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Abstract: In the vertebrate brain, sensory experience plays a crucial role in shaping thalamocortical
connections for visual processing. However, it is still not clear how visual experience influences
tissue homeostasis and neurogenesis in the developing thalamus. Here, we reported that the majority
of SOX2-positive cells in the thalamus are differentiated neurons that receive visual inputs as early as
stage 47 Xenopus. Visual deprivation (VD) for 2 days shifts the neurogenic balance toward proliferation
at the expense of differentiation, which is accompanied by a reduction in nuclear-accumulated β-
catenin in SOX2-positive neurons. The knockdown of β-catenin decreases the expression of SOX2
and increases the number of progenitor cells. Coimmunoprecipitation studies reveal the evolutionary
conservation of strong interactions between β-catenin and SOX2. These findings indicate that β-
catenin interacts with SOX2 to maintain homeostatic neurogenesis during thalamus development.
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1. Introduction

In the central nervous system, functional neural circuits are developmentally con-
structed through the continuous proliferation and differentiation of neural stem/progenitor
cells (NSCs/NPCs). A variety of factors, including multiple extracellular matrix com-
ponents, cytoplasmic factors, and nuclear receptors, have been identified to regionalize
the proliferation and differentiation of nerve cells in a spatial and temporal manner [1].
Comparative studies have revealed the conservation of molecular, structural, and func-
tional characteristics of the thalamus in chicken, mouse, and Xenopus [2–5]. Although
the visual experience has been shown to refine circuit connectivity, cell homeostasis, and
synapse formation [6–12], the underlying mechanism by which visual experience induces
the formation of the developing thalamus is less well understood.

In the visual system, sex-determining region Y (SRY)-related HMG box 2 (SOX2)
is usually considered to be a persistent marker of multipotent neural stem cells, which
plays important functions in progenitor cells’ development [13–17]. The SOXB1 subfamily
comprised SOX1, SOX2 and SOX3 in mammals. SOX9 and SOX10 are classified within
the SOXE group, which defines proliferating crest progenitors during embryogenesis [18].
SOX2 is a conserved transcription factor, which is required for neural differentiation [19] and
progenitor cell maintenance [18,20–22]. The widespread expression of SOX2 plays region-
specific and cell-type specific functions in different regions of developing and postnatal
brain [17]. SOX2 deficiency results in impaired neurogenesis and pathological phenotype
in humans [5]. We previously have shown that SOX2-positive cells distributed along the
ventricles are brain lipid-binding protein (BLBP)-positive progenitor cells in the Xenopus
tectum [14]. Although the roles of SOX2 in the thalamus are being investigated [23–25],
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little is known about SOX2 signaling and its functional involvement in visual experience-
dependent thalamic development.

The expression of 22 markers, including Wnt3a, in the prepatterning and patterning of the
Xenopus thalamus reveals a basic organization of the diencephalic region across vertebrates [26].
Wnt signaling is an evolutionarily conserved signal pathway that controls the balance of cell
fate via the transcriptional coactivator β-catenin during brain development [27–34]. The
phosphorylation of β-catenin is inhibited by the APC/Axin/CK1/glycogen synthase kinase
3β (GSK3β) destruction complex, resulting in β-catenin accumulation in the cytosol and
translocation into the nucleus [35–39]. Activation of the canonical Wnt/β-catenin pathway
leads to the transcriptional stimulation of lymphoid enhancer factor/T cell factor (LEF/TCF)
target genes that modulate cell proliferation [40]. The target disruption of Wnt proteins or
their receptors, such as LRP6, Axin2, and Frizzled3/5, results in severe deficits in thalamic
development and disorders [41–44]. However, the functional role of β-catenin in stem cell
self-renewal and tissue homeostasis has been largely debated, which is partly due to its
capacity to form complexes with many downstream factors [45]. For instance, Wnt/β-catenin
signaling may interact with the SOXB1, PAX6, OCT4 and SOX9 to maintain the regulatory
networks for self-renewal and differentiation [13,46–48].

The thalamus serves as a relay station for sensory perception, movement, and cognitive
functions through retina–thalamus–cortex connectivity [25,49]. In subcortical regions, such
as the retina, superior colliculus, and thalamus, the influence of experience on circuit
development is still controversial [50–52]. Monocular deprivation reduces the driving
input, leading to alterations of thalamocortical projections and experience-dependent
circuit refinement [52–54]. However, initial retinotopic map formation is largely dependent
on spontaneous activity rather than visual experience [50]. Here, we took advantage
of the Xenopus model system in live imaging and in vivo recording. We identified a
subpopulation of SOX2-expressing neurons in the developing Xenopus thalamus. Visual
deprivation shapes the morphology of thalamic neurons through retinal–tectal–thalamic
connectivity. The functional interactions of β-catenin and SOX2 when visual deprivation is
induced increase in proliferation and decrease in differentiation in the developing thalamus.
Our findings indicated that the factors of β-catenin and SOX2 are evolutionarily conserved
core components that synergistically control the thalamic homeostasis through physical
interactions in vivo.

2. Results
2.1. SOX2 Expression Is Highly Regionalized in the Developing Thalamus

We previously showed that the SOX2 immunoreactive (SOX2+) cells located along the
midline of the ventricle are BLBP+ radial glial cells that function as progenitor cells in the
developing Xenopus tectum [14]. To fully characterize the precise topological distribution
of SOX2 expression, we performed the whole-mount immunostaining of a tadpole using
an anti-SOX2 antibody (Figure 1A). The coronal (Figure 1C) and sagittal cryostat sections
(Figure 1D) showed that SOX2+ cells were widely distributed with distinct populations in
the nervous system, including the olfactory bulbs (OB), rhombencephalon (Rho), optic tec-
tum (OT), and thalamus (Th). Several markers including SOX2 and Nkx2.2 were specifically
involved in thalamic development [26]. We observed that Nkx2.2 was expressed adjacent to
SOX2 within the thalamus without any overlapping (Figure 1B). The combination of Nkx2.2
and SOX2 allowed for the identification of subpopulations of two discrete thalamic clusters
(rostral and caudal thalamus) [15,26]. SOX2 expression in the thalamus first appeared at
stage 34 and developmentally increased from stage 40 to stage 49 (Figure S1A,B), indicating
an enlargement of the thalamus in SOX2-expressing cells following brain development. The
ratio of SOX2+ cells to thalamic cells (DAPI+) was ~25.3% at stage 40 and remained stable
at ~32.1% from stage 46 to stage 49 (Figure S1C), indicating a rapid increase in SOX2+ cells
at the earlier stage. Notably, SOX2 (Figure 1B–D) but not SOX9 (Figure S2A) expression
was exclusively concentrated in the thalamus at stage 49. According to the distribution
pattern of BLBP+ progenitor cells (Figure S2C), expressions of SOX2 and SOX9 along the
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ventricle can be used as markers for proliferating cells. As a result, we reasoned that the
representative SOX2 expression gradient in the thalamus might allow us to investigate the
homeostatic regulation of thalamic cell number.
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dotted white line indicates the outline of the optic tectum (OT). The white line represents the bound-
ary of the SOX2 and Nkx2.2 immunoreactive thalamus (Th). Scale bar: 50 µm. (C) Six representative 
coronal planes of the whole brain with SOX2 immunostaining are shown at stage 49 Xenopus (Ca–
Cf). Scale bar: 20 µm. (D) One representative sagittal section was immunostained with an anti-SOX2 
antibody. The white lines (a–e) depict the positions of coronal sections for (Ca–Ce). Scale bar: 100 
µm. III: third ventricle; IV: fourth ventricle; A: anterior; ABB: alar basal boundary; BH: basal hypo-
thalamus; c-Th: caudal thalamus; D: dorsal; Hb: habenula; M: middle ventricle; Mes: mesencepha-
lon; oc: optic chiasm; P: posterior; p1–3: prosomere1–3; Pa: pallium; PTh: prethalamus; r1–r7: 

