK-9 while halting
the increase in plasma Lp(a) after acute myocardial infarction (MI) [78]. In three cohort
studies involving a total of 103,083 participants, a specific loss-of-function mutation in
PCSK9 was associated with lower Lp(a) and LDL-C levels, as well as with a reduced risk of
aortic valve stenosis and MI [79].

In the FOURIER trial, evolocumab reduced Lp(a) levels by a median of 26.9% [80]. In
the ODYSSEY OUTCOMES trial, alirocumab decreased Lp(a) by a median of 5 mg/dL,
and every 5 mg/dL reduction in Lp(a) was associated with a 2.5% decrease in CVD
risk [81]. Another analysis of the same trial suggested that the reduction in Lp(a) resulting
from alirocumab may decrease the risk of PAD and potentially lower the risk of venous
thromboembolism (VTE) [82]. The benefit was generally more pronounced among patients
with higher baseline Lp(a) levels.

Both a clinical trial and a meta-analysis of 10 RCTs from the ODYSSEY program indi-
cated discordance between LDL-C and Lp(a) reduction, suggesting that evolocumab and
alirocumab lower Lp(a) through pathways that do not solely involve the LDLR clearance
pathway [83,84]. Numerous clinical trials, RCTs and meta-analyses consistently conclude
that evolocumab and alirocumab are valuable tools for the management of hypercholes-
terolemia in general and hyperlipoproteinemia(a) specifically. The absolute reduction in
Lp(a) levels is greater when baseline Lp(a) levels are elevated (although the specific baseline
levels may vary), and the risk of MACE is reduced, along with Lp(a) reduction induced by
PCSK9 inhibitors [85–92].

2.6. Inclisiran

Inclisiran is a small interfering RNA (siRNA) that acts by attenuating the hepatic
synthesis of PCSK9. A more detailed description of the mechanism of action of siRNAs
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is provided later on in this review. Briefly, siRNAs utilize nucleotide base pairing com-
plementarity to bind and inhibit the translation of specific messenger RNA (mRNA) gene
sequences, thereby silencing gene expression. In the case of inclisiran, the inhibition
of PCSK9 production primarily leads to an increase in LDLR on the hepatocellular cell
membrane and subsequently enhanced clearance of LDL-C [93].

The reduction in Lp(a) is a collateral beneficial effect of inclisiran, as demonstrated
in several ORION trials. The ORION-1 trial reported reductions of 15% to 26% in Lp(a)
levels. In the ORION-9, -10 and -11 trials, inclisiran decreased Lp(a) levels by 13.5%, 21.9%
and 18.6% from baseline to day 540, respectively. Notably, a prespecified analysis of the
ORION-11 trial demonstrated a significant reduction in Lp(a) levels by 28.5% at day 540.
The placebo groups in these trials showed negligible reductions or even a slight increase in
Lp(a) levels [94].

Inclisiran was initially approved in December 2020 by the European Medicines Agent
(EMA) for use in the EU, intended for adult patients with primary hypercholesterolemia
(both heterozygous familial and non-familial) or mixed dyslipidemia [95]. Later on, in
December 2021, the FDA approved inclisiran for adults with ASCVD or heterozygous FH
who require further reduction in LDL-C [96]. More recently, in July 2023, the FDA granted
an extended indication for inclisiran, allowing its use for patients at increased risk of CVD
and presenting with elevated LDL-C levels and comorbidities, such as hypertension and
DM, even without a prior cardiovascular event [97]. In all cases, inclisiran is intended to
complement proper dietary modifications and statin therapy [95–98]. The recommended
initial dosage is 284 mg administered subcutaneously repeated after 3 months, followed
by subsequent biannual administrations (every 6 months) for maintenance. This dosing
schedule promotes compliance and leads to improved treatment adherence [93,98,99].
An analysis of patient-level data from the ORION-9, -10 and -11 trials suggests that the
inclisiran regimen described above results in a reduction in the composite end point of
MACE over an 18-month period [100].

Two ongoing clinical trials are awaited to evaluate the clinical outcomes of inclisiran regard-
ing MACE reduction. The first one is ORION-4 (ClinicalTrials.gov Identifier: NCT03705234),
which is a phase 3, double-blind, randomized, placebo-controlled study enrolling 15,000 partici-
pants aged 55 years or older with pre-existing ASCVD. The intervention includes the adminis-
tration of 300 mg inclisiran sodium or placebo on the day of randomization, at 3 months, then
every 6 months. The estimated primary completion date is July 2026, and the estimated study
completion date is December 2049 [93,101]. The other ongoing trial is VICTORION-2 PREVENT
(ClinicalTrials.gov Identifier: NCT05030428) conducted by Novartis Pharmaceuticals. This
is a phase 3, double-blind, randomized, placebo-controlled trial enrolling 16,500 participants
aged 40 years or older with established CVD. The intervention includes the administration
of 300 mg inclisiran sodium or placebo on the day of randomization, at 3 months and every
6 months. The study started in 2021, with an estimated primary and study completion date of
October 2027 [102].

