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Abstract: The demands of deep space pose a health risk to the central nervous system that has long
been a concern when sending humans to space. While little is known about how spaceflight affects
transcription spatially in the brain, a greater understanding of this process has the potential to aid
strategies that mitigate the effects of spaceflight on the brain. Therefore, we performed GeoMx Digital
Spatial Profiling of mouse brains subjected to either spaceflight or grounded controls. Four brain
regions were selected: Cortex, Frontal Cortex, Corunu Ammonis I, and Dentate Gyrus. Antioxidants
have emerged as a potential means of attenuating the effects of spaceflight, so we treated a subset of
the mice with a superoxide dismutase mimic, MnTnBuOE-2-PyP 5+ (BuOE). Our analysis revealed
hundreds of differentially expressed genes due to spaceflight in each of the four brain regions. Both
common and region-specific transcriptomic responses were observed. Metabolic pathways and
pathways sensitive to oxidative stress were enriched in the four brain regions due to spaceflight.
These findings enhance our understanding of brain regional variation in susceptibility to spaceflight
conditions. BuOE reduced the transcriptomic effects of spaceflight at a large number of genes,
suggesting that this compound may attenuate oxidative stress-induced brain damage caused by the
spaceflight environment.

Keywords: spaceflight; brain; digital spatial profiling; gene expression; regional difference

1. Introduction

Radiation exposure and other stressors experienced during extended deep-space
missions have the potential to compromise the function of many bodily systems [1–3]. The
health risks of spaceflight-induced damage related to the central nervous system (CNS),
such as cognitive impairment and neurodegenerative effects, have long been a concern.
Animal studies have shown that memory, cognition, motor activity, and other neural
functions can be affected under stressful conditions that include both radiation exposure
and the spaceflight environment [4–8].

Normal brain function relies on a diverse set of differentiated cell types, including
neurons, glia, and vasculature in different regions. There have been, however, relatively
few studies on the effects of spaceflight stress on specific brain regions. One study found
that spaceflight conditions induced distinct protein expression changes in different regions
of the mouse brain [9]. Regional differences were also documented following simulated
microgravity in human brain gray and white matter [10]. Our previous flight study [11]
demonstrated that exposure to the spaceflight environment induces significant changes in
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protein expression related to neuronal structure and metabolic function, and there were
distinct changes in protein expression in grey versus white matter.

One brain region that is of immense interest in the context of spaceflight is the cortex
(CT). It plays a key role in sensory and motor function and is closely associated with
locomotion, learning, memory, and coordination [12]. Spaceflight and ground simulation
studies have given evidence that microgravity conditions negatively affect sensorimotor
and behavioral performance, and the functional architecture of the human brain [13–16],
all of which are associated with cortical activity. These significant neurochemical changes
were also observed in the rat prefrontal cortex by heavy charged particle irradiation [17].
The frontal cortex (FCT) plays a role in memory, attention, judgment, consciousness, and
behavior [18]. Pathophysiological changes in the FCT are associated with depression and
anxiety [19].

Another brain region that is critical to understand in the context of spaceflight is
the hippocampus, a complex brain structure embedded deep in the temporal lobe. It
plays a major role in learning and memory [20]. Ground-based analog studies have found
that simulated microgravity influences cognitive function, with increased anxiety and
depression-like behaviors that were associated with hippocampal activities [21]. In addition,
significantly altered expression of many proteins that relate to metabolism and structure in
the hippocampus has been observed to occur under simulated microgravity [22,23]. Space
radiation studies have revealed cognitive detriment and changes in morphology in the
hippocampal dentate gyrus (DG) and Cornu Ammonis 1 (CA) regions following oxygen-
particle irradiation [24]. The DG is located in the deep region of the hippocampus and has
been shown to play an important role in pattern separation and associative memory [25].
The CA contains pyramidal cells with a vast network of interneurons; its function is related
to memory and consciousness [25].

