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Abstract: Biliary obstruction diseases are often complicated by an impaired intestinal barrier, which
aggravates liver injury. Treatment of the intestinal barrier is often neglected. To investigate the
mechanism by which intestinal bile acid deficiency mediates intestinal barrier dysfunction after
biliary obstruction and identify a potential therapeutic modality, we mainly used a bile duct ligation
(BDL) mouse model to simulate biliary obstruction and determine the important role of the bile acid
receptor FXR in maintaining intestinal barrier function and stemness. Through RNA-seq analysis of
BDL and sham mouse crypts and qRT-PCR performed on intestinal epithelial-specific Fxr knockout
(Fxr∆IEC) and wild-type mouse crypts, we found that FXR might maintain intestinal stemness by
regulating CYP11A1 expression. Given the key role of CYP11A1 during glucocorticoid production,
we also found that FXR activation could promote intestinal corticosterone (CORT) synthesis by ELISA.
Intestinal organoid culture showed that an FXR agonist or corticosterone increased crypt formation
and organoid growth. Further animal experiments showed that corticosterone gavage treatment
could maintain intestinal barrier function and stemness, decrease LPS translocation, and attenuate
liver injury in BDL mice. Our study hopefully provides a new theoretical basis for the prevention of
intestinal complications and alleviation of liver injury after biliary obstruction.

Keywords: intestinal barrier; intestinal stemness; biliary obstruction; FXR; CYP11A1; corticosterone

1. Introduction

Biliary obstruction is a common disease that affects a large share of the world’s
population, with common causes including gallstones, tumors, inflammation, etc. [1]. It
can lead to serious complications such as liver damage, bleeding, infections, malnutrition,
and multiple organ failure [2]. Biliary obstruction can cause a series of pathophysiological
changes in the intestinal tract, including impaired intestinal barrier function and increased
permeability, and then cause bacterial displacement, aggravating other complications [3,4].
Currently, surgery is the main treatment for biliary obstruction-related diseases, while the
related treatment of intestinal barrier dysfunction is often neglected. Meanwhile, targeting
the intestinal epithelial barrier has proven therapeutic promise, and more research is needed
to define the mechanisms [5].
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The intestinal mechanical barrier consists of intestinal epithelial cells and intercellular
junctions, which are important components of the intestinal barrier [5]. The intestinal epithe-
lium is a highly dynamic structure that can complete epithelial cell renewal almost every
3–5 days. The crypt–villus structure and continuous proliferation enable the intestine to act
as an absorptive organ and a protective barrier. Intestinal stem cells in intestinal crypts are
the main driving cells of intestinal epithelial renewal [6]. Stem cell maintenance, regenera-
tion, and differentiation are regulated by several factors: interleukins, Hippo signaling and
metabolic cues, WNT, NOTCH, EGF, and so on [6]. Tight junctions are the main determinant
of paracellular permeability and eliminate the space between intestinal cells, as observed by
transmission electron microscopy [7]. The main members of intestinal tight junction proteins
include the functional proteins ZO family proteins (including ZO-1, 2, 3) and structural pro-
teins Occludin and Claudin. As a functional protein, ZO-1 mainly acts as a bridge between
Occludin, Claudin, and skeletal protein F-actin [8,9]. The decrease in tight junction protein
expression or structural disruption is the most important molecular manifestation of intestinal
mechanical barrier disruption [1,10].

Intestinal bile acid deficiency is one of the changes in the intestinal environment in
biliary obstruction-related diseases. In addition to assisting in digestion and absorption,
bile acids have been proven to be an important signaling molecule linking the commu-
nication between the liver and intestine. Bile acids can regulate the function of the liver,
intestine, and cells through multiple signaling pathways and even regulate the intestinal
microenvironment and microecology [11–13]. Different bile acids can activate their cor-
responding bile acid receptors, mainly farnesoid X receptor (FXR or NR1H4), pregnane
X receptor (PXR), vitamin D receptor (VDR), and Takeda G-protein receptor 5 (TGR5) [14–17].
Recent studies have shown that FXR is the most important receptor for bile acids to act as a
signaling molecule. FXR plays an important role in bile acid homeostasis and inflammatory
bowel disease, colorectal cancer, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and
other diseases [18]. Some studies have shown that FXR plays an important role in maintaining
intestinal barrier function [19]. Obeticholic acid (OCA), an FXR-specific agonist, can partially
restore intestinal barrier damage, increase permeability caused by biliary obstruction, and
indirectly alleviate liver damage [20,21]. Bile acids also play an important role in the prolif-
eration of intestinal stem cells, and lithocholic acid (LCA) has been found to promote the
growth of small intestinal organoids through TGR5 [22]. However, the role of FXR in the
maintenance of intestinal stemness is still controversial. One study suggests that FXR can
promote the expression of tumor stem cell-related markers [23], while another suggests that
the selective activation of FXR can inhibit the growth of tumor stem cells [24]. However, the
specific function of FXR in common intestinal stem cells has not been clarified.