2.7. Other Interventions

Mipomersen is a well-studied second-generation antisense oligonucleotide (ASO) that
inhibits the synthesis of apoB-10- and apoB-100-containing lipoproteins, including lipopro-
tein(a). It acts on hepatocytes, which produce apoB-100, and is therefore found in high
concentrations in the liver [103]. RCTs and meta-analyses have shown that mipomersen is
effective in improving the lipid profile, specifically lowering plasma Lp(a) levels, with a me-
dian decline of 24.7%. Original studies reported Lp(a) reductions of 21% [104], 22.7% [105],
25.87% [106], 26.4% [107] and 27.7% [108]. Nandakumar et al. observed a 27% enhancement
in the fractional catabolic rate of Lp(a) [104], potentially suggesting a favorable impact on
CVD risk. However, notable adverse effects, such as injection-site reactions, flu-like symp-
toms and hepatic steatosis [104–106,108], have led to a higher discontinuation rate [97,100].
Mipomersen was approved by the FDA in January 2013 as an orphan pharmacological
agent for homozygous familial hypercholesterolemia (HoFH), but it carries a black-box
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warning for hepatotoxicity [109]. In contrast, the European Medicines Agency (EMA)
rejected the drug in 2012 and 2013 due to concerns regarding its side effects [110,111].

Estrogens have long been known for their protective effects regarding CVD. Epidemi-
ological findings suggest that premenopausal females are more protected against CVD
events as compared to same-age men. E2, or 17-beta-estradiol, is the most common and
active form of estrogen, exerting its activity on DNA regulation via estrogen receptors
(ER), namely estrogen receptor alpha (ERα), estrogen receptor beta (ERβ) and G protein-
coupled receptor GPR30 (G protein-coupled estrogen receptor 1 or GPER). Their complex
has been confirmed to have a positive impact on endothelial function; vascular tone; and
atheroprotective properties, including, among others, a favorable lipid profile [112].

Women with premature menopause present a greater risk for CVD, and hormone
replacement therapy (HRT) does not alleviate CVD risk in older menopausal women
unless started within 10 years after menopause [113]. A recent meta-analysis of 17 studies
indicated that a shorter reproductive span is associated with a 31% increased risk of stroke
and an elevated total risk of CVD [114].

On average, middle-aged women are classified as an intermediate risk category ac-
cording to the European SCORE charts, with a SCORE ≥ 1% and <5% at 10 years [115].
Oral estrogen administration in low doses significantly decreases LDL-C and Lp(a) levels
and increases HDL-C in postmenopausal women. It is more effective than its transdermal
form or its combination with progesterone [116,117].

The association of gender-affirming hormone therapy (GAHT) with possible CVD risk
modification in transgender women is also intriguing, and relevant results are awaited [118].
HRT and tibolone, a synthetic steroid used for the management of postmenopausal symp-
toms, seem to lower Lp(a) levels in a heterogeneous manner, ranging from 19.9% to 44%
and from 26% to 48%, respectively, with practically no difference between the two op-
tions and no differentiation attributed to estrogen dose, type or coadministration with
progesterone [119,120].

Additionally, a meta-analysis of 10 clinical trials including 2049 women demonstrated
a reduction in Lp(a) levels by an average of 5.92% attributed to antiestrogen therapy [121].
Lastly, a systematic review suggested a disputable decrease in coronary events attributed
to HRT-associated Lp(a) reduction [122].

Overall, evidence reported to date indicates that HRT may be useful for the alleviation
of postmenopausal symptoms in certain women, who may further benefit in the case of
concurrent hyperlipoproteinemia(a). However, HRT is not recommended as a preventive
option to reduce risk of CVD [26].

Cholesteryl ester transfer protein (CETP) inhibitors (dalcetrapib, anacetrapib, evacetrapib
or TA-8995) are pharmacological agents that increase plasma HDL-C levels. Their mecha-
nism of action involves intervening in the interchange of cholesteryl esters and TG between
HDL and LDL lipoproteins [123].

Anacetrapib has been shown to reduce Lp(a) by 34.1%, which is attributed to a decline
of 41% in the apo(a) production rate [124], while a meta-analysis also confirmed the efficacy
of anacetrapib in reducing Lp(a) by a weighted mean difference (WMD) of 13.35% [125]. In
a phase 3 RCT, anacetrapib reduced Lp(a) by 43.1% compared to placebo [126]. Anacetrapib
has also been shown to increase HDL-C and decrease non-HDL-C, with relative differences
of +104% and −18%, respectively [127].

In an ad hoc analysis of the dal-OUTCOMES trial, dalcetrapib was found to mod-
estly but significantly reduce Lp(a) from baseline compared to placebo (−1.7 mg/dL vs.
−0.6 mg/dL, p < 0.001). [128]. Torcetrapib, another CETP inhibitor, was found to reduce
plasma Lp(a) levels by 11.1% [129]. Regarding their effect on cardiovascular outcomes, a
meta-analysis of 11 RCTs indicated that CETP inhibitors are not associated with an increase
in major adverse cardiovascular events (MACE) (pooled RR: 0.97; 95% CI: 0.91–1.04), with
a decreasing, non-statistically significant trend for non-fatal MI (RR: 0.93; 95% CI: 0.87–1.00)
and cardiovascular mortality (RR: 0.92; 95% CI: 0.83–1.01) [130]. However, a more recent
study that included participants in 2 RCTs of a CETP inhibitor on a background of atorvas-
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tatin therapy suggested that evacetrapib and torcetrapib may increase the risk of CHD due
to their potential to augment dysfunctional HDL particles. [131].

Thus, given the varying effects of CETP inhibitors on CVD outcomes, ranging from harmful
to only marginally favorable [132], CETP inhibitors have not entered into clinical practice.

