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Abstract: Neural stem cells (NSCs) were described for the first time more than two decades ago for 
their ability to differentiate into all neural cell lineages. The isolation of NSCs from adults and 
embryos was carried out by various laboratories and in different species, from mice to humans. 
Similarly, no more than two decades ago, cancer stem cells were described. Cancer stem cells, 
previously identified in hematological malignancies, have now been isolated from several solid 
tumors (breast, brain, and gastrointestinal compartment). Though the origin of these cells is still 
unknown, there is a wide consensus about their role in tumor onset, propagation and, in particular, 
resistance to treatments. Normal and neoplastic neural stem cells share common characteristics, and 
can thus be considered as two sides of the same coin. This is particularly true in the case of the Zika 
virus (ZIKV), which has been described as an inhibitor of neural development by specifically 
targeting NSCs. This understanding prompted us and other groups to evaluate ZIKV action in 
glioblastoma stem cells (GSCs). The results indicate an oncolytic activity of this virus vs. GSCs, 
opening potentially new possibilities in glioblastoma treatment. 
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1. Introduction 
Since the last century, it has been assumed that the nervous system (NS) cannot 

replicate or undergo repair processes. The relatively recent study of new cells (e.g., 
neurons, glia) within the adult NS offers input for the isolation and the analysis of neural 
precursors/progenitors (NPCs) or neural stem cells (NSCs). Adult NSCs were isolated for 
the first time from a mouse central nervous system (CNS) in 1992 [1]. These cells grow in 
suspension, as spherical clusters, in medium without supplemented serum but with 
epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). The NSCs can 
be expanded as neurospheres or driven to differentiation into various nervous system 
lineages (Figure 1) [1]. Several groups have reported on the isolation and characterization 
of similar populations from different species, included human. For example, in the adult 
brain, mammalian NSCs reside in the subventricular zone (SVZ) and subgranular zone 
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(SGZ) of the hippocampus (recently reviewed by Llorente et al., 2022 [2]). These cells 
reside in their niche, and have a particular ability to resist apoptosis induced by acute 
brain injury, while exhibiting endogenous mechanisms of resistance [3,4]. 

 
Figure 1. Representative bright-field microscopy image of human neural stem cells (NSCs). NSC-
derived neurospheres were grown in serum-free condition, proliferating in suspension. 

The first characterization of tumor stem cells occurred in the hematopoietic system, 
where a specific population (CD34+, CD38−) was found to be responsible for leukemic 
propagation [5] in severe combined immunodeficient (SCID) mice. Similarly, brain tumor 
stem cells (BTSCs) (Figure 2) have been isolated and characterized [6]. This brain tumor 
cell population shares NSC characteristics and growth conditions. It is generally 
acknowledged that cancer arises from transformed stem cells, and this theory was recently 
reviewed by Liang and Kaufmann [7], extending it to the nervous system [8,9]. Several 
studies have pointed to the characterization of NSCs and BTSCs, both to provide 
therapeutic solutions for neurodegenerative diseases or traumatic injuries, and to prevent 
uncontrolled proliferation in neoplastic transformation. 

In this review, we seek to summarize some of these achievements, focusing our 
attention on the thread that binds normal and transformed cells and on the importance of 
an accurate analysis of their common features. In particular, we have focused on the link 
between neural development and cancer, as demonstrated by the Zika virus (ZIKV) 
lesson, in which a virus that impairs neural development can represent a new hope for 
glioblastoma treatment [10–12]. 
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Figure 2. Representative bright-field microscopy image of human glioblastoma stem cells (GSCs). 
Tumor-derived spheres were grown in serum-free condition, proliferating in suspension. 

