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Abstract: Understanding marine bacterioplankton composition and distribution is necessary for
improving predictions of ecosystem responses to environmental change. Here, we used 16S rRNA
metabarcoding to investigate marine bacterioplankton diversity and identify potential pathogenic
bacteria in seawater samples collected in March, May, September, and December 2013 from two
sites near Jeju Island, South Korea. We identified 1343 operational taxonomic units (OTUs) and
observed that community diversity varied between months. Alpha- and Gamma-proteobacteria were
the most abundant classes, and in all months, the predominant genera were Candidatus Pelagibacter,
Leisingera, and Citromicrobium. The highest number of OTUs was observed in September, and Vibrio
(7.80%), Pseudoalteromonas (6.53%), and Citromicrobium (6.16%) showed higher relative abundances
or were detected only in this month. Water temperature and salinity significantly affected bacterial
distribution, and these conditions, characteristic of September, were adverse for Aestuariibacter
but favored Citromicrobium. Potentially pathogenic bacteria, among which Vibrio (28 OTUs) and
Pseudoalteromonas (six OTUs) were the most abundant in September, were detected in 49 OTUs,
and their abundances were significantly correlated with water temperature, increasing rapidly in
September, the warmest month. These findings suggest that monthly temperature and salinity
variations affect marine bacterioplankton diversity and potential pathogen abundance.

Keywords: metabarcoding; bacterioplankton community; 16S rRNA; Candidatus Pelagibacter;
Pseudoalteromonas; Vibrio; pathogenic bacteria

1. Introduction

Marine bacterioplankton have essential ecosystem functions owing to their ecological
connections with other organisms, and their distribution and abundance in marine environ-
ments are affected by several environmental and geographic factors [1,2]. Understanding
how these environmental factors affect their composition and distribution may help to
elucidate their relationships with other organisms and improve predictions of ecosystem
responses to environmental changes [3]. In particular, examining the effects of seasonal
variations in environmental and geographic factors on community dynamics is essential to
elucidate their ecological roles [4–6].
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Temporal and spatial changes in bacterioplankton communities in response to envi-
ronmental change have been examined in recent studies [7,8]. Marine bacterioplankton
communities, which are finely structured, exhibit discrete phylogenetic clustering and abun-
dant diversity [9]. Metabarcoding, which characterizes taxonomic diversity and community
structure based on the analysis of 16S rRNA gene sequences, has been used to reveal the
high diversity of marine bacterioplankton [10–12]. We previously applied metabarcoding
to investigate bacterioplankton communities and species composition, monthly changes,
and potential pathogenic bacteria [13–18]. For instance, in Goseong Bay (South Korea),
Bacteroidetes and Actinobacteria were identified as the most abundant phyla [19]. Studies on
year-round bacterioplankton diversity may help in forecasting seasonal changes [6], and
metabarcoding may provide insights into the intricate relationships within bacterioplankton
communities owing to changes in various environmental factors [5].

To elucidate these factors, we used metabarcoding to investigate marine bacterioplank-
ton community dynamics and identify potentially pathogenic bacteria in seawater around
Jeju Island, South Korea, in four months in 2013. Our findings elucidated the distribution
of marine bacterioplankton in the waters around this site and established a baseline for
further studies. These findings will improve the prediction of marine bacterioplankton
responses to changes in environmental factors.

2. Results and Discussion
2.1. Seawater Environmental Characteristics

We sampled seawater around Jeju Island, South Korea, in March, May, September,
and December 2013 to characterize the bacterioplankton community in this area, consid-
ering seasonal changes in seawater temperature and salinity. Water temperature (range
17.0–25.3 ◦C) varied seasonally, consistent with the patterns commonly observed for tem-
perate environments: highest in summer and lowest in winter [20,21]. Salinity ranged
from 18.5 to 34.4 and was lowest in September. In South Korea, the summer–autumn rainy
season corresponds to the period from mid-August to mid-September, when typhoons
affect the Korean Peninsula directly or indirectly [22]. The large input of rainwater during
this period rapidly reduces seawater salinity, and this affects the microbial community in
this area [23,24].