Spaceflight conditions are associated with oxidative stress [26], which contributes to
cellular damage in a variety of tissues. MnTnBuOE-2-PyP5+ (BuOE), a manganese por-
phyrin superoxide dismutase (SOD) mimic, also termed BMX-001, is remarkably beneficial
in many animal models of oxidative stress injury [27]. One study demonstrated that BuOE
can reduce oxidative stress damage to the brain caused by radiation exposure [28]. Our
recent study [29] showed that BuOE treatment during spaceflight significantly reduces
the immunoreactivity of the oxidative stress biomarker 4-hydroxynonena (4-HNE) in the
retina. This suggests that BuOE is effective in alleviating stress responses to spaceflight [29].
Our present study will test whether BuOE treatment during spaceflight can attenuate
spaceflight-induced alterations in gene transcription in specific brain regions.

Despite broad interest in understanding region-specific stress responses, characteriz-
ing these changes has been a challenge. More recently, spatial transcriptomics technology
has been developed, which allows us to simultaneously quantify gene expression levels
and their spatial distribution within tissue sections. This method can help to better under-
stand biological responses as well as disease development [30,31]. In this study, we took
advantage of this technology by using the Nanostring GeoMx® digital spatial profiling
(DSP) platform [32] to investigate spaceflight-induced changes in gene expression profiles
in mouse CT, FCT, and hippocampal DG and CA regions, both with and without BuOE
treatment. Our unique spatial sequencing data may, for the first time, provide insights
into the organization and response of specific brain regions to the spaceflight environment,
potentially improving risk assessment of long-term space travel.

2. Results
2.1. Gene Expression Profiling of CA, DG, CT, and FCT Samples Subjected to Spaceflight

We performed in situ RNA assays in the brains of mice subjected to spaceflight (FLT),
as well as grounded controls (GC), using DSP. Half of the mice were treated with BuOE,
while the other half were treated with saline (SAL). Four regions within the brain of each
mouse were assayed: the CA, DG, CT, and FCT (Figure 1A). All samples achieved high
sequencing saturation (Supplementary File S1: Figure S1A), and Q3 normalization was



Int. J. Mol. Sci. 2023, 24, 13569 3 of 16

performed on the data (Supplementary File S1: Figure S1B) for all downstream analyses.
Normalized count values of gene expression were highly correlated across replicates of
the four samples (Supplementary File S1: Figure S1C–F). A principal components analysis
(PCA) revealed that spaceflight had an effect on all four regions in SAL control animals,
with CA and DG being impacted the most (Figure 1B).
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Figure 1. DSP of the mouse brain under spaceflight and grounded control conditions. (A), A
representative image (FLT_SAL_2|005, 006, 007, and 008) of the brain regions profiled by DSP in this
study. (B) Principal components analysis of the SAL transcriptomic data from the indicated brain
regions. Filled circles represent the GC data, while empty circles represent the FLT data.

We next performed a differential expression analysis (FLT versus GC) on the SAL data
from each brain region and identified a total of 408 differentially expressed genes (DEGs)
in CA, 271 in DG, 189 in FCT, and 150 in CT (Figure 2A–D). Each brain region largely had a
unique set of DEGs, though a small number of DEGs were common to two or more regions
(Figure 2E).
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Figure 2. Differentially expressed genes due to spaceflight conditions. (A–D), Volcano plots summa-
rizing the differential gene expression analysis of the indicated region, comparing FLT-SAL versus
GC-SAL. The number of DEGs is indicated for each brain region. Gene symbols are shown for the
top 10 DEGs by the magnitude of the log2 fold change (FC). (E), Heatmap of differential expression
(DE) using log2 FC values of the FLT-SAL versus GC-SAL DEGs from the indicated regions, along
with normalized gene expression values of the indicated samples and regions. Genes are ordered by
hierarchical clustering of the log2 FC values.