2. Neural Stem Cells 
NSCs are the precursors that participate in CNS development at the embryonal level, 

and that provide maintenance and repair to the CNS in adult life. NSCs can undergo self-
renewal replication or differentiate into the main neural cell types: neurons, astrocytes, 
and oligodendrocytes. These cells grow in vitro as neurospheres (Figure 1), and their 
propagation in culture takes place in absence of serum and in presence of EGF and bFGF 
[13]. Moreover, they can differentiate into various lineages (e.g., neurons, astrocytes, and 
oligodendrocytes) in adhesion (Figure 3), in the presence of low serum concentration (1–
2%). The mechanisms responsible for the maintenance of an undifferentiated state have 
not been fully elucidated, though some of the players involved in the neural 
developmental program have been defined. Among them a key role is ascribed to Notch, 
a transmembrane receptor involved at various levels and in different species in 
neurodevelopmental processes [14]. This receptor, originally described in the Drosophila 
nervous system, consists of a single-pass transmembrane protein that is activated by 
various ligands (Jagged, Delta, Serrate), triggering, with their binding, a proteolytic 
cleavage cascade, firstly from a metalloprotease (ADAM10, ADAM17), and subsequently 
from the γ-secretase complex. Hence, Notch intracellular domain (NCID) is released from 
the membrane and translocated into the nucleus, where it promotes the transcription of 
specific genes (HES/HEY family). In addition to the activity crucial for the maintenance of 
the undifferentiated status in the nervous system, Notch can also determine cell fate 
during differentiation [15]. In particular, the down-modulation of the Notch receptor or 
its ligands results in a dramatic reduction of the NSC pool [16,17]. While its constitutive 
activation from NCID inhibits neuronal differentiation, this action sustains the idea of a 
permissive role of Notch that contributes to the maintenance of a pluripotent state in 
precursor cells [18]. This is supported by the observation of Notch involvement in the 
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regulation of cell fate by controlling precursor differentiation [19] through neurogenesis 
and gliogenesis regulation in the embryonal stages [20]. 

 
Figure 3. Human neural stem cells (NSCs): (A) representative bright-field microscopy image after 
differentiation by 2% FBS induction on Matrigel-treated plates; (B) immunofluorescence staining 
after differentiation of specific lineage markers. GFAP (glial) and Beta3 (neuron) in red, blue for 
nuclei (DAPI). 

Notch function in neural stem cell maintenance is counteracted by its historic antag-
onist: the docking protein Numb [21]. Numb’s role in NS normal and pathological differ-
entiation has been studied for several years (reviewed by Ortega-Campos and García-
Heredia [21]). This docking protein is involved in many cellular processes, from clathrin-
dependent pit internalization to the modulation of E3 ligases (Itch, MDM2). Its role in 
counteracting Notch goes back to Drosophila genetic studies [21], though the mechanisms 
have not been fully elucidated. Numb controls the differentiation processes in nervous 
system development [21]. One of the mechanisms through which Numb inhibits Notch is 
mediated by the Itch E3 ligase, the binding of which induces Notch ubiquitination and, 
subsequently, its proteasomal-dependent degradation. Conversely, the binding to Itch in-
hibits p73 proteasome-dependent degradation [12]. P73 belongs to the p53 family, and is 
directly involved in NSC proliferation; indeed, NSCs p73-/- shows a reduced size and a 
lower replicative rate [22]. This complex network is tightly regulated, and the precise 
mechanistic interaction is not completely clear in the embryonal development of the nerv-
ous system. Notch ligands themselves that are expressed from the neighboring cells exert 
an effect in this process. In particular, it has been shown that the Delta-like 1 intracellular 
domain (D1ICD), together with Numb, inhibits Notch signaling. D1ICD induces by lateral 
inhibition its differentiation effect in a Notch-independent manner by repressing the MAP 
kinase pathway through the inhibition of Erk1/2 phosphorylation and the induction of 
NSCs neuronal differentiation [23]. The Notch pathway also participates in stemness 
maintenance and senescence inhibition in cooperation with ataxia-telangiectasia mutated 
(ATM). Dong et al. isolated NSCs from ATM-/- mice and compared their characteristics 
with the wild type [24]. ATM-deficient NSCs reduced their replicative rate after three 
months of culture, as assessed by Ki67 analysis. ATM-/- NSCs, if induced to differentiate 
(1% Serum 7 dd), show a marked reduction in neuron numbers and an increased percent-
age of astrocytes [24]. Moreover, functional analysis has shown a decrease in Notch activ-
ity by approximately 40% in ATM-/- NSCs, and gene expression by RT PCR has revealed 
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a decrease in the stemness factor Musashi [24]. Musashi is a translation regulator involved 
in neural development, and is involved in Notch/Numb pathways by regulating Numb 
translation [25]. RNA translation in NSCs is regulated not only by proteins, such as Mu-
sashi, but also by miRNA expression that influences cell fate. Among them, miR-9 has a 
pivotal role [26]: the down-modulation of its expression has a strong effect on neurosphere 
size, NSC proliferation, differentiation, and migration [27]. Like others, this miRNA 
shows multiple targets involved in neurogenesis, such as the monocyte chemotactic pro-
tein-induced protein 1 (MCPIP1), which regulates differentiation and migration [27]. MiR-
9 also inhibits Hes-1 (Hairy and Enhancer of Split 1) expression, a Notch downstream gene 
[26,28]. In an opposite way, miR-138 and miR-485 expression reduces NSC proliferation 
by down-modulation of thyroid hormone receptor interacting protein 6 (TRIP6), a gene 
involved in NSC differentiation [29,30]. A distinctive feature of both miRNAs is the ability 
to induce NSC differentiation, despite their expression being reduced during the progres-
sion. 