Figure 1. SOX2+ cells are distributed in the optic tectum and thalamus. (A) Representative images
of a tadpole (left) and whole-mount immunofluorescent staining with an anti-SOX2 antibody (right)
at stage 49 Xenopus. The red square indicates the whole optic tectum and the thalamus. Scale bar:
100 µm. (B) Representative images showing the colabeling with SOX2 and Nkx2.2 in the brain. The
dotted white line indicates the outline of the optic tectum (OT). The white line represents the boundary
of the SOX2 and Nkx2.2 immunoreactive thalamus (Th). Scale bar: 50 µm. (C) Six representative
coronal planes of the whole brain with SOX2 immunostaining are shown at stage 49 Xenopus (Ca–Cf).
Scale bar: 20 µm. (D) One representative sagittal section was immunostained with an anti-SOX2
antibody. The white lines (a–e) depict the positions of coronal sections for (Ca–Ce). Scale bar: 100 µm.
III: third ventricle; IV: fourth ventricle; A: anterior; ABB: alar basal boundary; BH: basal hypothalamus;
c-Th: caudal thalamus; D: dorsal; Hb: habenula; M: middle ventricle; Mes: mesencephalon; oc: optic
chiasm; P: posterior; p1–3: prosomere1–3; Pa: pallium; PTh: prethalamus; r1–r7: rhomeres1–7;
Spa: subpallium; OT: optic tectum; R: rostral; r-Th: rostral thalamus; Th: thalamus; Zli: zona
limitans intrathalamica.

2.2. The Majority of SOX2+ Cells Are Differentiated Neurons in the Developing Thalamus

To characterize the cell identities of SOX2-expressing thalamic cells, we first evaluated
BrdU incorporation by injecting BrdU (10 mM) and coimmunostaining brains with anti-
BrdU and anti-SOX2 antibodies after 2 days. We observed that SOX2+ cells incorporated
less BrdU (Figure 2A) without overlapping with PAX7+ cells in the thalamus (Figure S2B).
The discrete distribution patterns of SOX2/Nkx2.2, two thalamic markers, and PAX7, a
regional marker [26], were used as a boundary to dissect the thalamus in this study. Fur-
thermore, although BrdU+ and PH3+ cells are two distinct populations of progenitor cells in
the thalamus (Figure S4A), most BrdU+ cells are colocalized with PCNA+ cells (Figure 2B),



Int. J. Mol. Sci. 2023, 24, 13593 4 of 20

indicating that BrdU can be used as a proliferating marker in the thalamus. Most thala-
mic SOX2+ cells are not colocalized with PCNA+ (Figure 2C), BLBP+ or vimentin+ cells
(Figure S2C,D) but are largely colabeled with neuronal markers of HuC/D and tubulin
(Figure 2D,E), indicating that the great majority of thalamic SOX2+ cells are differentiated
neurons. To substantiate the findings, we performed post-immunostaining for the thala-
mus with the anti-SOX2 antibody followed by pSOX2::GFP transfection, which was used
to increase the cell-type specificity of progenitor cells in the tectum [55]. In agreement
with the immunofluorescence data, the colocalized SOX2+ cells showed typical neuronal
morphology with dendrites (Figure 2F), confirming that SOX2 is preferentially expressed
in post-mitotic thalamic neurons.
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cells (Figure 2F) 100–200 µm distant from the ventricle layer using a patch–clamp setup 

Figure 2. The majority of thalamic SOX2+ cells are HuC/D+ or tubulin+ neurons. (A) Colabeling
of SOX2 and BrdU showing that only a few SOX2+ cells (Aa) are BrdU+ cells (Ab) in the thalamus.
Arrowheads indicate the SOX2− and BrdU+ cells (Ac). Arrows indicate the SOX2+ and BrdU+

cells (Ac). Scale bar: 20 µm. (B) Coimmunostaining of BrdU and PCNA in the thalamus. Arrows
indicate the BrdU+ and PCNA+ cells. Scale bar: 20 µm. (C) Coimmunostaining of SOX2 (Ca) and
PCNA (Cb) in the thalamus. Arrowheads indicate the SOX2+ and PCNA− cells. Arrows indicate the
SOX2+ and PCNA+ neurons (Cc,Cd). Scale bar: 20 µm. (D) Coimmunostaining of SOX2 (Da) and
HuC/D (Db) in the thalamus. Arrows indicate the SOX2+ and HuC/D+ neurons (Dc,Dd). Scale bar:
20 µm. (E) Colabeling of SOX2 (Ea) and tubulin (Eb) in the thalamus. Arrows indicate the SOX2+

and tubulin+ neurons (Ec,Ed). Scale bar: 20 µm. (F) Thalamic cells were immunostained with an
anti-SOX2 antibody (red, Fb) followed by transfection with pSOX2::GFP (green, Fa), showing that the
SOX2+ cells exhibited neuronal morphology with predicted dendrites (arrowheads, Fc,Fd). Arrows
indicate the GFP–expressing and SOX2–immunoreactive cells. Scale bar: 20 µm.
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2.3. Thalamic Neurons Receive Retinal Signals and Respond to Visual Deprivation