It is worth highlighting that a recent Mendelian randomization study suggests that
achieving a significant reduction of 80% to 90% in Lp(a) levels is necessary to observe a
subsequent 15% to 20% decline in CHD. This is in contrast to the reductions of 20% to 35%
achieved thus far with the currently available lipid-lowering drugs [133]. It is important to
note that the FDA has not approved any pharmacological interventions to date, including
those mentioned above, to lower Lp(a) levels, except for lipoprotein apheresis, which has
been shown to reduce Lp(a) by 63% post apheresis as compared to pre-apheresis levels [134].
Further analysis of lipoprotein apheresis exceeds the scope of this narrative review.

3. Novel RNA Targeting Agents in the Pipeline for the Management
of Hyperlipoproteinemia(a)

Since no clinically significant results have been attained with the use of the aforemen-
tioned Lp(a)-lowering agents, pharmaceutical companies have resorted to implementing
alternative novel technologies in an attempt to reduce lipoprotein(a) to the greatest feasi-
ble extent possible, considering its atherosclerosis-related properties. In particular, four
novel agents are currently under intensive study: pelacarsen by Novartis/Ionis, olpasiran
by Amgen, LY3819469 by Eli Lilly and an emerging agent known as SLN360 by Silence
Therapeutics. These agents aim to reduce plasma Lp(a) levels through genetic silencing at
a post-transcriptional level [135].

3.1. Antisense Oligonucleotides—Pelacarsen

Antisense oligonucleotides (ASOs) are synthetic single-strand oligonucleotides up to
30 bases in length. They target and bind to specific RNAs, hindering their translation through
blockage, degradation or, more commonly, cleavage via the ribonuclease H (RNase H) mecha-
nism, following the rule of complementarity. Rapid degradation of ASOs can be circumvented
by modifying the phosphate groups, resulting in second-generation ASOs [135,136].

Pelacarsen or AKCEA-Apo(a)-LRx, formerly known as ISIS 681257 or IONIS-Apo(a)-LRx,
is an intriguing second-generation ASO. It features a trifurcated N-acetylgalactosamine
(GalNAc) molecule chemically attached to it. The complex is rapidly taken up by the
asialoglycoprotein receptor (ASGPR), which is abundant in hepatocytes, the same cells
where Lp(a) production occurs. This uptake ultimately hinders the translation of LPA mes-
senger RNA into apo(a) [135,136]. This liver selectivity yields 30 times higher efficacy than
pelacarsen’s predecessor molecule without a covalent GalNAc, called IONIS-Apo(a)-Rx,
achieving the same or enhanced results with a 10 times lower dose and improved toler-
ability [135,137]. Once the ASGPR–pelacarsen complex is taken up into vesicles by the
hepatocyte, separation of ASGPR from Gal-NAc occurs. The former is either recycled or
degraded, whereas the latter undergoes degradation in lysosomes [138].

Trials have demonstrated the efficacy of ASOs in markedly reducing plasma Lp(a) levels.
A phase 2 trial and a phase 1/2a trial compared IONIS-Apo(a)-Rx and IONIS-Apo(a)-LRx
(pelacarsen), respectively, with placebo. In the phase 1/2a trial, 58 participants with Lp(a)
levels of 75 nmol/L (approximately 35 mg/dL, converted by dividing the value in nmol/L
by 2.15; r2 = 0.998 for linearity [139]) or higher were randomly assigned to groups receiving
multiple ascending doses of pelacarsen (10, 20 or 40 mg) or placebo. On day 36, pelacarsen had
effectively reduced plasma Lp(a) levels in a dose-dependent manner, with mean reductions
ranging from 66% to 92% (p = 0.0007 for all vs. placebo). Overall, pelacarsen demonstrated
an excellent safety profile with, no injection-site adverse events reported, in comparison to
IONIS-Apo(a)-Rx (12% of participants experienced injection-site reactions) [137].

In a phase 2 double-blind dose-ranging RCT, 286 patients with established CVD and
elevated Lp(a) levels of at least 60 mg/dL were recruited and assigned to receive 20, 40
or 60 mg of pelacarsen every 4 weeks; 20 mg ever 2 weeks; 20 mg every week; or placebo
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subcutaneously for 6 to 12 months. Pelacarsen caused a dose-dependent reduction in
plasma Lp(a) levels, with mean decreases ranging from 35% to 80% depending on the dose,
compared to a 6% reduction in the placebo group (p values ranged from 0.003 to <0.001).
Injection-site reactions were noted in 27% of the pelacarsen recipients, with erythema
being the most common reaction. No significant differences were observed between the
pelacarsen and placebo groups regarding adverse events (90% versus 87%, respectively),
although 10% of the pelacarsen group reported serious adverse events. Adverse events
included myalgia, influenza-like symptoms and urinary tract infections. There were no
significant differences between pelacarsen and placebo regarding platelet count, hepatic and
renal function or influenza-like symptoms. Adverse events were not dose-dependent [140].