3. Brain Tumor Stem Cells 
Two decades ago, it was found that the origin of a tumor mass in the brain is depend-

ent on a specific cell named tumor-initiating cell (TIC) or BTSC. This led to the establish-
ment of a hierarchical organization of cancer onset, in which BTSCs are responsible for 
self-renewal and metastatic spreading through symmetric division. Simultaneously, 
BTSCs can divide asymmetrically, differentiating into a cancer agglomerate. BTSCs most 
likely derive from a transformed NSC [6], and recent evidence indicates that glioblastoma 
originates from one of the regions where the NSCs are localized in adults, the SVZ [31]. In 
vitro experiments have demonstrated that after a prolonged culture NSCs undergo a 
spontaneous transformation into BTSCs [32]. After this identification, a number of studies 
investigated their characterization, starting with the specific markers, and their biology to 
discriminate them from their normal counterparts [33]. In fact, BTSCs share most charac-
teristics with NSCs, starting with their ability to self-renew and differentiate, and their 
surface markers [33]. Both cell types have been found positive for Nestin or CD133 
(prominin-1) [34] and grow in the same serum-free medium with bFGF and EGF. BTSC 
cellular markers have been studied for various reasons, one being the prognosis of glio-
blastoma; CD133 and high Nestin expression have been correlated with poor outcomes in 
glioblastoma patients [35,36]. CD133 expression also has a functional role, as demon-
strated by in vitro and in vivo studies (recently reviewed by Ahmed et al. [37]), where 
glioblastoma stem cells (GSCs) with reduced CD133 showed a decreased sphere size due 
to the proliferation rate. Moreover, silencing CD133 expression in rat glioblastoma models 
results in an increased overall survival rate compared with the CD133-expressing tumors. 
Various research groups have analyzed functional markers in BTSC to narrow therapeutic 
approaches: among them a recent report identified integrin α-7 (ITGA7) as a key regulator 
in GSCs proliferation, and demonstrated its involvement in glioblastoma growth rate and 
invasiveness [38]. In particular, ITGA7 expression has been correlated with the laminin 
activation pathway, where ITGA7/laminin binding triggers focal adhesion kinase (FAK) 
and Src phosphorylation in GSCs [38]. Moreover, the evaluation of ITGA7 microarray data 
of glioblastoma patients from the Cancer Genome Atlas (TCGA) shows that the higher 
expression of ITGA7 correlates with a poor prognosis [38]. 