2.2. Metabarcoding Results
2.2.1. OTU Diversity

Following quality control filtering, we obtained 8003 reads (average number of reads
per sample) (Table 1). These reads corresponded to 1343 bacterioplankton operational taxo-
nomic units (OTUs). Ranking by month showed the highest number of OTUs in September,
followed by May, December, and March (Figure 1). The high taxonomic diversity and rich-
ness in September may be related to the low salinity and high temperature of the seawater
within this month. These findings are consistent with those of other studies, which revealed
that bacterial species diversity is particularly high in September owing to these climate
conditions [25,26]. In autumn, interspecific interactions between bacterioplankton weaken,
resulting in lower diversity [24]. Further, the active mixing of the water column during this
period alters the water column’s physical and chemical parameters; this, in turn, leads to
significant seasonal differences in diversity and composition [27].

Table 1. Mean read counts, observed operational taxonomic units (OTUs), and alpha-diversity
(Chao1, Shannon, and Simpson indices) for marine bacterioplankton in seawater around Jeju Island,
South Korea, in four months in 2013.

Month Trimmed Reads OTUs Chao1 Shannon Simpson

March 6673 272 406.1 2.92 0.88
May 9782 393 603.4 3.51 0.91

September 9813 567 784.2 4.09 0.93
December 5745 369 625.1 3.16 0.86
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Figure 1. Variation of the number of sequences, operational taxonomic units, and diversity indices
(Chao1, Shannon, and Simpson indices) for the marine bacterioplankton community in seawater
around Jeju Island, South Korea, in four months in 2013.

2.2.2. Diversity of Bacterioplankton

The identified bacterioplankton OTUs were assigned to 21 phyla. The most abun-
dant phyla, accounting for 98.25% of the total relative abundance, were Proteobacteria,
Bacteroidetes, and Cyanobacteria (Figure 2a). The relative abundance of Proteobacteria was
slightly lower in May (at 78.86%) but was >85% in the other months. The second most
abundant phylum was Bacteroidetes. Its abundance increased from 12.54% in March to
19.23% in May and declined to 6.39% in September. Further, Cyanobacteria were two to
five times more abundant in September (3.62%) than in the other months.
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Candidatus Pelagibacter ubique, which accounts for most species of the genus Pelagibac-
ter, is distributed in marine environments at temperatures in the range of 12–15 °C and 
can be cultured at 18 °C [28,29]. In this study area, the water is slightly warmer in Septem-
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Figure 2. Monthly variation of bacterioplankton community relative abundance in seawater around
Jeju Island, South Korea, in four months in 2013. (a) Phylum and (b) class level. Taxa with relative
abundance < 1.0% were categorized as other bacterioplankton groups.

Class-level diversity varied considerably between months (Figure 2b). Specifically,
47 classes were identified, with Alphaproteobacteria, Gammaproteobacteria, Flavobacteriia,
and Cyanophyceae showing dominance in all of the months. Alphaproteobacteria was more
abundant in September (61.84%) and December (62.83%) than in May (35.58%) and March
(53.61%). Gammaproteobacteria and Flavobacteriia were more abundant in May (42.66% and
19.03%, respectively) than in the other months. Cyanophyceae exhibited 1.48% relative
abundance in May and was more abundant in September (3.59%). However, in December,
its abundance decreased (1.25%).