A study based on the previous trial provided further valuable findings. Researchers
described a novel method for the direct measurement of Lp(a) cholesterol [Lp(a)-C] rather
than using the Dahlén formula (LDL-Ccorr), as LDL-C measurements, in general, include
LDL-C and Lp(a)-C. At the primary analysis time point, pelacarsen demonstrated a dose-
dependent reduction in Lp(a)-C (29% to 67%) as compared to a 2% reduction in the placebo
group. The statistically significant changes aligned with the previously measured Lp(a)
molar concentration. LDL-Ccorr appeared to be nearly 13–16 mg/dL lower than routinely
measured LDL-C in hyperlipoproteinemia(a), with the rest being undetected Lp(a)-C,
raising concerns regarding the main etiological factor of MACE in such cases. As mentioned
above, standard LDL-C measurement includes Lp(a)-C, suggesting an association between
lower levels of LDL-C and Lp(a) reduction. The authors proposed this alternative laboratory
approach to improve clinical management and decision making. Other Lp(a) components,
such as oxidized phospholipids covalently bound with apoB, were also reduced [141].

In a randomized, double-blind, placebo-controlled trial, 29 healthy Japanese partici-
pants were recruited and treated with single doses (20, 40 or 80 mg) and multiple doses
of pelacarsen (80 mg every 4 weeks for 4 doses). In the single-dose groups, the mean
reductions in Lp(a) compared to placebo were −55.4% (p = 0.0008), −58.9% (p = 0.0003) and
−73.7% (p < 0.0001), respectively. In the multiple-dose group, the mean decline varied from
−55.8% to −106.2% on different days (mean reduction compared to placebo on days 29, 85,
113, 176 and 204 was−84.0% (p = 0.0003),−106.2% (p < 0.0001),−70.0% (p < 0.0001),−80.0%
(p = 0.0104) and −55.8% (p = 0.0707), respectively). The peak mean plasma concentrations
occurred 4 h after administration, and no significant adverse events were observed [142].

Recently, a phase 1 parallel-group study was completed, focusing on assessing the
pharmacokinetics of single-dose pelacarsen in eight subjects with mild hepatic impairment
compared to eight healthy participants matched by age, gender and body weight. The
results are eagerly awaited [143].

A crucial ongoing phase 3 randomized clinical trial is the Lp(a) HORIZON trial, which
started in December 2019 and is estimated to be completed in May 2025. The trial includes
8323 participants who meet specific inclusion criteria, such as having Lp(a)≥ 70 mg/dL and
optimal management of LDL-C with other accompanying CVD factors. The intervention
involves monthly subcutaneous administration of 80 mg pelacarsen or placebo for 4 to
5 years. This trial aims to determine whether reducing Lp(a) levels has a clinical benefit in
terms of reducing MACE [144].

Another ongoing phase 3 trial recruiting participants in Germany since August 2019
and estimated to be completed in July 2024 aims to evaluate the impact of monthly ad-
ministration of 80 mg pelacarsen on the reduction in the lipoprotein apheresis rate in
60 participants with hyperlipoproteinemia(a) and established CVD. All participants must
have Lp(a) > 60 mg/dL and have been undergoing weekly lipoprotein apheresis for at least
one year prior to the intervention [145].

Last but not least, a double-blind, placebo-controlled RCT is scheduled to start in
September 2023, with an estimated completion date in 2028. The trial aims to recruit
approximately 502 participants aged 50 and above with Lp(a) levels ≥ 125 nmol/L (approx-
imately 58 mg/dL). The purpose of this trial is to assess the efficacy and safety of monthly
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subcutaneous administration of 80 mg pelacarsen in relation to the calcification process of
aortic valves as compared to placebo [146].

Until now, pelacarsen has been the most extensively studied factor for lowering
Lp(a) among novel interventions, demonstrating remarkable efficacy in reducing plasma
Lp(a) levels with minimal adverse events. Mild injection-site reactions have been the
most commonly reported side effects. The eagerly awaited results of pivotal clinical trials
will provide valuable insights into the effect of Lp(a) reduction on CVD risk and the
potential role of pelacarsen in reducing MACE. These trials aim to establish pelacarsen
as a standard clinical strategy for the management of dyslipidemia and, in particular,
hyperlipoproteinemia(a). It is noteworthy that pelacarsen effectively lowers Lp(a) levels,
regardless of different LPA alleles and isoforms [147].

A summary of the results of the clinical studies pertaining to pelacarsen is shown in
Table 1.

Table 1. Clinical trials pertaining to pelacarsen or IONIS-APO(a)LRx.

Trial Design Intervention Results

[137] Viney et al.
ClinicalTrial.gov

Identifier:
NCT02160899

A randomized,
multicenter,

double-blinded,
placebo-controlled phase

2 trial enrolling
64 participants with

elevated Lp(a)

Patients were stratified in two
cohorts (cohort A: 51 patients
with Lp(a) of 125–437 nmol/L;

cohort B: 13 patients with
Lp(a) ≥ 438 nmol/L) and

received subcutaneous ascending
doses of IONIS-APO(a)Rx or
injections of saline placebo

for 12 weeks

On days 85 and 99:
In cohort A: IONIS-APO(a)Rx reduced

Lp(a) by a mean of 66.8% (SD 20.6,
p < 0.001 vs. pooled placebo);

In cohort B: IONIS-APO(a)Rx reduced
Lp(a) by a mean of 71.6% (SD 13.0,

p < 0.001 vs. pooled placebo);
Reported injection-site reactions in 12%

of subjects in the IONIS-APO(a)Rx group

[137] Viney et al.
ClinicalTrial.gov

Identifier:
NCT02414594

A randomized, blinded,
placebo-controlled phase

1/2a trial enrolling
58 healthy participants

with Lp(a) ≥ 75 nmol/L

Participants were random
assigned to receive:

(i) a single dose of 10–120 mg
IONIS-APO(a)LRx in an

ascending-dose design or placebo
(3:1 ratio); or:

(ii) multiple doses of 10 mg,
20 mg or 40 mg IONIS-APO(a)LRx

in an ascending-dose design or
placebo (8:2 ratio)

Single-dose groups: dose-dependent
reductions in mean Lp(a) levels in the
IONIS-APO(a)-LRx group on day 30;

Multidose groups: mean reductions in
Lp(a) of 66% (SD 21.8) in the 10 mg group,
80% (SD 13.7%) in the 20 mg group and

92% (SD 6.5) in the 40 mg group
(p = 0.0007 for all vs. placebo) on day 36;

No injection-site reactions

[140] Tsimikas et al.
ClinicalTrial.gov

Identifier:
NCT03070782

A randomized,
double-blind,
dose-ranging,

placebo-controlled phase
2 study of

AKCEA-APO(a)-LRx
enrolling 286 patients

with Lp(a)
levels ≥ 150 nmol/L

AKCEA-APO(a)-LRx
administration (20, 40 or 60 mg

every 4 weeks; 20 mg every
2 weeks; or 20 mg every week) or
saline placebo subcutaneously for

6 to 12 months

At month 6:
Mean Lp(a) reductions ranging from 35%
to 80% in a dose-dependent manner vs.

6% reduction with placebo
(p < 0.003 to 0.001);

27% of the intervention group reported
injection-site reactions, mostly erythema;
No difference between intervention and

placebo groups in the incidence of
adverse events

[141] Yeang et al.
Study design based on

the above phase 2B trial
by Tsimikas et al. [140]

Laboratory measurement of Lp(a),
application of a pioneer method

for the direct measurement of
corrected Lp(a) at baseline and
week 13, primary analysis at

week 25/27 and final analysis at
week 69, with LDL-C laboratory
measurements further corrected

At the primary analysis time point:
dose-dependent reduction in Lp(a) (29%

to 67% versus 2% the placebo group);
Corrected LDL-C13–16 mg/dL lower

than routinely measured LDL-C in
hyperlipoproteinemia(a), with the rest

being so far undetected Lp(a)–C



Int. J. Mol. Sci. 2023, 24, 13622 12 of 24

Table 1. Cont.

Trial Design Intervention Results

[142] Karwatowska-
Prokopczuk E

et al.

A randomized,
double-blind,

placebo-controlled trial
enrolling 29 healthy

Japanese participants

Single ascending doses of
pelacarsen (20, 40 or 80 mg) or
multiple doses of pelacarsen

80 mg (monthly for four doses)

Single-dose group: mean Lp(a)
reductions were −55.4% (p = 0.0008),
−58.9% (p = 0.0003) and −73.7%

(p < 0.0001) versus placebo;
Multiple-dose group: the mean decline

varied from −55.8% to −106.2% at
different time checkpoints

[143]
ClinicalTrials.gov

Identifier:
NCT05026996

An open-label,
single-dose,

parallel-group phase 1
study involving

16 patients with mild
liver impairment and
normal liver function

Single subcutaneous injection of
pelacarsen versus placebo

Impact of pelacarsen
on mild hepatic impairment

Study completed; results are awaited

[144]
ClinicalTrials.gov

Identifier:
NCT04023552

An ongoing randomized,
double-blind,

placebo-controlled
multicenter phase 3 trial

enrolling 8323
participants with

Lp(a) ≥ 70 mg/dL and
optimal management of

LDL-C and other
accompanying

CVD factors

Monthly subcutaneous
administration of 80 mg

pelacarsen or placebo
for 4 to 5 years

End point: impact of pelacarsen-induced
Lp(a) reduction on MACE reduction;
Estimated completion date: May 2025

[145]
ClinicalTrials.gov

Identifier:
NCT05305664

A randomized,
double-blind,

placebo-controlled
multicenter phase 3 trial

currently recruiting
60 participants on

weekly lipoprotein
apheresis with

Lp(a) > 60 mg/dL and
CVD risk factors

Monthly subcutaneous
administration of 80 mg

pelacarsen versus placebo

Evaluation of effect of intervention on
lipoprotein apheresis rate;

Estimated completion date: July 2024

[146]
ClinicalTrials.gov

Identifier:
NCT05646381

A randomized
double-blind,

placebo-controlled,
multicenter Trial

including
502 participants

aged ≥ 50 with Lp(a)
levels ≥ 125 nmol/L and
mild or moderate calcific

aortic valve stenosis

Monthly subcutaneous
administration of 80 mg

pelacarsen versus placebo

Assessment of the efficacy and safety of
pelacarsen regarding the aortic

calcification process;
Study start date: September 2023;

Estimated completion date: January 2028

[147] Karwatowska-
Prokopczuk E

et al.