The top five DEGs by magnitude of fold change are as follows: Ptgds, Cpne7, Cdkn2d,
Msrb1, and Bsph1 for CA (Figure 3A and Supplementary File S1: Figure S2A), Sst, Crygc,
Psrc1, Abtb2, and Kcna4 for DG (Figure 3B and Supplementary File S1: Figure S2B), Arc,
Ptgds, Col6a1, Tshz2, and Dmrt2 for FCT (Figure 3C and Supplementary File S1: Figure S2C),
and Arc, Ptgds, Mobp, Gm9936, and Apod for CT (Figure 3D and Supplementary File S1:
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Figure S2D). Many of these top-changing genes play important roles in apoptosis, cell cycle,
neuroinflammation, neurotransmission, myelination, and mitochondrial and metabolic
stress response.
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In order to determine whether spaceflight might accelerate certain disease processes
in the brain, we compared the FLT-SAL vs. GC-SAL DEGs to curated lists of gene-disease
associations. Alzheimer’s disease (AD) was the most frequent disease associated with the
DEGs, and each brain region had at least one DEG with a known association with AD; in all,
22 of the GC-SAL vs. FLT-SAL DEGs have a known association with a neurological disease
(Supplementary File S2). This raises the possibility that spaceflight stress may increase the
risk of onset and/or progression of certain neurological disorders, such as AD.

Next, we performed a pathway analysis of the GC-SAL vs. FLT-SAL DEGs from
each region independently. Importantly, each of the four brain regions had at least one
pathway known to be affected by oxidative stress that was significantly enriched: VEGF
signaling pathway in CA (Figure 4A), Calcium signaling pathway in DG (Figure 4B), FoxO
signaling pathway in FCT (Figure 4C), and ECM-receptor interaction in CT (Figure 4D).
In addition, a number of metabolic pathways were also significantly enriched, such as
pyruvate metabolism and glycolysis/gluconeogenesis in CA, cAMP signaling pathway in
DG, pantothenate and CoA biosynthesis in FCT, and glycosphingolipid biosynthesis in CT.

2.2. BuOE Attenuates Spaceflight-Induced Transcriptional Changes in the CA, DG, FCT, and CT

Finally, given that we observed a robust transcriptional response to spaceflight, we
sought to determine if treatment with BuOE would attenuate these changes. A PCA of
global transcription shows that in all brain regions examined except FCT, BuOE during
spaceflight brought transcription levels closer to GC animals (Figure 5A and Supplemen-
tary File S1: Figure S3A), suggesting a partial attenuation of spaceflight transcriptional
alterations by BuOE. Even for FCT, the distance between FLT-BuOE and GC-BuOE was
smaller than the distance between FLT-SAL and GC-SAL, again suggesting BuOE results in
a reduced transcriptional response due to spaceflight. We obtained BuOE-induced DEGs
(FLT-SAL vs. FLT-BuOE) using the same criteria as for the spaceflight-induced DEGs (GC-
SAL vs. FLT-SAL). We expected that if BuOE attenuates spaceflight-induced differential
expression, then BuOE-induced DEGs should tend to change in the opposite direction as
the spaceflight-induced DEGs. Indeed, for all brain regions, significantly more spaceflight-
induced DEGs changed in the opposite direction as BuOE-induced DEGs (Figure 5B–E). We
also performed a permutation test (see Section 4) in which genes were shuffled in order to
randomly select up- and down-regulated BuOE-induced DEGs, and checked the overlaps
with the spaceflight-induced DEGs. For all brain regions, the number of random overlaps
after 1000 permutations was never as large as the number of actual overlaps in the opposite
direction (Supplementary File S1: Figure S3B–E).