The optic tectum receives retinal signals and responds to visual deprivation (VD)
by enhancing radial glia proliferation in the ventricle [7,56]. To functionally determine
whether the developing thalamus responds to visual inputs, we placed tadpoles at stage
46 in a 12 h light/12 h dark or 24 h dark box for 48 h (Figure S3A) and recorded the
SOX2+ cells (Figure 2F) 100–200 µm distant from the ventricle layer using a patch–clamp
setup (Figure S3B). We measured the delay from the start of the light OFF stimulus to the
onset of excitatory compound synaptic currents (eCSCs) in the neurons of the thalamus
(Ctrl-Th) and the optic tectum (Ctrl-OT) (Figure 3A). We found that eCSCs delay was
elongated in thalamic neurons compared to tectal neurons (Figure 3B). Visual depriva-
tion dramatically increased the delay in VD-Th neurons compared to Ctrl-Th neurons
(Figure 3B), implying that deprived visual inputs interfere with thalamic connectivity. We
examined the integrated charge transfer of OFF stimuli–evoked eCSCs and found that
the eCSCs were significantly smaller in Ctrl-Th thalamic neurons than those in Ctrl-OT
tectal neurons (Figure 3C). Interestingly, the eCSCs in VD-Th neurons were significantly in-
creased compared to those in Ctrl-Th neurons (Figure 3C), suggesting that VD may induce
a homeostatic upregulation of synaptic currents. To test whether VD–induced changes
in synaptic transmission result from the retina or the retino–thalamic visual pathway, we
further recorded optic chiasm–induced excitatory postsynaptic currents (Figure 3D–F) and
found that the changes are comparable to visual stimulation–induced eCSCs, suggesting
that VD mainly alters the retino–thalamic inputs rather than the retina itself [57].

To test whether VD alters neuronal excitability, we measured the injected current–
induced action potentials in the optic tectum and thalamus (Figure 3G). The number of
action potentials in Ctrl-Th neurons was lower than in Ctrl-OT neurons. VD induced a
considerable reduction in the number of spikes in VD-Th–treated neurons compared to
Ctrl-Th neurons (Figure 3H), implying that VD may be able to alter the process of neural
maturation. Furthermore, there were no significant differences in whole–cell capacitance,
input resistances or resting membrane potentials (Figure S3C–E).

To test whether VD changes neuronal morphology, we reconstructed the dendrites of
pSOX2::GFP–transfected thalamic neurons (Figure 3I). We found that the total dendritic
branch length (TDBL) and total branch tip number (TBTN) were significantly decreased
in VD-treated thalamic neurons (VD-Th) compared to control thalamic neurons (Ctrl-Th)
(Figure 3J,K). These results indicate that visual deprivation interferes with the retino–
thalamic connections and thalamic neuronal morphology, allowing us to study visual
experience–dependent thalamic neurogenesis in the developing brain.

2.4. Visual Deprivation Induces an Increase in Progenitor Cells and a Decrease in
Differentiated Neurons

To determine whether VD affects the proliferation rate, we injected BrdU and im-
munostained the thalamus with anti-BrdU and anti-SOX2 antibodies (Figure 4A,B). The
cryostat sections were collected, and all numbers of BrdU+ and SOX2+ cells (SOX9− or
BLBP−) in the thalamus were counted by confocal scanning (see methods). We found
that BrdU+ cells were greatly increased but SOX2+ cells were significantly decreased in
VD-treated tadpoles (Figure 4C–E). We used an anti-PH3 antibody to label mitotic cells
and found that VD induced a significant increase in PH3+ cells (Figure S4A–C). These data
indicate that VD promotes cell proliferation while inhibiting cell differentiation in the devel-
oping thalamus. The changes in the BrdU+ and SOX2+ cell numbers in response to VD are
comparable to those by collecting z–stack images for all cryostat sections (Figure 4F–H). To
exclude the possibility that the decrease in SOX2 expression could be due to cell apoptosis,
we performed a TUNEL experiment and found that VD decreased the number of apoptotic
cells in the thalamus (Figure S5A–C), indicating that the VD–induced decrease in SOX2+

neurons is not a result of cell apoptosis.
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bar: 30 pA, 1 s. (B,C) Statistical results show the delay (B) and charge transfer (C) of eCSCs in Ctrl-
OT, Ctrl-Th, and VD-Th neurons. White circles indicate the individual data. N = 17, 28, 17 for Ctrl-
OT, Ctrl-Th, and VD-Th groups. (D) Representative recordings of optic chiasm stimuli–evoked ex-
citatory postsynaptic currents (EPSCs). Scale bar: 20 pA, 20 ms. (E,F) Statistical results show the 
delay (E) and amplitude (F) of EPSCs. N = 14, 15, 13 for Ctrl-OT, Ctrl-Th, and VD-Th groups. (G) 

Figure 3. Visual deprivation alters synaptic transmission and dendritic growth. (A) Representative
electrophysiological recordings of visual stimuli–evoked excitatory compound synaptic currents
(eCSCs) in Ctrl-OT, Ctrl-Th, and VD-Th neurons in response to full–field light ON and OFF visual
stimuli at an intensity of 20 cd/cm−2. Arrows indicate the onset and offset of the delay. Scale
bar: 30 pA, 1 s. (B,C) Statistical results show the delay (B) and charge transfer (C) of eCSCs in
Ctrl-OT, Ctrl-Th, and VD-Th neurons. White circles indicate the individual data. N = 17, 28, 17 for
Ctrl-OT, Ctrl-Th, and VD-Th groups. (D) Representative recordings of optic chiasm stimuli–evoked
excitatory postsynaptic currents (EPSCs). Scale bar: 20 pA, 20 ms. (E,F) Statistical results show
the delay (E) and amplitude (F) of EPSCs. N = 14, 15, 13 for Ctrl-OT, Ctrl-Th, and VD-Th groups.
(G) Three representative recording traces show current injection–induced spikes in Ctrl-OT, Ctrl-Th,
and VD-Th neurons. Scale bar: 30 mV, 40 ms. (H) Statistical results show that the number of action
potentials was significantly decreased in VD-Th neurons compared to Ctrl-Th neurons. N = 21, 16, 19
for Ctrl-OT, Ctrl-Th, and VD-Th groups. (I) Three representative neurons (upper panel) and their
reconstructed images (lower panel) show pSOX2::GFP–expressing neurons in Ctrl-OT, Ctrl-Th, and
VD-Th groups. Arrowheads indicate axons. Scale bar: 10 µm. (J) Total dendritic branch length (TDBL)
was significantly decreased over 48 h in VD-Th neurons compared to Ctrl-Th neurons. (K) Total
branch tip number (TBTN) was significantly decreased in VD-Th neurons compared to Ctrl-Th
neurons. N = 19, 13, 13 for Ctrl-OT, Ctrl-Th, and VD-Th groups. * p < 0.05, ** p < 0.01, *** p < 0.001.
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thalamus (Ac). Arrows indicate the SOX2+ and BrdU+ cells (Ad–Af,Bd–Bf). Scale bar: 50 µm. Zoom 
Scale bar: 20 µm. (C–E) Summary data show that VD increased BrdU+ cells (C), decreased SOX2+ 
cells (D), and increased SOX2+/BrdU+ cells (E). N = 6, 6 for Ctrl and VD. (F) A representative immu-
nofluorescent image showing z–stack for SOX2– and BrdU–labeled cells. Scale bar: 20 µm. (G,H) 
Summary data showing that VD increased BrdU+ cells (G) and decreased SOX2+ cells (H) in VD–
treated tadpoles. N = 4, 6 for Ctrl and VD. (I,J) Representative immunofluorescent images showing 
SOX2– and HuC/D–labeled cells in the thalamus of Ctrl (Ia–Id) and VD (Ja–Jd) tadpoles. The white 