BTSCs show two additional notable features: the marked ability to migrate and thus 
enhance tumor invasiveness, and a high level of resistance to therapeutic treatments (ra-
diation and/or chemotherapy). This last characteristic is made possible by the presence of 
sophisticated mechanisms enabling escape from DNA damage or apoptosis induction [4]. 
Several study groups have shown that numerous resistance mechanisms to therapy exist, 
including the inhibition of apoptotic response [4]. In particular, GSCs CD133+ show a sub-
stantial radiation resistance, while in xenograft animals treated with radiation (2 Gy) 
CD133+ showed an apoptotic response up to 5-fold lower compared to the CD133- coun-
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terpart [39]. Irradiation experiments have confirmed that DNA damage induces an in-
creased survival through an elevated level of phosphorylation in the checkpoint proteins 
Rad17, CHK1, CHK2, and ATM [39]. Further research has been aimed at targeting ATM 
kinase for glioblastoma treatment. In particular, GSCs have been treated with KU-55933, 
an ATM kinase inhibitor, in association with radiation [40]. This combined treatment acti-
vates the DNA repair activity that protects these cells [39], inducing G2/M arrest and re-
ducing cell viability [40]. It is remarkable that ATM signaling in NSCs induces senescence 
and proliferation reduction [24], and for this reason represents an attractive target for gli-
oblastoma therapeutic approaches [40]. Another NSC key gene for stemness, Notch, has 
been implicated for some time in BTSC onset and maintenance [19]; in fact, its activation 
in association with K-Ras increases in glioblastoma mice models the percentage of Nestin-
positive cells, indicating its direct involvement [41]. Notch activation, described above, 
activates Hes family transcription, where it has been demonstrated that Hes1 induces 
stemness in neuroblastoma BTSCs [42]. The overexpression of Hes1 results in a substantial 
enhancement of expression of the stemness markers (cKIT, Nestin, NANOG). Some ex-
periments on neuroblastoma cancer stem cells (NBSCs) with Hes1 activated have shown, 
by limiting dilution, a stronger ability to form spheres compared with controls [42]. More-
over, serial transplantation analysis in xenotransplant models has shown an enhanced 
self-renewal ability due to the Hes1 transcription activity [42]. The pivotal role of the 
Notch pathway has also been assessed with the use of γ-secretase inhibitors, which impair 
its activation, reducing the symmetric division and undifferentiated progenitor mainte-
nance of the NSCs [18,19], whereas it reduces proliferation and self-renewal ability in 
GSCs, suggesting that Notch inhibitors, such as γ-secretase inhibitors, could represent a 
promising application for glioblastoma therapeutic treatment [19]. Another class of Notch 
pathway proteins involved in its activation are the metalloproteinases ADAM10 and 
ADAM 17. These peptidase proteins have been specifically inhibited in BTSCs to increase 
migration ability, but induce differentiation [43], supporting the role of the Notch path-
way for self-renewal and stemness maintenance, in BTSCs (and NSCs). In the same path-
way, the contribution of Numb in BTSC cell fate and in brain tumor progression is im-
portant. In fact, Numb does not only act in opposition to Notch by inducing its degrada-
tion [44], but also, as described in the paragraph below, by modulating the stability of 
various proteins belonging to the p53 family, such as p53, p63, and p73, through the in-
teraction with MDM2 and Itch [12,45,46]. Moreover, it has been found that Numb expres-
sion inversely correlates with glioblastoma prognosis [12]. In this context, another player 
is Musashi, which modulates Numb translation, among other functions [47]. Musashi 
overexpression increases GSCs sphere formation after multiple passages, increasing stem 
self-renewal [47]. Furthermore, Musashi expression is associated with glioblastoma radio-
resistance by hyperactivation of DNA damage response (DDR) effectors after irradiation 
[47]. Beyond protein interplay, another common element among normal and tumoral 
brain SCs is represented by the miRNA profile. In fact, it has been found that they have 
comparable expression [48]. Some appear to be involved in resistance to temozolomide, 
one of the drugs used for glioblastoma treatment [49]. Analysis of miRNA in glioblastoma 
has been extensively carried out in an attempt to establish new therapeutic approaches 
(recently reviewed by Cheng et al. [50]), with perhaps the most interesting one belonging 
to the miR-34 family [51]. MiR-34a and miR34c have been shown to downmodulate Notch 
and Numb in GSCs. Their overexpression has been shown to induce inhibition of prolif-
eration and cell death, and for this reason represents a suitable therapeutic approach 
[12,52]. 
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4. Zika Virus in NSCs and BTSCs 
The similarity between normal and tumoral neural stem cells offers a singular oppor-

tunity to merge knowledge obtained from the study of the Zika virus (ZIKV) and glioblas-
tomas to improve therapies for neurodegenerative diseases and neoplasias. In this regard, 
a striking example is represented by ZIKV. 