Evidence from four trials
involving pelacarsen in
a total of 455 patients

Data analysis involving the
prevalence of common LPA

isoform alleles and their effect on
the efficacy of pelacaesen

Pelacarsen reduces Lp(a) levels
independently of different LPA alleles

and isoforms

3.2. Small Interfering RNA (siRNA) Molecules—Olpasiran, LY3819469 and SLN360

Small interfering RNA (siRNA) molecules represent the other side of the coin in post-
transcriptional RNA interference. Currently, they are undergoing rigorous investigation
in clinical trials, making them promising agents in the future clinician’s arsenal. siRNAs
typically consist of duplex RNA molecules that are 21–23 nucleotides in length, comprising
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the passenger (sense) strand and the guide (antisense) strand. It is crucial for their length
to be less than 30 nucleotides; otherwise, siRNAs may be recognized as antigens by innate
immune receptors, such as toll-like receptors (TLRs). The duplex RNA interacts with
the RNA-induced silencing complex (RISC), leading to the unwinding and subsequent
degradation of the passenger strand. The guide RNA is then available to bind to the
target mRNA and direct the RISC towards it. The pharmacokinetic and pharmacodynamic
properties of siRNAs can be modified through various alterations, including sugar and
base modifications, phosphorothioate linkages that replace phosphodiester linages and
modifications of the duplex structure [148].

3.3. Olpasiran

Olpasiran, which was developed and studied by Amgen, was previously known as AMB-
890 or ARO-LPA. It is a synthetic siRNA with a GalNAc attached to it, similar to pelacarsen,
and has undergone modifications regarding sugar and phosphate backbone linkages. It is
administered subcutaneously [135]. Olpasiran’s mechanism of action involves inhibiting LPA
mRNA translation, leading to a subsequent reduction in apo(a) production by hepatocytes
and lowering of plasma Lp(a) levels. Preclinical data demonstrate its dose-dependent efficacy
in transgenic mice and cynomolgus monkeys, where a single dose achieved a peak reduction
of 80% in Lp(a) from baseline levels, which lasted for 5 to 8 weeks [149].

In a phase 1 randomized dose-ascending trial involving 79 patients with elevated
Lp(a) levels at enrollment, it was demonstrated that olpasiran at a dose of 9 mg or higher
can reduce Lp(a) concentrations by 71% to 97%, on average, lasting for a mean duration
of 3 to 6 months [149]. Based on the aforementioned trial, another phase 1 randomized
parallel-group study was conducted, involving both healthy Japanese and non-Japanese
subjects (27 in total). The study evaluated the effects of olpasiran at single ascending doses
in Japanese subjects and at a fixed dose of 75 mg in non-Japanese subjects. The findings
of the study assessed the pharmacokinetics of olpasiran and reported a dose-proportional
reduction in Lp(a) levels from baseline, ranging from 56% to 99%. These reductions were
observed as early as day 4 after administration. Importantly, the effect on Lp(a) did not
differ significantly between Japanese and non-Japanese subjects, and no significant adverse
events were reported [150].

A phase 2 clinical trial named Olpasiran trials of Cardiovascular Events And lipopro-
teiN(a) reduction-DOSE finding study [OCEAN(a)-DOSE] randomly assigned 281 patients
with a median Lp(a) concentration of 260.3 nmol/L (121 mg/dL) and established atheroscle-
rotic CVD who were on cholesterol-lowering therapy to receive ascending doses of ol-
pasiran every 12 weeks or placebo. The mean reductions, adjusted for placebo, ranged
from 70% to 101% (p < 0.001 for all comparisons) at the primary end point (week 36) and at
the end of the treatment period (week 48). The most commonly reported adverse event
was injection-site pain [151,152]. The study provided valuable data that can be extrapo-
lated to ascertain the ideal dosage and the effect of olpasiran on MACE. In fact, a phase 3
trial called the OCEAN(a)-DOSE Outcomes Trial is an expansion of the OCEAN(a)-DOSE
study and is currently recruiting. It aims to enroll 6000 participants with Lp(a) concen-
tration ≥ 200 nmol/L and established CVD who will receive olpasiran or placebo. The
objective of this trial is to evaluate the effect of olpasiran in reducing MACE, in particular
CHD death, myocardial infarction or urgent coronary revascularization [153].

A recently completed phase 1 clinical trial for which published results are not yet
available assessed the safety, pharmacokinetics and pharmacodynamics of a single dose of
olpasiran in 25 eligible patients with various degrees of hepatic impairment compared to
placebo. The primary and secondary outcome measures were evaluated on days 29 and 85
after the administration of olpasiran, respectively [154]. Results of another completed phase
1 open-label, single-dose study on olpasiran assessing it safety profile, pharmacokinetics
and pharmacodynamics in 24 Chinese participants with elevated Lp(a) concentration are
eagerly awaited [155], and a currently recruiting phase 1 open-label study will evaluate
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single-dose olpasiran in 32 patients with normal and impaired renal function. The latter
study is estimated to be completed in August 2023 [156].

3.4. SLN360

SLN360 is another siRNA conjugate with a trifurcated GalNAc molecule. Developed
by Silence Therapeutics, this agent targets and inhibits LPA mRNA translation into apo(a)
in hepatocytes [135]. SLN360 robustly reduced LPA mRNA molecules in primary human
hepatocytes and in healthy cynomolgus monkeys, resulting in a serum Lp(a) reduction of over
95% from baseline for at least 9 weeks after dosing, with the peak effect observed on day 21.
The minimally effective dose was found to be 0.3 mg/kg [157]. Additional toxicological
analyses in vitro and in vivo demonstrated sufficient evidence regarding safety [158].