Figure 4. Visual deprivation changes the balance between proliferation and differentiation in the
thalamus. (A,B) Representative fluorescent images showing BrdU– (Ab) and SOX2–labeled (Aa) cells
in Ctrl (Aa–Ac) and VD (Ba–Bc) thalamus. The white square indicates the BrdU– and SOX2–labeled
cells in the zoomed–in thalamus (Aa–Ac). White dotted lines indicate the boundary of the thalamus
(Ac). Arrows indicate the SOX2+ and BrdU+ cells (Ad–Af,Bd–Bf). Scale bar: 50 µm. Zoom Scale bar:
20 µm. (C–E) Summary data show that VD increased BrdU+ cells (C), decreased SOX2+ cells (D), and
increased SOX2+/BrdU+ cells (E). N = 6, 6 for Ctrl and VD. (F) A representative immunofluorescent
image showing z–stack for SOX2– and BrdU–labeled cells. Scale bar: 20 µm. (G,H) Summary data
showing that VD increased BrdU+ cells (G) and decreased SOX2+ cells (H) in VD–treated tadpoles.
N = 4, 6 for Ctrl and VD. (I,J) Representative immunofluorescent images showing SOX2– and HuC/D–
labeled cells in the thalamus of Ctrl (Ia–Id) and VD (Ja–Jd) tadpoles. The white square indicates the
zoomed–in images. Arrows indicate the SOX2+ and HuC/D+ cells (Ie–Ih,Je–Jh). Scale bar: 50 µm.
Zoom scale bar: 20 µm. (K–M) Summary of data showing that VD decreased HuC/D+, SOX2+, and
HuC/D+/SOX2+ cells. N = 5, 8 for Ctrl and VD. * p < 0.05, ** p < 0.01, *** p < 0.001.

To further confirm whether VD alters the differentiation, the tadpoles were immunos-
tained with anti-SOX2 and anti-HuC/D antibodies (Figure 4I,J). Both SOX2+ and HuC/D+

neurons were significantly decreased in VD–treated tadpoles compared to control tadpoles
in the thalamus (Figure 4K,L). The colocalization and cell counting between SOX2 and
HuC/D were confirmed by analyzing z–stack images with the Surphase module in iMaris
(Figure S6A–D). The VD–induced downregulation of HuC/D was reinforced by Western
blotting, showing significantly lower expression of HuC/D in the VD-Th compared to the
Ctrl-Th (Figure S5D,E). These findings indicate that VD causes tissue homeostasis to shift
toward proliferation rather than differentiation.
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2.5. Visual Deprivation–Induced Homeostatic Regulation of Thalamic Cells Is Accompanied by
Phosphorylation and Degradation of β-Catenin

The translocation of β-catenin into the nucleus is known to be involved in the regu-
lation of cell proliferation and differentiation by the canonical Wnt/β-catenin signaling
pathway. To determine the potential role of β-catenin in thalamic development, we im-
munostained the entire brain with anti-β-catenin and anti-SOX2 antibodies. At stage
49 Xenopus, we observed that β-catenin was restricted to the cytoplasm of most tectal
cells but strongly expressed in the nuclei of SOX2+ thalamic cells (Figure 5A). VD ex-
posure dramatically reduced the number of β-catenin nuclearized cells and SOX2+ cells
(Figure 5B–D). This pattern of alterations corresponds to the lower levels of thalamic β-
catenin and SOX2 expression in the VD–treated tadpoles compared to Ctrl tadpoles by
Western blot (Figure 5E–G). The individual blots were shown in the supplementary figure
(Figure S7A–C). The integrity of the dissected thalamus was confirmed by immunostaining
with the anti-SOX2 antibody followed by thalamic ablation (Figure S5F). In addition, the
level of phosphorylated β-catenin (P-β-Cat at Ser33/37/Thr41) was considerably higher in
VD-Th cells than in Ctrl-Th cells (Figure 5E,H), implying that β-catenin was phosphorylated
and degraded following visual deprivation.
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Figure 5. Visual deprivation reduces nuclearized β-catenin and differentiated neurons in the
thalamus. (A,B) Representative fluorescent images show β-catenin– and SOX2–labeled cells in the
Ctrl (Aa–Ad) and VD (Ba–Bd) thalamus. The white square indicates the β-catenin– and SOX2–labeled
cells in the zoom of the thalamus. Arrows indicate the expressions of β-catenin– and SOX2 in the
nuclei. Arrowheads indicate that β-catenin was expressed in the cytoplasm (Ae–Ah,Be–Bh). Scale
bar: 50 µm, zoom scale bar: 20 µm. (C,D) Summary data show that VD decreased β-catenin nuclear
localization in labeled cells. N = 5, 6 for β-catenin and SOX2. (E) Western blot analysis of homogenates
from Ctrl and VD–treated brains using the anti-SOX2, anti-β-catenin, or anti-Phospho-β-catenin
(P-β-Cat) antibody. (F–H) Summary of data showing the relative intensities of SOX2 ((F), N = 7),
β-catenin ((G), N = 10), and P-β-Cat ((H), N = 13) to GAPDH. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.6. Wnt/β-Catenin Signaling Is Necessary and Sufficient to Mediate VD-Induced
Thalamic Homeostasis