At many of the spaceflight-induced DEGs, the direction of change in expression by
BuOE during spaceflight, regardless of significance, tended to be in the opposite direction,
and in many cases these changes were not induced by BuOE in GC mice (Supplementary
File S1: Figure S4A), again suggesting a partial attenuation of spaceflight-induced transcrip-
tional changes in the brain by BuOE. Of note, such an attenuation was observed for several
genes in the significantly enriched pathways responsive to oxidative stress; e.g., VEGF
signaling pathway in CA (Figure 6A), Calcium signaling pathway in DG (Figure 6B), FoxO
signaling pathway in FCT (Figure 6C), and ECM-receptor interaction in CT (Figure 6D).
Similarly, BuOE also attenuated spaceflight-induced changes in the expression of several
genes associated with Alzheimer’s disease (Supplementary File S1: Figure S4B–E).
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Figure 5. BuOE attenuates spaceflight-induced gene expression changes. (A), Principal components
analysis of the indicated regions and treatment conditions. Each gene was averaged across replicates
to obtain the PCA. Individual replicates are shown in the PCA in Supplementary File S1: Figure S3A.
(B–E), Barplots comparing the number of spaceflight-induced DEGs (GC-SAL vs. FLT-SAL) that
change in the opposite versus the same direction (dir) as BuOE-induced DEGs (FLT-SAL vs. FLT-
BuOE). p-values were calculated by Fisher’s Exact test. *** p < 10−5; **** p < 10−10.
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Figure 6. BuOE attenuation of spaceflight-induced gene expression changes of genes in oxidative
stress–responsive pathways. (A–D), log2 fold change (FC) values of genes from the indicated
comparisons, regions, and pathways. The top 20 genes by magnitude of log2 FC from either of the two
comparisons are shown. Genes are ordered by hierarchical clustering. GC vs. FLT (SAL) = GC-SAL
versus FLT-SAL; SAL vs. BuOE (FLT) = FLT-SAL versus FLT-BuOE.

3. Discussion

In this study, we performed a differential expression analysis of spaceflight versus
GC mice and identified 944 genes that were significantly altered by spaceflight in at least
one of the four brain regions examined. Our results revealed common and region-specific
gene expression changes in the brain due to spaceflight, with the most robust changes
observed in the hippocampal CA 1 and DG regions, suggesting that these regions may
be particularly vulnerable to spaceflight. The hippocampus is not only the center for
learning and memory, it is a site for neurogenesis as well [33]. Numerous cell types in the
hippocampus contribute to generating neurons important for encoding new memories,
spatial learning, and cognitive flexibility [34]. Space radiation may damage hippocampal
cells [35] and thus potentially suppress neurogenesis, leading to memory decline, anxiety,
and depression [34]. Hippocampal neuronal circuitry also modulates and affects physiology
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and functional connectivity with more distant brain regions, including the prefrontal
cortex [36–38].

In order to determine whether spaceflight might accelerate certain disease processes
in the brain, we looked for known associations with neurological disease amidst the
spaceflight-induced DEGs. Several of the DEGs have known associations with Alzheimer’s
disease, as well as other neurological diseases. Previous studies have shown that space
radiation contributes to amyloid pathologies, neuroinflammation, and cognitive function
impairments resembling age-associated cognitive decline in animals [4,39,40]. Our results
add to the growing body of evidence that space stressors could induce or accelerate
neurodegenerative processes.

To obtain insights into the biological processes being affected in the brain by space-
flight, we performed pathway analyses on the spaceflight-induced DEGs. Interestingly,
several pathways known to be altered by oxidative stress were significantly enriched in the
four brain regions due to spaceflight: VEGF signaling [41] in CA, calcium signaling [42]
in DG, FoxO signaling [43] in FCT, and ECM-receptor interaction [44] in CT. In addition,
a number of metabolic pathways were among the most significantly enriched, consistent
with numerous studies that have found alterations in metabolism and its regulation due
to spaceflight-induced neuroendocrine and psychophysiological changes [45]. For exam-
ple, a mouse study revealed an accumulation of lipids in the liver after spaceflight [46].
Studies also show that space stressors induce metabolic changes in mouse plasma and
in the expression of metabolism-related genes [47]. Longitudinal metabolomic profiles
revealed sex-specific perturbations in glucose and amino acid metabolism that result from
the stressors of long-duration spaceflight [48]; therefore, follow-up studies on sexually
dimorphic transcriptional responses to spaceflight in the brain may be warranted.