Int. J. Mol. Sci. 2023, 24, 13561 4 of 13

2.2.3. Changes in Common Bacterioplankton

The genus-level heat map of the bacterioplankton community revealed distinct changes
in diversity over the months (Figure 3a). Of the 719 genera identified, 12 accounted for >5%
of the total bacterioplankton relative abundance. Via nonmetric multidimensional scaling
(NMDS) analysis, the bacterioplankton community was classified into two groups, consid-
ering a 35% similarity level (Figure 3b). Thus, Candidatus Pelagibacter (Alphaproteobacteria)
was identified as the most abundant genus in all the months and was most abundant in
December (29.24%). Aestuariibacter (Gammaproteobacteria), the second most abundant genus,
was detected in all months except September and was most abundant in March (23.18%).
Further, the highest abundances of Lentibacter (8.33%), Nereida (7.20%), Loktanella (5.54%),
and Aliiroseovarius (5.44%), belonging to Alphaproteobacteria, were recorded in March, and
the highest abundances of Marinomonas (11.17%; Gammaproteobacteria) and Aurantivirga
(10.16%; Bacteroidetes) were recorded in May. September showed the highest abundances of
Vibrio (7.80%) and Pseudoalteromonas (6.53%), which are Gammaproteobacteria. Furthermore,
Citromicrobium (6.16%; Alphaproteobacteria) was detected only in September, and December
showed the highest abundance of Leisingera (22.0%; Alphaproteobacteria).
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Figure 3. Heatmap of the relative abundances of the operational taxonomic units (OTUs) of com-
mon bacterioplankton (for OTUs with relative abundance > 1% in at least one sample) in seawater
samples collected around Jeju Island, South Korea, in four different months in 2013. (a) Hierar-
chical agglomerative clustering results based on the group average of the relative abundances of
the bacterioplankton OTUs. (b) Nonmetric multidimensional scaling (NMDS) plot for the bacterio-
plankton community based on the Bray–Curtis dissimilarity method. The relative abundances were
square-root normalized.

Candidatus Pelagibacter ubique, which accounts for most species of the genus Pelagibacter,
is distributed in marine environments at temperatures in the range of 12–15 ◦C and can
be cultured at 18 ◦C [28,29]. In this study area, the water is slightly warmer in September,
but still within this range; however, salinity varies substantially, in the range of 18–34.
Reportedly, Candidatus Pelagibacter ubique grows under oligohaline–mesohaline conditions
at salinity values≥ 30 [29,30]. Thus, the temperature and salinity conditions of the seawater
at our study site favor the growth of species of the genus Pelagibacter.

For Aestuariibacter halophilus, the most abundant species of this genus, the optimum
temperature and pH for growth are 40 ◦C and pH 7–8, respectively, but its growth is still
possible at 15–40 ◦C. This species exhibits strict halophilicity; hence, it requires the saline
conditions of seawater for growth [31]. Low salinity, therefore, limited its growth in this
region in the month of September. Citromicrobium, detected only in September, comprised
one species, C. bathyomarinum, which grows under temperature, salinity, and pH conditions
in the ranges 20–42 ◦C, 0–10, and 6.0–8.0, respectively [32]. Thus, the water around Jeju
Island is most suitable for C. bathyomarinum in September. Given that bacterial growth
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is affected by various environmental factors, it is difficult to clarify the effects of water
temperature and salinity in this regard. In this study, however, these two factors were
identified as the most important factors affecting bacterial growth and distribution.

We performed LEfSe (Linear discriminant analysis Effect Size) analyses to identify
the abundant bacterioplankton taxon based on a comparison between September and
the other months (March, May, and December) (Figure 4; Table S1). Based on the results
obtained, Cyanophyceae, Alphaproteobacteria (Kiloniellales, Rhodospirillales, Sphingomonadales),
Saprospirales, and Pseudomonadales were identified as the major bacterioplankton in Septem-
ber. Conversely, Bacteroidetes and Gammaproteobacteria (Pseudomonadales, Alteromonadales,
and unclassified Gammaproteobacteria) constituted the common taxa in Jeju seawaters in the
other months.
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Figure 4. Cladograms of attached bacterioplankton lineages differ significantly between September
and other months. The associated bacterioplankton groups at phylum to genus levels are listed
from the center to the outside. The circle diameters are proportional to bacterioplankton taxon
abundance. Significant discriminatory nodes are colored, and branch areas are shaded according to
the highest-ranked group for the given taxon. Green and red areas indicate September and other
months, respectively.

2.3. Identification of Potential Pathogens

At the class level, we identified the following potentially pathogenic bacteria: Gamma-
proteobacteria (44 OTUs), Flavobacteriia (three OTUs), Betaproteobacteria (one OTU), and Ep-
silonproteobacteria (one OTU) (Table S2). In particular, Vibrio (28 OTUs) and Pseudoalteromonas
(six OTUs) were the most abundant potentially pathogenic genera (Figure 5, Table S2),
and were most abundant in September. Further, potential pathogenic bacteria showed
significantly increased relative abundances in September (p < 0.05, one-way ANOVA).
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potentially pathogenic. These results were obtained by performing one-way ANOVA and Scheffe’s
post hoc test. The letters A and B indicate significant differences among months (p < 0.05).