To test whether β-catenin and SOX2 affect thalamic development, we used antisense
morpholinos of β-Cat-MO or SOX2-MO to downregulate either the β-catenin or SOX2
expression. The results revealed that SOX2-MO or β-Cat-MO effectively suppressed the
endogenous expression of β-catenin or SOX2 (Figure 6A–C). The individual Western blots
were shown in Figure S8A,B. SOX2 expression was reduced when β-catenin was knocked
down (Figure 6A–C), implying that β-catenin is required for SOX2 expression. Interestingly,
SOX2 knockdown also reduced the expression of β-catenin (Figure 6A–C), suggesting that
a potential feedback mechanism controls the SOX2 expression. To test whether β-catenin
knockdown affects the proliferation and differentiation of thalamic cells, we transfected
Ctrl-MO or β-Cat-MO into the brain (Figure 6D,E) and found that the knockdown of
β-catenin increased the number of BrdU+ progenitor cells but decreased the number of
HuC/D+ neurons (Figure 6F,G). The transfection of β-Cat-MO decreased the number of
apoptotic cells in the thalamus (Figure S9A,B), suggesting that the decrease in HuC/D+

cells is not attributable to cell apoptosis. These findings indicate that β-catenin is involved
in the regulation of thalamic cell proliferation and differentiation.
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Figure 6. SOX2-MO and β-Cat-MO knockdown decreased β-catenin and SOX2 expression.
(A) Western blot analysis of homogenates from Ctrl-MO–, SOX2-MO– and β-Cat-MO–transfected
brains using the anti-SOX2 or anti-β-catenin antibody. (B) Quantification results show that SOX2
expression was significantly decreased in SOX2-MO or β-Cat-MO expressing cells compared to
Ctrl-MO expressing cells. N = 4. (C) Summary of data showing that the relative intensity of the
β-catenin group was significantly decreased compared to that of the Ctrl-MO group. N = 12. (D) Rep-
resentative fluorescent images showing the immunostaining of β-catenin and BrdU in the Ctrl-MO–
(Da–Dc) or β-Cat-MO–transfected (Dd–Df) cells. Scale bar: 20 µm. (E) Summary data show that the
knockdown of β-catenin increased the number of BrdU+ cells. N = 7, 7 for Ctrl-MO and β-Cat-MO.
(F) Representative images (Fa–Ff) showing the immunostaining of β-catenin (Fa,Fd) and HuC/D
(Fb,Fe). Scale bar: 20 µm. (G) Summary data show that the knockdown of β-catenin decreased the
number of HuC/D+ cells. N = 8, 4 for Ctrl-MO and β-Cat-MO. * p < 0.05, ** p < 0.01, *** p < 0.001.
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We then investigated whether Wnt signaling activation could block VD–induced
changes in thalamic cell proliferation and differentiation. First, we administered IWR-1-
endo or TDZD-8 to tadpoles for 48 h and harvested brains to perform Western blotting
analysis (Figure 7). We observed that IWR-1-endo significantly decreased β-catenin ex-
pression but TDZD-8 increased β-catenin expression (Figure 7B), indicating that β-catenin
expression can be pharmacologically controlled in the brain. The VD–induced decrease
in β-catenin was prevented by TDZD-8 treatment (Figure 7C,D). We also measured the
changes in the phosphorylation of β-catenin. The VD-induced increase in β-catenin phos-
phorylation was reduced by TDZD–8 treatment (Figure 7E,F). These findings indicate that
TDZD-8 stabilizes β-catenin by preventing it from being phosphorylated and degraded.

Int. J. Mol. Sci. 2023, 24, 13593 13 of 23 
 

 

(Fb,Fe). Scale bar: 20 µm. (G) Summary data show that the knockdown of β-catenin decreased the 
number of HuC/D+ cells. N = 8, 4 for Ctrl-MO and β-Cat-MO. * p < 0.05, ** p < 0.01, *** p < 0.001. 

We then investigated whether Wnt signaling activation could block VD–induced 
changes in thalamic cell proliferation and differentiation. First, we administered IWR-1-
endo or TDZD-8 to tadpoles for 48 h and harvested brains to perform Western blotting 
analysis (Figure 7). We observed that IWR-1-endo significantly decreased β-catenin ex-
pression but TDZD-8 increased β-catenin expression (Figure 7B), indicating that β-catenin 
expression can be pharmacologically controlled in the brain. The VD–induced decrease in 
β-catenin was prevented by TDZD-8 treatment (Figure 7C,D). We also measured the 
changes in the phosphorylation of β-catenin. The VD-induced increase in β-catenin phos-
phorylation was reduced by TDZD–8 treatment (Figure 7E,F). These findings indicate that 
TDZD-8 stabilizes β-catenin by preventing it from being phosphorylated and degraded. 

 

Figure 7. The visual deprivation-induced decrease in SOX2+ and β-catenin+ cells was prevented
by TDZD-8. (A,B) Western blot analysis showing that the relative intensity of β-catenin to GAPDH
was significantly decreased by IWR-1-endo but increased by TDZD-8. N = 4. (C,D) Western blot
analysis showing that VD–induced decrease in β-catenin expression was blocked by TDZD-8 treat-
ment. N = 8. (E,F) VD–induced increase in P-β-Cat was prevented by TDZD-8 treatment. N = 5.
(G) Representative immunofluorescent images showing SOX2– and β-catenin–labeled cells in the
thalamus of Ctrl (Ga–Gd), VD (Ge–Gh), TDZD-8 (Gi–Gl), and VD + TDZD-8 (Gm–Gp) tadpoles.
Arrows indicate the double–labeling cells in the thalamus. Scale bar: 20 µm. (H,I) Summary of
data showing that VD decreased SOX2+ (H) and β-catenin+ (I) cells. TDZD-8 prevented the VD–
induced decrease in SOX2+ and β-catenin+ cells in the thalamus. N = 7, 4, 5, 5 for Ctrl, VD, TDZD-8,
VD + TDZD-8. * p < 0.05, ** p < 0.01, *** p < 0.001.
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To further support the evidence of VD altering the neurogenesis by β-catenin signaling,
we counted the total number of SOX2+ and β-catenin+ cells in TDZD-8–treated tadpoles
(Figure 7G). In comparison to the Ctrl group, TDZD-8 alone resulted in an increase in SOX2+

and β-catenin+ cells (Figure 7H,I). The decrease in SOX2+ and β-catenin+ cells caused by
VD was markedly blocked by TDZD-8 treatment (Figure 7H,I). The VD–induced increase
in BrdU+ cells is prevented by TDZD-8 treatment (Figure S10A,B). These results indicate
that stabilizing β-catenin restores the VD–induced decrease in SOX2+ cells in the thalamus.