The Circadian Entrainment pathway was significantly altered by spaceflight in DG.
This is consistent with our previous spaceflight genomic study [49], which showed space-
flight altered some genes associated with circadian rhythm in the mouse retina. Spaceflight
missions often expose astronauts to atypical sleep–wake cycles and work schedules [50,51].
Changes in circadian rhythm may have a significant impact on neurobehavior and neu-
rophysiological processes [52]. Previous studies have found that circadian rhythm dis-
ruption or circadian misalignment in astronauts may affect performance and cognitive
function [53–55]. Our results suggest that changes in circadian rhythm induced by space-
flight may involve the DG region. This could help in developing countermeasures for sleep
disturbance during spaceflight.

Our findings will help to improve the understanding of regional variation or sensi-
tivities in susceptibility to brain injury and neurodegenerative diseases that exist during
spaceflight. In addition, our findings may provide novel insight into cellular mechanisms
and operational risks that underlie the effects of spaceflight-mediated structural and func-
tional damage to different brain regions. In future studies, the regulatory mechanism for
regional differences in stress response should be further explored in terms of variations of
cell types, vasculature, neurotransmitter profiles, hemodynamics, and metabolism.

Studies have shown a spaceflight-induced increase in the production of lipid peroxi-
dation products and a decrease in antioxidant enzyme activity [26]. It has been suggested
that in stressful environments, antioxidant expression of SOD and catalase are reduced to
conserve energy [56]. BuOE, a recently developed antioxidant compound, is among the
most highly potent metalloporphyrins that have been evaluated for safety and efficacy [57].
Many animal studies have demonstrated that BuOE is highly effective in mitigating ox-
idative stress induced by radiation exposure [58]. We therefore treated a subset of our
mice with BuOE in order to test its ability to attenuate spaceflight-induced changes in
transcription in the CA, DG, FCT, and CT. Treatment with BuOE reversed spaceflight-
induced changes in transcription of a substantial number of DEGs, and a statistically
significant number of spaceflight-induced DEGs changed in the opposite direction as did
BuOE-induced DEGs, suggesting that BuOE may be effective in attenuating at least some
of the effects of spaceflight stress on the brain.
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We presented evidence that BuOE may attenuate the consequences of oxidative stress
on the brain during spaceflight. BuOE attenuated spaceflight-induced changes in the
expression of a number of genes in the oxidative stress–responsive pathways that were
enriched due to spaceflight. We note that BuOE had a particularly strong effect in reversing
spaceflight-induced changes of the following genes in oxidative stress–responsive pathways
(Figure 6): Prkca in the CA, Atp2b4 in the DG, Homer1 in the FCT, and Itga7 in the CT. Since
we had identified known associations between spaceflight-induced DEGs and neurological
diseases, we speculated whether BuOE attenuated the effects of these genes as well. Indeed,
we found that BuOE reversed spaceflight-induced changes in the expression of several
genes with known associations to Alzheimer’s disease.

Our results suggest that BuOE affects each brain region in a distinct way. The PCA
(Figure 5A) suggests that the region with the greatest degree of attenuation by BuOE was
the CT, in that treatment with BuOE brings the spaceflight transcriptomic profile closest
to that of grounded controls in CT. On the other hand, BuOE treatment actually moved
the spaceflight transcriptomic profile further away from grounded control animals in FCT,
suggesting that FCT may be the region with the most resistance to superoxide scavengers.
The DG and CA had intermediate responses to BuOE relative to the CT and FCT. Taken
together, our results on BuOE warrant further study as a potential therapeutic candidate for
CNS protection against brain injury and neurodegeneration induced by ionizing radiation
and environmental stress.