The relative abundance of potentially pathogenic bacteria was significantly and pos-
itively correlated with water temperature (Spearman correlation analysis; p < 0.05). In
particular, the relative abundance of Pseudoalteromonas showed a highly significant cor-
relation with water temperature (p < 0.01, ρ = 0.835). For Pseudoalteromonas, the optimal
temperature for growth is >20 ◦C [33]. Further, Vibrio spp. were 3.5–14 times more abundant
in September than in the other months. Reportedly, Vibrio grows at temperatures > 20 ◦C
(similar to the temperature of the seawater around Jeju Island in September) and can toler-
ate salinity in the range 3–37 [34]. It has also been reported that Vibrio abundance is strongly
associated with water temperature [35,36]. Vibrio and Pseudoalteromonas were the most
common potential pathogens detected in the waters of Kaneohe Bay, Hawaii [37]. These
potentially pathogenic bacteria can infect various marine plants and animals, including
humans (Table S2). In particular, V. kanaloae, V. tasmaniensis, V. chagasii, P. tetraodonis, and P.
nigrifaciens infect marine animals, such as lobsters, fish, oysters, and sea cucumbers.

3. Materials and Methods
3.1. Sample Collection

Seawater samples (1 L) were collected from a 1 m depth at two sites around Jeju Island
(Site 1, 33◦22′89′′ N, 126◦56′53′′ E; Site 2, 33◦23′53′′ N, 126◦56′53′′ E) on 10 March, 21 May,
8 September, and 10 December 2013 (Figure 6). The seawater temperature and salinity at
these sampling points were obtained from the Marine Environment Information System
of Korea (http://www.meis.go.kr, accessed on 15 May 2014). Thereafter, 1 L samples of
the collected seawater were each passed through a polycarbonate filter (3 µm pore size)
(TSTP04700, Millipore, Ireland), harvested, and further passed through a 0.2 µm filter
(A020A047A, Advantec MFS Inc., Tokyo, Japan). Next, they were stored at 4 ◦C until
genomic DNA extraction.

http://www.meis.go.kr
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3.2. Metabarcoding Analysis

The filters containing the microbes were cut into eight pieces before DNA extraction.
Thereafter, total microbial DNA was isolated using the PowerSoil DNA Isolation Kit (MoBio,
Solana Beach, CA, USA) according to the manufacturer’s instructions. The extracted
genomic DNA was then subjected to PCR amplification using primers targeting the V1–V3
region of the 16S rRNA gene [18], i.e., 27F forward primer, 5′-GAG TTT GAT CMT GGC
TCA G-3′ and 518R reverse primer, 5′-ATT ACC GCG GCT GCT GG-3′. Partial 16S rDNA
gene sequences were used to analyze bacterial diversity. Given that the divergence level
varies between the regions of the 16S rDNA gene, the choice of partial sequence regions
can significantly affect analysis results [38]. Thus, it was important to determine whether a
partial 16S rDNA sequence region could support bacterial characterization as reliably as
nearly full-length 16S rDNA genes.

Each primer was tagged using multiplex identifier (MID) adaptors (Roche, Mannheim,
Germany) following the manufacturer’s instructions. The use of MID adaptors enabled the
automatic sorting of metabarcoding-derived sequencing reads. Further, amplification was
performed under the following conditions: pre-denaturation at 95 ◦C for 5 min; 30 cycles
of denaturation at 95 ◦C for 30 s, primer annealing at 55 ◦C for 30 s, elongation at 72 ◦C
for 30 s; and final elongation at 72 ◦C for 5 min. The PCR products were purified using a
QIAquick PCR Purification Kit (cat. 28106; Qiagen, Hilden, Germany). Similar amounts
of extracted PCR products were pooled, and short fragments (non-target products) were
eliminated using the AMPure Bead Kit (Agencourt Bioscience, Beverly, MA, USA). PCR
product size and quality were further evaluated using a Bioanalyzer 2100 device (Agilent,
Palo Alto, Foster City, CA, USA). Thereafter, sequencing was conducted using the 454 GS
Junior Sequencing System (Roche Applied Science, Penzberg, Germany) following the
manufacturer’s instructions.