2.7. The Evolutionarily Conserved Crosstalk between SOX2 and β-Catenin

β-catenin and SOX2 have been shown to positively control each other’s expression
(Figure 6A–C), raising the possibility that SOX2 may interact with β-catenin to modulate
tissue homeostasis and neurogenesis. We dissected the brain and performed reciprocal
coimmunoprecipitation assays for β-catenin and SOX2. β-catenin was precipitated from
the resulting tissue lysates with an anti-SOX2 antibody, and the immunoprecipitates were
then subjected to anti-β-catenin and anti-SOX2 Western blotting (Figure 8A). As a positive
control, the whole lysates, marked as input, were blotted with anti-β-catenin and anti-SOX2
antibodies (Figure 8A). The homogenates immunoprecipitated with IgG alone were used
as a negative control. The results revealed that endogenous β-catenin and SOX2 robustly
interact with each other in the brain of control tadpoles (Figure 8A,B). These results reveal
evidence of in vivo physical interaction between β-catenin and SOX2.
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β-catenin. N = 3 experiments. (B) Coimmunoprecipitation of β-catenin with SOX2. N = 4 experiments.
(C) Coimmunoprecipitation of SOX2 with β-catenin in Ctrl and VD–treated thalamus. (D) Summary
of data showing that VD increases the interaction between SOX2 with β-catenin. N = 6. * p < 0.05.
(E,F) Coimmunoprecipitation in homogenates from the mouse thalamus. Coimmunoprecipitation of
β-catenin with SOX2 (E). Coimmunoprecipitation of SOX2 with β-catenin (F). N = 2 experiments.
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To test whether VD affects the interactions between β-catenin and SOX2, we immuno-
precipitated with anti-SOX2 antibody and immunoblotted with anti-β-catenin antibody
in control and VD–treated thalamus. We found that the intensity of β-catenin was sig-
nificantly increased in VD tadpoles compared to control tadpoles (Figure 8C,D), suggest-
ing that VD may stabilize the β-catenin and SOX2 complex to regulate the activation of
gene transcription.

To gain insight into the evolutionary conservation of the β-catenin and SOX2 inter-
action, we subjected total protein extracts from the mouse thalamus (P12) to perform
immunoprecipitations with anti-SOX2, and anti-β-catenin antibodies followed by Western
blotting (Figure 8E,F). The results showed strong reciprocal interactions between β-catenin
and SOX2, indicating molecular conservation of protein interactions between Xenopus and
mouse during early thalamic development.

3. Discussion

In this study, we identified that the majority of SOX2+ cells in the developing thalamus
are differentiated neurons. Importantly, we provide immunofluorescent, morphological
and electrophysiological evidence showing that β-catenin nuclearized thalamic cells receive
visual signals and exhibit a physiological response to visual deprivation as early as stage
49 Xenopus. The Wnt/β-catenin signaling pathway leads to visual deprivation–induced
thalamic neurogenesis that favors the generation of progenitors over differentiated neurons,
maintaining a balance between proliferation and differentiation homeostasis. We also show
that the complex interactions between SOX2 and β-catenin regulate thalamic homeostasis
in the Xenopus brain.

SOX2 is one of the SoxB1 subfamilies of HMG box transcription factors that main-
tain the proliferation of multipotent stem cells and act as a transcriptional repressor of
neuronal target genes [18,20,58,59]. Here, we show two populations of SOX2–expressing
cells in the Xenopus brain: largely differentiated neurons in the caudal thalamus [15] and
BLBP–/SOX9–expressing progenitors in the ventricular layer. The members of the SOXB1
family are functionally redundant but not divergent SOX genes such as SOX9 [20], im-
plying that the differential distribution may contribute to this phenotypic consequence
(Figure S2B). These findings expand our knowledge of the multiple expression patterns
of SOX2 in progenitor cells and differentiated neurons. The scattered BrdU+ and SOX2+

cells in the developing thalamus indicate that SOX2+ neurons may be derived in part from
thalamic tissue progenitors, which is consistent with the studies showing the existence of
a population of PH3–positive dividing progenitor cells in mouse thalamus [60] and our
studies (Figure S4). The distinct expressions of SOX2, SOX9, PAX7 and Nkx2.2 support
the idea that the thalamus generates distinct sets of thalamic nuclei in a spatial and tem-
poral manner [61–63]. Further investigation using developmental lineage tracing may be
required to determine the origination of thalamic cells [58].

Thalamic afferents into cortical plates influence cell proliferation and differentiation,
in addition to the regionalization and specification of neocortical areas [52,64,65]. Given the
importance of thalamic cortical connections, it is essential to understand whether thalamic
cells are regulated by visual inputs. Thalamic neurons receive direct retinal inputs by
morphologically identified retinal projections in developing tadpoles and adult Xenopus
laevis [15]. Our in vivo electrophysiological recordings indicate that thalamic neurons
receive afferent inputs from the retina, which responds to light ON and OFF as early as the
tadpoles from stage 47, as shown previously in Zebrafish larva [66]. The evidence of longer
delay and reduced dendritic length in thalamic neurons supports that visual experience
may provide the spatial and temporal organization of local circuitry niche components to
thalamic cell neurogenesis. In contrast, 48 h of visual deprivation was sufficient to reduce
the expressions of β-catenin and SOX2, together with an increase in BrdU+ progenitors,
indicating that visual experience–dependent tissue homeostasis depends on cell cycle
exit regulation.
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The canonical Wnt/β-catenin cascade has emerged as a critical regulator of thala-
mic development, connectivity, and diseases [17,40]. The expression of β-catenin protein
starts as early as the egg stages, persists through gastrula stages, and accumulates in the
nuclei on the dorsal side of the embryo [67–71]. We observed that β-catenin constitu-
tively accumulates in the thalamic nucleus, which may be associated with the lack of a
ubiquitination–dependent degradation pathway [72,73]. The deletion of β-catenin sup-
presses dorsal mesoderm induction and later the axon arborization of retinal ganglion cells
in early Xenopus embryos [74,75]. The enhancement of β-catenin signaling increases the
number of differentiated neurons in cultured ES cells [76,77] and mouse embryonic stem
cell cultures [78]. We used a GSK-3β inhibitor of TDZD-8 or a Wnt signaling inhibitor
of IWR-1-endo to upregulate or downregulate β-catenin activity in the Xenopus brain,
as previously shown in the adult zebrafish [79]. The VD exposure–induced decrease in
β-catenin nuclearized SOX2+ cells is significantly blocked by TDZD-8, indicating that the
upregulation of β-catenin nuclearization is sufficient to increase the differentiation of SOX2+

neurons. The endogenous knockdown of β-catenin by a morpholino further confirms the
shift of tissue homeostasis toward proliferation.

The synergistic action of a specific SOX2 partner is essential in mediating SOX2–
dependent tissue homeostasis. For instance, SOX2 and Oct4 can bind directly to tran-
scriptionally regulate ECS differentiation [80,81]. SOX3 and SOX17 have been shown
to interact with β-catenin in vitro and repress Wnt gene expression [47,82], suggesting
that SOX family members may antagonize Wnt signaling via β-catenin sequestration in
osteoblast cells [83]. The knockdown of SOX2 prevents neural specification and differenti-
ation in the Xenopus neural plate [19] but increases the number of differentiating neural
cells in the chick spinal cord [21]. Our data support the idea that SOX2 synergizes with
Wnt/β-catenin signaling to regulate thalamic cell proliferation and differentiation [22].
SOX2 knockdown decreases β-catenin protein levels, indicating that SOX2 could stabilize
the β-catenin protein, which is required for activating Wnt/β-catenin and SOX2 target
genes. Despite the key roles of SOX2 and β-catenin in the central nervous system, they
have been studied separately in this context. Based on our immunoprecipitation results
of the visual–experience–dependent strong interaction between β-catenin and SOX2, we
reveal a potential self–reinforcing regulatory loop that maintains tissue homeostasis and
circuit connectivity via the SOX2/β-catenin complex in the developing thalamus.