ZIKV is a member of the Flaviviridae family, and was isolated for the first time in the 
Zika forest in Uganda, in 1947, from a rhesus monkey [53]. The ZIKV genome is contained 
in an icosahedral capsid and consists of a positive-sense single-stranded RNA of about 
10.7 kb [54]. The principal transmission vector is the Aedes mosquito. ZIKV infection in 
human adults is typically asymptomatic, with rare cases (<20%) of joint pain, rash, and 
mild fever that lasts for about a week. In exceptional cases it can induce some neurological 
complications, such as Guillain–Barré syndrome (GBS) [55]. The main impact of ZIKV is 
infection in pregnant women, in whom the virus also infects the fetus by crossing the pla-
cental barrier. At the fetal level, ZIKV can cause severe adverse effects, in particular neu-
rodevelopmental disorder leading to microcephaly [56]. Studies conducted in vitro on 
NSCs and organoids have revealed that ZIKV impairs neural development by specifically 
targeting stem cells [57,58]. While neural undifferentiated cells appear susceptible to ZIKV 
infection, the differentiated counterpart seems less reactive [58]. Viral infection in undif-
ferentiated cells induces a marked reduction in cell viability, with impairment of neuro-
sphere formation [57,58]. ZIKV effects on NSCs or organoids induce a programmed cell 
death, supporting the effect observed in fetal neurodevelopment disorders. The selectivity 
of ZIKV for undifferentiated neural progenitors is at present still unclarified, though some 
experimental evidence has been offered. Various studies have proposed the tyrosine ki-
nase receptor anexelekto (AXL), a member of the TAM (Tyro3, AXL, Mer) family, as the 
ZIKV entry point, while its inhibition reduces viral infection and NSC growth impairment 
[59–61]. Moreover, this receptor appears less expressed in neurons that are negligibly af-
fected by ZIKV infection, and more expressed in astrocytes or glial cells that are strongly 
infected [61]. However, AXL is not the only receptor responsible for ZIKV entry, because 
its depletion does not preclude the infection [62]. Further evidence using proteomic ap-
proaches and validation by infection and gene targeting have shown that the virus infects 
neural progenitors through the neural cell adhesion molecule (NCAM1) receptor [63]. 
Other studies have identified, through CRISPR-Cas9 genome-wide screening, that viral 
infection takes place through the internalization of the integrin αvβ5 receptor (ITGB5) 
[64]. By down-modulating this receptor, they inhibited ZIKV infection [64]. The distribu-
tion of this last receptor exactly matches the cell tropism of the virus, because it is ex-
pressed mostly on the surface of the neural progenitor and glial cells, but not on neurons 
that are less susceptible to ZIKV infection [64]. Regarding the undifferentiated precursor 
tropism, a work by Ferraris and colleagues showed an increased differentiation of neural 
progenitors after ZIKV infection, and an induction of differentiation mediated by the 
Notch pathway [65]. Moreover, Notch pathway suppression using the DAPT inhibitor 
was shown to reduce the number of viral particles after infection [65]. Furthermore, Mu-
sashi inhibition and the alteration of the differentiation pathway modify ZIKV infection 
and the production of viral particles [66]. The link with the precursor-specific protein Mu-
sashi was further demonstrated by RNA pull-downs, where this protein directly interacts 
with the 3′UTR of ZIKV RNA and co-localizes with the replication intermediate (DS RNA), 
as assessed by confocal and STED super-resolution microscopy [67]. The same group 
showed that Musashi is essential for ZIKV replication, while its down-modulation re-
sulted in a reduced number of viral particle production. A recent report defined the RNA 
binding region, demonstrating that it is conserved in the ZIKV strains, and it is not com-
mon to other flaviviruses [68]. The establishment of Musashi as a key protein in the repli-
cative cycle of ZIKV clarifies the unique tropism of this virus for neural progenitors. 

This unique tropism for neural undifferentiated progenitors prompted us and other 
groups to evaluate whether ZIKV can have an effect on BTSCs, considering the common 
features shared with NSCs. Consequently, once the impact on NSCs was demonstrated, 
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the immediate step was to assess its influence on BTSCs, specifically focusing on GSCs 
[10]. GSCs express the same receptors as NSCs, in particular AXL [12], one of the receptors 
identified for viral entry in NSCs. 