4. Materials and Methods
4.1. Spaceflight and Mouse Groups

Ten-week-old C57BL/6 male mice were launched at the Kennedy Space Center (KSC)
and spent 35 days aboard the International Space Station (ISS). All mice were maintained at
an ambient temperature of 26–28 ◦C with a 12-h light/dark cycle during the flight. All mice
were provided NASA Nutrient-upgraded Rodent Food Bar (NuRFB) and autoclaved deion-
ized water ad libitum. MnTnBuOE-2-PyP5+ (BuOE) at 1 mg/kg (0.2 mL) was administrated
subcutaneously 7 days prior to the flight launch and weekly aboard the ISS. All mice were
subdivided into saline or BuOE-treated groups. Upon return to the Earth, spaceflight mice
were transported to the research laboratory at Roskamp Institute, Sarasota, Florida, within
20 h of splashdown. Mice were exsanguinated by closed-cardiac blood collection under
deep Ketamine/Xylazine (150/45 mg/kg) anesthesia, followed by cervical dislocation as a
secondary euthanasia method to ensure death. Ground control mice were maintained on
Earth for 35 days in flight hardware cages under similar environmental conditions as the
flight groups, including the same food, light/dark, temperature, treatment (SAL or BuOE),
and euthanasia regimens. The protocol for GC mice commenced three days subsequent to
the commencement of the protocol for spaceflight mice.

After sacrifice, mouse brains were then removed and prepared as follows. The left
hemibrains were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for
24 h and then rinsed and washed with PBS for immunohistochemistry (IHC) assays or
spatial genomics profiling. The right brains were flash-frozen and stored at −80 ◦C for
further analysis. The study was approved by the Institutional Animal Care and Use
Committee (IACUC) of Loma Linda University (LLU), Roskamp Institute, and The National
Aeronautics and Space Administration (NASA).

4.2. GeoMx DSP

DSP technology enables us to select specific regions of interest (ROIs) with high
magnification [59,60]. Three 6 µm formalin-fixed, paraffin-embedded (FFPE) tissue sections
selected at a similar focal plane from three mice in each group were mounted on one slide
for a total of 4 slides, one for each group (GC-SAL, GC-BuOE, FLT-SAL, and FLT-BuOE).
Slides were baked for 2 h at 65 ◦C for paraffin removal before loading onto a Leica BOND RX
for tissue rehydration in EtOH and ddH2O, heat-induced epitope retrieval (ER2 for 20 min
at 100 ◦C) and proteinase K treatment (1.0 µg/mL for 15 min at 37 ◦C). Tissue sections
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were then hybridized with the Mouse Whole Transcriptome Atlas (WTA) probes overnight
at 37 ◦C. Following 2 × 5 min stringent washes (1:1 4× SSC buffer and formamide), the
slides were blocked for 30 min and then incubated with morphology marker antibodies
for 1 h to guide region of interest (ROI) selection: GFAP (Texas Red/615nm channel, Alexa
594 fluorophore, 1:200 dilution, shown in green in Figure 1A, NBP2-33184DL594, Novus
Biologicals, Littleton, CO, USA), and Iba1 (Cy5/666nm channel, Alexa 647 fluorophore,
1:100 dilution, shown in yellow in Figure 1A, 48934S, Cell Signalling Technologies, Danvers,
MA, USA). Syto83 (Cy3/568 nm channel, Alexa 532 fluorophore, 1:10 dilution, shown in
blue in Figure 1A, S11364, Invitrogen, Waltham, MA, USA) was used as a nuclear stain.

After ROI selection, UV light was directed by the GeoMx (https://nanostring.com/
products/geomx-digital-spatial-profiler/, accessed on 3 February 2022, NanoString Tech-
nologies, Inc., Seattle, WA, USA) device at each area of illumination (AOI), releasing the
RNA-ID containing oligonucleotide tags from the WTA probes for collection into a unique
well for each AOI. For library preparation, Illumina i5 and i7 dual indexing primers were
added to the oligonucleotide tags during PCR to uniquely index each AOI. AMPure XP
beads (Beckman Coulter, Indianapolis, IN, USA) were used for PCR purification. Library
concentration was measured using a Qubit fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA), and quality was assessed using a Bioanalyzer (Agilent Technologies Inc., Santa
Clara, CA, USA). Sequencing was performed on an Illumina NovaSeq 6000 (Illumina Inc.,
San Diego, CA, USA).