Accumulating evidence has shown that nuclearized β-catenin activates the transcrip-
tion of TCF/LEF target genes [84,85], which controls cell fate determination and differenti-
ation [86,87]. These observations imply that the canonical Wnt signaling pathway triggers
TCF/LEF/β-catenin crosstalk to activate Wnt target genes, which may be repressed by
the SOX2 protein [48]. The interaction between β-catenin and SOX2 proteins may be es-
sential for maintaining the balance between the proliferation and differentiation of neural
progenitor cells, as visual deprivation shifts toward more progenitor cells at the expense
of differentiated neurons. Further analysis of Wnt target genes may help elucidate the
molecular mechanism by which β-catenin expression levels maintain the homeostasis of
thalamic development [27,28,36,72,87,88].

4. Materials and Methods
4.1. Animals

All animal procedures were performed according to the requirements of the ‘Regula-
tion for the Use of Experimental Animals in Zhejiang Province’. Tadpoles were obtained
by mating adult male/female Xenopus laevis injected with human chorionic gonadotropin
(HCG) and raised on a 12 h dark/12 h light cycle in Steinberg’s solution [(in mM): 10 HEPES,
58 NaCl, 0.67 KCl, 0.34 Ca (NO3)2, 0.83 MgSO4, pH 7.4] within a 20 ◦C incubator. For
experimental manipulations, tadpoles were anesthetized in 0.02% MS-222 (3-aminobenzoic
acid ethyl ester methanesulfonate, Sigma Aldrich, St. Louis, MO, USA). The stages of
tadpoles were characterized according to the developmental changes in the anatomy [89].
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C57BL/6 laboratory mice were kept in a controlled environment with a regulated
temperature of 22 ± 1 ◦C and a 12 h light/dark cycle. The mice’s overall health was
monitored daily throughout the study [90]. For the experiments, the mice were humanely
euthanized using Avertin–induced deep anesthesia. The thalamus tissue was carefully
extracted in accordance with the mice brain map. All procedures involving animals adhered
to ethical guidelines and were approved by both the Laboratory Animal Center and
the Animal Ethics Committee of Hangzhou Normal University, China (permit number
2022–1063, issued on 3 March 2022).

4.2. Morpholinos and Transfection

To knock down endogenous protein expression, we used translation–blocking mor-
pholinos (MOs, GeneTools) against Xenopus SOX2 (SOX2-MO, CGGTCTCCATCATGCTG-
TACAT) and Xenopus β-catenin (β-Cat-MO, TTTCAACCGTTTCCAAAGAACCAGG). The
control tadpoles were transfected with a control MO (Ctrl-MO, GATGGCATGTCTCCTCGC-
CTTTGGA). All morpholinos were tagged with Lissamine for fluorescent visualization.
The plasmid of pSOX2::GFP (0.5 µg/µL, gifted from Hollis Cline laboratory, Cold Spring
Harbor, NY, USA) was used to visualize SOX2-positive cells in the thalamus. For whole–
brain/thalamus electroporation, tadpoles were anesthetized, and morpholinos (10 µM) or
plasmids (0.5 µg/µL) were injected into the midbrain ventricle/third cerebral ventricle.
The two parallel platinum electrodes were placed on the skin above the tectum/thalamus,
and current pulses were applied by a stimulator. The transfected tadpoles were screened
for further experiments.

4.3. BrdU Labeling

BrdU (5-bromo-2-deoxyuridine, 10 mM, MP Biomedicals, Irvine, CA, USA) w/o mor-
pholinos filled with a glass electrode was slowly injected into the third ventricle to observe
the thalamic progenitor cells. The tadpoles were incubated in Steinberg’s solution for
2 days, which was followed by being anesthetized and fixed in PFA overnight at 4 ◦C. Brain
sections were treated with 2 N HCl for 45 min at 37 ◦C to denature the DNA and rinsed
3 times. All sections were immunostained with anti-BrdU (1:100, Mouse, Sigma, B2531,
St. Louis, MO, USA) antibody and secondary antibodies for image collection by a confocal
microscope (LSM710, Zeiss, Oberkochen, Germany).

4.4. Immunohistochemistry and Image Analysis

Tadpoles were anesthetized and fixed in 4% paraformaldehyde (PFA, pH 7.4) at 4 ◦C
overnight. Tadpoles were rinsed with 0.1 M phosphate buffer (PB, pH 7.4) and immersed
in 30% sucrose overnight for dehydration. On the second day, animals were embedded in
optimal cutting temperature (OCT) media and cut into 20 µm cryostat sections with a mi-
crotome (Microm, HM550 VP, Boise, ID, USA). Sections were rinsed with PB for 2 × 20 min,
permeabilized with 0.3% Triton X-100 in PB for 4 × 10 min, and blocked with goat serum for
30 min before incubating with primary antibodies at 4 ◦C overnight. For primary antibod-
ies, we used the antibodies of anti-SOX2, anti-SOX9, anti-HuC/D, anti-tubulin, anti-Nkx2.2,
anti-β-catenin, anti-PCNA, anti-BLBP, and anti-vimentin (Table 1). Sections were rinsed
with PB and incubated with secondary antibodies (FITC, Rhod, or Alexa 647) for 1 h at
room temperature. After sections were counterstained with DAPI, mounted, and sealed,
immunofluorescence images were collected using a confocal microscope. Immunopositive
cells were counted from all 5 consecutive brain sections in each tadpole using the Surface
module by iMaris 9.0 (Bitplane AG, Zurich, Switzerland) image processing software [91].
The number of immunoreactive cells from all sections was counted as the total cells from
the entire brain or thalamus. All sections were prepared, imaged, and analyzed in parallel
across samples. The boundary of the thalamus was determined by immunostaining with
anti-SOX2, anti-PAX7 and anti-Nkx2.2 antibodies.
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Table 1. List of antibodies.