Supported by this evidence, we and others analyzed ZIKV activity on GSCs [10,12]. 
As expected, ZIKV infects human GSCs and inhibits their proliferation in vitro, inducing 
apoptosis, as evaluated by PI (Sub G0 fraction) analysis and caspase activation [10,12]. 
One intriguing aspect was the induction of the differentiation processes after ZIKV infec-
tion, as observed in NSCs [12,65]. The analysis of miRNA expression by NGS showed a 
clear increase in miR34c after ZIKV infection in all GSCs used [12]. This increase, con-
firmed by RT-PCR, is specific and directly dependent on ZIKV, which in turn modulates 
downstream targets of miR34c. In fact, we observed in GCSs infected with ZIKV, by West-
ern blot analysis, a marked reduction in Notch, Bcl2 and Numb expressions [12]. The last 
appears to be either involved in the regulation of p73 expression in a proteasome-depend-
ent manner [12]. Moreover, the overexpression of miR34c itself induces similar effects on 
cell proliferation and gene regulation [12]. Mir34 expression can be explained in different 
ways. One is the interferon (IFN)-mediated response induced by flavivirus and mediated 
by IRF3/Wnt, activated when cells are exposed to pathogen-associated molecular patterns 
(PAMPs) (e.g., viral double-stranded RNA) [69,70]. Another explanation is that ZIKV in-
fection triggers DNA double-strand breaks (DSBs) and, consequently, p53 expression, 
which acts in a feedback loop with miR34, where p53 induces mi34 expression, and miR34 
represses p53 [71,72]. 

Zhu et al. observed that more than 90% of GSCs infected cells were SOX2+ [10]. SOX2 
is expressed in undifferentiated progenitor cells and is involved in neurodevelopmental 
and pluripotency processes [73]. The presence of SOX2 was further associated with an 
enhanced oncolytic effect promoting viral entry and ZIKV infection, in association with 
ITGA5 [73]. In particular, it was demonstrated that SOX2 promotes ITGA5 and enhances 
ZIKV infection [73]. GCSs xenograft treated with temozolomide (TMZ) and a ZIKV-atten-
uated strain demonstrated the efficacy of this approach in vivo for glioblastoma treatment 
[10]. 

5. Conclusions and Remarks 
The study of stem cells is of paramount importance for regenerative medicine and 

the treatment of metabolic diseases. However, as ZIKV shows, there is no clear-cut path 
in science in which a virus involved in treating a developmental defect can contribute to 
a new therapeutic approach for such an extremely malignant disease as glioblastoma (Fig-
ure 4). The main effect of this virus in humans is the infection and the destruction of NSCs 
in embryos causing neurodevelopmental defects, whereas in adults the effects are very 
limited. Glioblastoma (grade IV glioma, WHO) is a nervous system malignant tumor, with 
a poor response to radiation/chemotherapy, and a median survival of about 14 months 
[74,75]. In most cases, the tumor recurs, with a fatal outcome [74]. New therapeutic options 
have been proposed, though no efficient treatment has been described. Cellular therapies 
using CAR (chimeric antigen receptor, CAR-T or CAR-NK) have been described [76,77]. 
Viral therapy herpes simplex virus 1 (HSV-1), adenovirus, vaccinia virus, reovirus, par-
vovirus, New Castle disease virus, and poliovirus do not appear to be successful ap-
proaches [11,78]. On the other hand, the encouraging effects of xenograft GBM mouse 
models infected with ZIKV, where the viral infection induces an oncolytic activity by re-
ducing tumor size and metastatic diffusion, increasing animal survival, invite prompt 
translation to attempts at clinical therapies [10,79,80]. A single intracerebroventricular 
ZIKV dose has been shown to induce an oncolytic effect in vivo [80]. The same effect was 
also positively tested in immunocompetent dogs with spontaneous brain tumors, where 
ZIKV intrathecal injections significantly improved their neurological symptoms, extend-
ing their survival, with a reduction of tumor size and preservation of normal neurons [81]. 
However, 5 years after the first report [10], the only experience with ZIKV as a treatment 
in humans is a communication at a conference of a single compassionate case [82]. It is not 
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clear why there has been such a delay in clinical trials for glioblastoma treatment with 
ZIKV, given that the virus alone has negligible effects in healthy humans. We hope that in 
the near future clinical trials or at least compassionate care will start for the treatment of 
glioblastomas with ZIKV. 

 
Figure 4. Two sides of the same coin. Development vs. cancer; both cell types display common fea-
tures: proliferating ability, migrating ability/invasiveness, resistance to apoptosis/cell death. ZIKV 
that inhibits NSCs and induces cell death is involved in development and can be used against GBM 
because of its specific action toward GSCs (red arrow), inducing apoptosis and reducing tumor 
growth. 
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