4.3. GeoMx DSP Data Analysis

Raw .fastq files were processed into gene count data for each AOI using the GeoMx®

NGS Pipeline via Amazon Web Services. All subsequent data analysis described in this
subsection was performed using the online GeoMx DSP analysis platform [61], GeoMx
DSP Control Center version 3.0.0.111. Raw reads were trimmed, stitched, aligned, and
finally deduplicated using default parameters. Using Q3 normalized read count data, a
differential expression analysis of FLT-SAL versus GC-SAL, and FLT-BuOE versus FLT-GC,
was performed for each brain region independently. Statistical significance of differential
expression was measured by t-test (non-paired), and permutation q-values (p-adjusted)
were calculated. Genes with q < 0.05 and |log2 FC| > 0.585 were considered differentially
expressed and used for downstream analysis.

4.4. Association of DEG’s with Neurological Disease

A list of genes with known associations to human neurological diseases was obtained
using the DisGeNET [62] browse feature with the filters “Disease class: Mental disorders”
and “Semantic type: disease or syndrome”. Only genes from curated databases were used.

4.5. Pathway Analysis

The online tool Enrichr [63–65] was used to perform pathway mapping for GC-SAL vs.
FLT-SAL DEGs from each region independently. Enriched pathways in this paper are from
the KEGG [65] 2019 Mouse pathway analysis in the “legacy” tab of the Enrichr website.

4.6. Principal Component Analysis

Q3 normalized read counts output by the online GeoMx DSP analysis platform, as
described above, were used as inputs for the PCA. The analysis was done in R version
4.0.3. The R function aov() [66] was used to perform a linear analysis of variance (ANOVA)
at each gene, using each biological sample as a factor. The R function qvalue() [67] was
then used to calculate ANOVA q-values for all genes, based on the p-values output by aov.
Significant genes from the ANOVA (q < 0.05) were then input into the R function PCA() [68]
in order to generate PCA plots.

https://nanostring.com/products/geomx-digital-spatial-profiler/
https://nanostring.com/products/geomx-digital-spatial-profiler/
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4.7. Statistical Comparison of Spaceflight-Induced and BuOE-Induced DEG Overlaps

For a given brain region, let N = total # of spaceflight-induced DEGs (GC-SAL vs.
FLT-SAL) plus total # of BuOE-induced DEGs (FLT-SAL vs. FLT-BuOE) for that region. For
each brain region, a 2 × 2 contingency matrix,

X11 X12

X21 X22,

was constructed, where X11 = # of spaceflight-induced DEGs changing in the opposite
direction as BuOE-induced DEGs, X12 = N − X11, X21 = # of spaceflight-induced DEGs
changing in the same direction as BuOE-induced DEGs, X22 = N − X21. Fisher’s exact test
was then calculated on each 2 × 2 contingency matrix in order to obtain a p-value for the
null hypothesis that the proportion of overlapping DEGs changing in the opposite direction
was the same as the proportion of overlapping DEGs changing in the same direction.

4.8. Permutation Testing of Spaceflight-Induced and BuOE-Induced DEG Overlaps

For each brain region, a random set of BuOE-induced DEGs was selected as follows.
The total set of gene symbols analyzed was shuffled using the “shuf” command in Ubuntu
20.04.5 LTS. The top Nup genes in the shuffled file were selected as the upregulated, BuOE-
induced DEGs, where Nup = total # of actual upregulated, BuOE-induced DEGs (FLT-SAL
vs. FLT-BuOE) for the brain region. Similarly, the bottom Ndown genes in the shuffled file
were selected as the downregulated, BuOE-induced DEGs, where Ndown = total # of actual
downregulated, BuOE-induced DEGs in the brain region. The randomly selected DEGs
were then compared with the actual spaceflight-induced DEGs (GC-SAL vs. FLT-SAL)
to determine how many changed in opposite directions. This shuffling procedure was
repeated 1000 times for each brain region.
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