Antigen,
Host Species Immunogen Source Catalog No. RRID Dilution

β-catenin, mouse C-terminus of
human β-catenin

CST (Danvers, MA, USA) 2677 AB_1030943

1:200 (IF)

1:50 (IP)

1:1000 (WB)

β-catenin, rabbit
Residues surrounding

Pro714 of human
β-catenin protein

CST 8480 AB_11127855

1:200 (IF)

1:50 (IP)

1:2000 (WB)

BLBP, mouse Amino acids 1–132 of
human BLBP Abcam (Cambridge, UK) ab131137 AB_11157091 1:100 (IF)

BrdU, mouse BrdU conjugated
to KLH Sigma (St. Louis, MO, USA) B2531 AB_476793 1:100 (IF)

GAPDH, rabbit C-terminus of
human GAPDH

Millipore (Burlington,
MA, USA) ABS16 AB_11211543 1:10,000 (WB)

HuC/D, mouse Recombinant human
HuC/HuD

Thermo Fisher (Waltham,
MA, USA)

A-21271 AB_221448
1:50 (IF)

1:1000 (WB)

Nkx2.2, mouse Chicken Nkx2.2 DSHB (Iowa City, IA, USA) 74.5A5 AB_531794 1:50 (IF)

PCNA, rabbit Recombinant
human PCNA Abcam ab18197 AB_444313 1:200 (IF)

Phospho-β-
catenin

Residues surrounding
Ser33, Ser37 and Thr41

of human β-catenin
CST 9561 AB_331729 1:1000 (WB)

SOX2, mouse
Residues surrounding

Gly179 of human
SOX2 protein

CST 4900 AB_10560516

1:200 (IF)

1:1000 (WB)

1:50 (IP)

SOX2, rabbit
Recombinant
human SOX2 Abcam ab97959 AB_2341193

1:200 (IF)

1:2000 (WB)

1:50 (IP)

SOX9, rabbit Recombinant
human SOX9 Abcam ab185230 AB_2715497 1:200 (IF)

Tubulin, mouse C-terminal of
mouse α-tubulin Beyotime (Shanghai, China) AT819 1:200 (IF)

Vimentin, rabbit Recombinant
human vimentin Abcam ab16700 AB_443435 1:200 (IF)

4.5. Whole–Mount Immunofluorescence

Fixed tadpoles were washed with 0.1 M PB for 2 × 20 min and permeabilized with
0.3% Triton (New York, NY, USA) X-100 in PB for 4 × 10 min. Tadpoles were placed in
blocking buffer (3% normal goat serum in 0.3% Triton X-100) for 1 h and incubated for
2 days at 4 ◦C with an anti-SOX2 antibody (1:200, Mouse, Cell signaling, 4900, Danvers,
MA, USA), which was followed by additional washes and detection with secondary anti-
bodies for 2 days at 4◦ C. Embryos were washed and mounted for photography using a
confocal microscope.

4.6. Immunoblotting

Animals were anesthetized in 0.02% MS-222. The brain was exposed by peeling off
the covered skin. The dissected optical tecta or thalamus (approximately 30–50 brains for
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each group) were homogenized in radioimmune precipitation assay (RIPA) buffer with
a protease inhibitor cocktail (Sigma Aldrich) and phenylmethylsulfonyl fluoride (PMSF,
Solarbio, Beijing, China) at 4 ◦C. Protein concentrations were measured by BCA assay
using a Nanodrop (Thermo Scientific, Waltham, MA, USA, 2000c). Protein homogenates
were separated by SDS–PAGE (Bio-Rad, Hercules, CA, USA) and transferred to PVDF
membranes. Membranes were blocked in 4% nonfat milk for 1 h with TBS buffer con-
taining 0.1% Tween-20 (Sigma Aldrich) (TBST) and incubated with primary antibodies
overnight at 4 ◦C. Antibodies were diluted in 1% nonfat milk. We used the following anti-
bodies: anti-Phospho-β-catenin, anti-β-catenin, anti-SOX2, anti-HuC/D, and anti-GAPDH
(Table 1). Blots were rinsed with TBST and incubated with horserace dish peroxidase
(HRP)-conjugated secondary antibodies (goat anti-rabbit IgG (1:2000, CWbiotech, Beijing,
China, CW0103), goat anti-mouse IgG (1:2000, CWbiotech, CW0102), goat anti-rabbit IgG
heavy chain (1:2000, ABclonal, Woburn, MA, USA, AS063), goat anti-mouse IgG light chain
(1:2000, ABclonal, AS062)) for 1 h at room temperature. Bands were visualized using ECL
chemiluminescent (1:1, Pierce, Appleton, WI, USA).

4.7. Immunoprecipitation

The whole brains or thalamus were harvested and lysed in 100 µL of RIPA buffer with
protease inhibitors for 1 h at 4 ◦C. Samples of 20 µL were taken from the lysate for the
input control and mixed with 2 X sample buffer. The remaining 40 µL was added to protein
A/G agarose beads (CWbiotech, CW0349S) for 3 h and incubated with 0.5–2 µg of specific
antibody. The samples were collected by centrifugation, washed 3 times, boiled for 10 min,
and subjected to Western blot analysis.

4.8. Electrophysiology

Tadpole preparation for patch clamp was performed as described previously [92]. All
recordings were performed at room temperature (20–22 ◦C). For recordings in the thalamus,
the superficial cells were removed by a suction pipette. The recording micropipettes were
placed in the thalamus 100–200 µm away from the ventricle. Tadpoles were perfused with
an external solution containing (in mM: 115 NaCl, 2 KCl, 3 CaCl2, 1.5 MgCl2, 5 HEPES,
10 glucose, and 0.01 glycine, pH 7.2, osmolality 255 mOsm). Excitatory postsynaptic
currents were recorded by holding the membrane potential at −60 mV with intracellu-
lar solution containing (in mM: 110 K-gluconate, 8 KCl, 5 NaCl, 1.5 MgCl2, 20 HEPES,
0.5 EGTA, 2 ATP, and 0.3 GTP). Recording micropipettes were pulled from borosilicate
glass capillaries and had resistances in the range of 9–11 MΩ. The liquid junction potential
was adjusted during recording. Signals were filtered at 2 kHz with a MultiClamp 700B
amplifier (Molecular Devices, Palo Alto, CA, USA). Data were sampled at 10 kHz and
analyzed using ClampFit 10 (Molecular Devices, San Jose, CA, USA) or MiniAnalysis 6.03
(Synaptosoft, Fort Lee, NJ, USA).

4.9. Drugs and Treatment

The tadpoles were incubated with IWR-1-endo (10 µM, Selleck, Detroit, MI, USA,
S7086, 10 mM stock in DMSO), a Wnt signaling inhibitor, or TDZD-8 (0.11 µM, Selleck,
S2926, 10 mM stock in DMSO), a GSK-3β inhibitor [79]. If not stated otherwise, tadpoles
were treated in Steinberg’s solution for 48 h.

4.10. Statistics

Two groups were tested with Student’s t–test. Unless noted, multiple group data
were tested with ANOVA followed by a post hoc Tukey’s test. Data are represented as
the mean ± SEM. Experiments and analysis were performed blind to the experimental
conditions unless noted.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713593/s1.
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