3.3. Bioinformatics Analysis

Following metabarcoding, bioinformatics analysis was performed as previously de-
scribed [18]. After sequencing, the quality check was performed to remove short sequence
reads (<150 bp), low-quality sequences (quality score < 25), singletons, chloroplast se-
quences, non-bacterial ribosomal sequences, and chimeras [39,40]. Then, using the Basic
Local Alignment Search Tool (BLAST v. 2.14.0), the sequence reads obtained were compared
to the sequences in the Silva rRNA database. Similar sequence reads (E-value < 0.0001)
were considered partial 16S rDNA sequences, and the taxonomic level (class or genus) of
the most similar sequence in the rRNA database was assigned to each of the identified
sequence reads. To analyze OTUs, CD-HIT-OTU software was used for clustering [41],
while Mothur platform (v 1.35.1) was used to estimate Shannon–Weaver diversity and
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Chao1 richness [42]. The taxonomy of the sequence with the highest similarity was assigned
to the sequence read (species or genus levels with >98 or >94%, respectively).

3.4. Statistical Analysis and Selection of Potentially Pathogenic Bacteria

Data were presented as the mean of samples from two sampling sites. To compare
bacterioplankton community abundances among the four months, hierarchical clustering
analysis was performed via “group average” clustering using the Bray–Curtis dissimilarity
method. This generated a ranked similarity matrix in which the rows represented the
rankings of the column cases based on their similarity to the corresponding row case. OTU
class and family relative abundances were square-root normalized for comparison. Normal
distributions were assessed using the Kolmogorov–Smirnov test. We also considered
OTUs with a relative abundance > 1% in at least one sample as ‘abundant’ and pooled
the remainder.

To examine the relationships between measured parameters, Spearman correlation
analysis was employed. An ordination plot was produced via nonmetric multidimen-
sional scaling (NMDS) using a ranked similarity matrix. Further, the clustering, NMDS,
and correlation analyses were performed using PRIMER 6 (v 6.1.13). Alpha diversity
metrics and OTUs were analyzed using the ‘vegan’ package [43] in R Studio (v. 1.3.959).
Heat maps of the relative abundances of the most abundant OTUs were plotted using
ggplot2 [44] in R Studio. The investigated months were compared via one-way analysis of
variance (ANOVA), followed by Scheffe’s post hoc test. p values < 0.05 were considered
statistically significant.

To perform linear discriminant analysis (LDA), the Kruskal–Wallis test was employed
to assess differences among classes (α < 0.05), while the pairwise Wilcoxon test, acting
as a non-parametric analog, was conducted to compare subclasses (α < 0.05) [45,46]. The
threshold on the logarithmic LDA score was set to 2.0 to determine discriminative fea-
tures [47,48]. After the analysis was completed, the number of differentially abundant
OTUs identified using each tool was assessed at an α level of 0.05. Finally, the potential
presence of taxonomic groups that may explain the difference between bacterioplankton
communities in different samples was explored using Linear discriminant analysis Effect
Size (LEfSe, v 1.0) in the Galaxy framework.

The selection of potentially pathogenic bacteria was based on the literature. The
characteristics and references on the basis of which these potential pathogenic bacteria
were chosen are shown in Table S2.

4. Conclusions

In this study, we examined the variation in bacterioplankton diversity, community
composition, and the presence of potentially pathogenic bacteria in the waters around Jeju
Island for four months in 2013. Thus, we observed that community diversity was highest in
September, within which the highest abundance of potentially pathogenic bacteria was also
observed. This is the first study describing species-level diversity and several pathogenic
bacteria in seawater in the study region. These findings regarding potentially pathogenic
bacteria can be used to develop an early warning system with respect to marine pathogens.
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