In the first ongoing phase 1 study (APOLLO study) involving 32 healthy participants with
elevated serum Lp(a) levels (more than 150 nmol/L or approximately 70 mg/dL), the safety,
tolerability, pharmacokinetics and pharmacodynamics of SLN360 were assessed. Participants
were randomly assigned to receive single ascending doses of SLN360 (30, 100, 300 and 600 mg)
or placebo, with the primary outcome being the evaluation of safety, tolerability and the effect
on serum Lp(a) levels on day 150. The last follow-up occurred on 29 December 2021. The
reduction in Lp(a) levels reached a peak of 98% with the 600 mg dose of SLN360 (30 mg:
−46% (95% CI: −64 to −40); 100 mg: −86% (95% CI: −92 to −82); 300 mg: −96% (95% CI:
−98 to −89); 600 mg: −98% (95% CI: −98 to −97); placebo: −10% (95% CI: −16 to 1)), and
the reduced levels were maintained until day 150 with adequate safety [159].

It is worth mentioning that a phase 2 randomized placebo-controlled trial was recently
launched, enrolling 160 participants at high risk for ASCVD with serum Lp(a) levels above
125 nmol/L (58 mg/dL). The objective of this study is to investigate the safety profile,
efficacy and tolerability of SLN360. The study began in January 2023 and is estimated to be
completed in June 2024 [160].

3.5. LY3819469

The latest siRNA-targeting apo(a)-encoding mRNA was developed by Eli Lilly, once
again conjugated with GalNAc with proper structural modifications. It is a 2′-o-me,
2′-fluoro and unmodified Dicer siRNA [161]. A phase 1 single-ascending-dose, placebo-
controlled study was completed in November 2022. The purpose of the first part of the
study was to assess the pharmacokinetics, pharmacodynamics, safety and tolerability
profile of LY3819469 in participants with elevated serum Lp(a) levels. The second part of
the study focuses on LY3819469 administration in Japanese patients. No results had been
published at the time of writing this manuscript [162].

An ongoing phase 2 placebo-controlled trial will evaluate the efficacy and safety
of LY3819469 in an estimated 254 participants with elevated serum Lp(a) levels above
175 nmol/L (81 mg/dL) over the course of 20 months. The trial is expected to be finalized
in October 2024 [163].

Last but not least, a new phase 1 study is currently recruiting and being designed
accordingly in order to evaluate the pharmacokinetics, safety and efficacy of LY3819469 in
28 patients with normal and impaired renal function. The study is estimated to last up to
17 weeks [164].

Similarly to any novel pharmacological agent, limitations are raised concerning the
overall clinical efficacy of these novel Lp(a)-targeting agents. While it is acknowledged
that a significant reduction in Lp(a) levels must occur for clinical results to be achieved,
there is no defined cutoff target value, as is the case with LDL-C [165]. Furthermore, the
measurement of Lp(a) levels should be standardized. A clearer understanding of Lp(a)
physiology and metabolism is needed, along with clarification of the complex pathophys-
iological link between Lp(a) and its oxPLs with atherosclerosis and CVD. In addition,
Lp(a) levels vary among ethnicities [166]. Novel agents appear to be extremely efficient
in reducing Lp(a) levels; however, their long-term clinical efficacy in improving cardiac
outcomes will be eventually evaluated by appropriately designed large prospective clinical
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trials. The results of these trials will enhance our knowledge in the field of Lp(a) and
provide the foundation for the establishment of definitive indications for the management
of hyperlipoproteinemia(a) in patients of different ages and ethnicities and with specific
CVD risk factors or other health conditions.

A summary of the results of the clinical studies pertaining to siRNA molecules is
shown in Table 2.

Table 2. Clinical trials pertaining to siRNA molecules.

Olpasiran

Trial Design Intervention Results

[149] Koren et al.
(clinical part of

the study)

A randomized, double-blind,
placebo-controlled,

single-ascending-dose, phase 1 trial
enrolling 79 patients with elevated

Lp(a) levels

Single dose of
olpasiran versus

placebo

Olpasiran at a dose of 9 mg or higher
reduced Lp(a) concentrations by 70% to
97%, on average, with a mean duration

of 3 to 6 months

[150] Sohn et al.

A randomized, open-label,
parallel-design, dose-ascending,

phase 1 trial involving 37 healthy
Japanese and non-Japanese patients

Japanese: single 3, 9,
75 or 225 mg dose of

olpasiran (1:1:1:1 ratio)
Non-Japanese: a single

75 mg dose
of olpasiran

Dose-proportional reduction in Lp(a)
levels from baseline, ranging from 56%

to 99%, observed as early as day 4;
Effect on Lp(a) did not differ

significantly between Japanese and
non-Japanese subjects

[151,152]
O’ Donohue et al.
OCEAN(a)-DOSE

study

A randomized, double-blind,
placebo-controlled, multicenter dose

study in 281 participants with a
median Lp(a) concentration of
260.3 nmol/L (121 mg/dL) and

established atherosclerotic CVD on
cholesterol-lowering therapy

Ascending doses of
olpasiran (10 mg every
12 weeks, 75 mg every

12 weeks, 225 mg
every 12 weeks or

225 mg every
24 weeks) versus

placebo

Mean reductions (adjusted for placebo)
ranged from 70% to 101% (p < 0.001 for

all comparisons) at the primary end
point (week 36) and the end of the

treatment period (week 48);
Most common adverse event:

injection-site pain

[153]
ClinicalTrials.gov

Identifier:
NCT05581303

OCEAN(a)-DOSE
Outcomes Trial

An ongoing randomized,
double-blind, placebo-controlled,

multicenter phase 3 study currently
recruiting (aim: 6000 participants

with Lp(a)
concentration ≥ 200 nmol/L and

established CVD)

Olpasiran versus
placebo

Effect of olpasiran on the risk for
coronary heart disease death (CHD

death), myocardial infarction or urgent
coronary revascularization,

matched with placebo;
Study start: December 2022;
Estimated completion date:

December 2026

[154]
ClinicalTrials.gov

Identifier:
NCT05481411

An open-label, single-dose phase 1
trial including 25 patients with mildly,
moderately and seriously impaired

hepatic function

Olpasiran

Assessment of pharmacokinetics,
pharmacodynamics, safety and

tolerability of olpasiran on the grounds
of hepatic impairment

[155]
ClinicalTrials.gov

Identifier:
NCT04987320

An open-label, single-dose phase 1
clinical trial involving 24 Chinese

participants with elevated
Lp(a) levels

Single dose of
olpasiran

Assessment of pharmacokinetics,
pharmacodynamics, safety and

tolerability of olpasiran;
Results not yet published

[156]
ClinicalTrials.gov

Identifier:
NCT05489614

An ongoing, open-label, single-dose
phase 1 study enrolling 32 patients

with normal renal function or various
degrees of renal impairment

Single dose of
olpasiran

Assessment of pharmacokinetics,
pharmacodynamics and

safety of olpasiran;
Estimated completion date:

August 2023
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Table 2. Cont.

SLN360

Trial Design Intervention Results

[159] Nissen et al.

An ongoing randomized,
double-blind, placebo-controlled,

first-in-human phase 1 study
including 32 participants with

Lp(a) levels ≥ 150 nmol/L who were
randomized and received

the intervention

Single doses of
SLN360 at 30, 100,

300 or 600 mg
versus placebo

The reduction in Lp(a) levels
reached a peak of 98% with SLN360 at a

dose of 600 mg (30 mg: −46%
(95% CI: −64 to −40); 100 mg: −86%
(95% CI: −92 to −82); 300 mg: −96%
(95% CI: −98 to −89); 600 mg: −98%
(95% CI: −98 to −97); placebo: −10%

(95% CI: −16 to 1));
Reduction maintained until day 150

with satisfactory safety

[160]
ClinicalTrials.gov

Identifier:
NCT05537571

An ongoing randomized,
double-blind, placebo-controlled,

multicenter phase 2 study enrolling
160 participants with Lp(a) levels

above 125 nmol/L at high
risk of CVD

SLN360 versus placebo

Evaluation of the safety, efficacy and
tolerability of SLN360;

Study start: January 2023;
Estimated completion date: June 2024

LY3819469

Trial Design Intervention Results

[162]
ClinicalTrials.gov

Identifier:
NCT04914546

A two-part, single-ascending-dose,
placebo-controlled phase 1 study in

66 healthy participants with elevated
Lp(a) concentrations

Single ascending dose
of LY3819469

versus placebo

Evaluation of the pharmacokinetics,
pharmacodynamics, safety and

tolerability of LY3819469 in healthy
participants (part A) and in Japanese

participants (part B);
Results not yet published

[163]
ClinicalTrials.gov

Identifier:
NCT05565742

A randomized, double-blind,
placebo-controlled phase 2 study

enrolling 254 participants with Lp(a)
levels ≥ 175 nmol/L

LY3819469 versus
placebo

Evaluation of the efficacy and safety of
LY3819469 in the course of 20 months

[164]
ClinicalTrials.gov

Identifier:
NCT05841277

An ongoing, currently recruiting
phase 1 study including

28 participants with normal and
impaired renal function

LY3819469

Evaluation of pharmacokinetics,
efficacy and safety of LY3819469 on the

grounds of various degrees
of renal function

4. Conclusions and Future Perspectives

In summary, lipoprotein(a) decisively influences the risk for developing CVD in a
proportional manner; the higher the levels, the greater the risk of major atherosclerotic
cardiovascular events. While traditional pharmacological approaches have been able to
reduce levels to some degree, the clinical significance of this reduction has been limited,
and the adverse effects have outweighed the benefits. As a result, the research community
has been intensely focused on assessing newer agents for lowering Lp(a) levels. Anti-
sense oligonucleotides and small interference RNAs share the conjugation with a GalNAc
molecule and represent promising novel agents that will significantly enhance the arma-
mentarium of modern clinicians. These agents utilize genetic silencing as their primary
mechanism of action. At the same time, these newer agents offer patients with elevated
serum Lp(a) concentrations the potential for increased protection against the occurrence of
major atherosclerotic cardiovascular events compared to contemporary standard lipid man-
agement agents. The evidence collected so far supports a satisfactory safety and tolerability
profile, along with long-lasting efficacy following subcutaneous single-dose administration
of the aforementioned agents.

Pelacarsen, SLN360 and LY3819469 appear promising in providing a clinically mean-
ingful Lp(a) reduction and improving cardiovascular outcomes. However, further large
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trials assessing cardiovascular outcomes are required and are eagerly anticipated to pro-
vide more comprehensive insights and determine whether some of these agents have the
potential to become part of everyday clinical practice in the future.
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