In the present study, we aimed to determine the role of bile acids and the bile acid
receptor FXR in maintaining intestinal barrier function and stemness in biliary obstruc-
tion diseases. The bile duct ligation mouse model was mainly used in this study, and
RNA-seq was used to discover genes regulated by FXR. Here, we investigated whether FXR
activation promoted the expression of cytochrome P450 family 11 subfamily A member 1
(CYP11A1), a corticosterone synthesis rate-limiting enzyme, and increased corticosterone
synthesis and secretion in the intestine. Then, corticosterone is involved in maintaining
intestinal barrier function and stemness and attenuates liver injury, inflammation, and
fibrosis. Our study showed a mechanism by which bile acid deficiency mediated intestinal
barrier and stemness dysfunction after biliary obstruction and demonstrated the feasibility
of corticosteroid treatment in biliary obstruction disease.

2. Results
2.1. Intestinal Bile Acid Deficiency Induces Intestinal Barrier and Stemness Dysfunction

Previous studies have shown that patients with biliary obstruction or animal models
with BDL display intestinal barrier compromise [3,20]. However, studies on whether bile
acid plays a key role that directly affects intestinal barrier function are still lacking, and the
relevant mechanisms are still unclear. In this study, we performed BDL and BD experiments
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to simulate intestinal bile acid deficiency. Atrophied intestinal villi appeared in both BDL
mice and BD mice, and a marked absence of goblet cells was observed after intestinal
bile acid deficiency, indicating that the ability of the intestine to secrete mucus decreased
(Figure 1A). The decline in tight junction gene (Tjp1, Ocln, and Cldn1) mRNA expression
also illustrated intestinal barrier damage (Figure 1B). Meanwhile, similar to BDL mice,
there was patchy liver inflammation damage in BD mice (Figure S1A).

As intestinal cells have a high turnover rate, cellular proliferation and differentiation
are remarkable features, and intestinal crypts play a key role. Then, we detected the
proliferation marker PCNA, and PCNA-positive cells were significantly reduced in BDL
or BD mouse intestinal crypts (Figure 1C). Intestinal epithelial renewal was dependent on
intestinal stem cells. The expression of intestinal stem cell markers (Lgr5 and Olfm4) was
significantly decreased in the BDL mice and BD mice (Figure 1D). These results confirmed
that intestinal bile acid deficiency inhibits intestinal cell proliferation and impairs intestinal
stemness.

2.2. Activation of Fxr Maintains Intestinal Barrier Function and Stemness in BDL Mice

Bile acid receptors are the main mediators of the biological functions of bile acids.
To understand the possible mechanism by which intestinal bile acid deficiency mediates
intestinal barrier and stemness dysfunction after biliary obstruction, we investigated the
expression of the intestinal bile acid receptors Fxr and Tgr5 in the BDL, BD, and sham
groups of mice. Following BDL or BD, the mRNA level of intestinal Fxr was significantly
decreased, while the expression of Tgr5 was not significantly different (Figure 1E). The
protein expression of Fxr and Tgr5 was also significantly decreased in the BDL mice intestine
(Figure 1F). According to these results, we focused on the ability of Fxr to function in the
intestinal barrier and stemness dysfunction in BDL mice.

Previous studies have shown that Fxr activation can restore the expression of the tight
junction protein ZO-1 in the intestinal epithelium induced by BDL or LPS in piglets and
reduce the loss of intestinal goblet cells in a mouse model of liver fibrosis [21]. Compared
with wild-type mice, Fxr KO mice have lower ZO-1 and Claudin 1 expression and more
severe LPS-induced intestinal epithelial damage [25]. In our study, we also showed that
treatment with the FXR agonist OCA could reduce intestinal epithelial damage in BDL
mice (Figure S1B). The loss of intestinal goblet cells was mainly decreased (Figure 2A).
Meanwhile, OCA treatment also reduced intestinal tight junction gene downregulation
induced by BDL, including Tjp1 (ZO-1) and Cldn1 (Claudin 1) (Figure 2B). On the other
hand, Fxr activation reduced the loss of intestinal stemness-related genes, including Lgr5
and Olfm4 (Figure 2D). The number of Olfm4-positive cells significantly increased in the
crypts of the BDL mice after OCA treatment, indicating alleviation of intestinal stem cell
loss induced by BDL (Figure 2C). OCA treatment also alleviated liver fibrosis and bile duct
hyperplasia (Figure S2), which may be related to the repair of the intestinal barrier, but
further experiments are needed to prove this hypothesis.

Intestinal organoids are a reliable model for studying intestinal crypt and stem cell
function [26]. We cultured intestinal organoids with 50 µM CDCA, 100 nM OCA, or DMSO
as a control and recorded the development of organoids in each group. Notably, increased
crypt formation was observed during Fxr activation with either CDCA or OCA treatment,
demonstrating that Fxr activation could promote intestinal stem cell function (Figure 2E,F).
However, the mechanism by which Fxr activates intestinal stem cell function needs further
experiments to be proven.
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Figure 1. Intestinal bile acid deficiency induced intestinal barrier and stemness and reduced bile 
acid receptor expression. (A) Intestine HE staining of sham, BDL, and BD mice; upper photos with 
100× magnification and lower photos with 200× magnification. (B) Relative mRNA levels of the tight 
junction genes Ocln, Cldn1, and Tjp1 in different mice groups, Actb was used as a reference gene, n 
= 5 per group. Data are shown as the mean ± SD per group, and statistical analysis was performed 
via one-way ANOVA: * p < 0.05. (C) intestine PCNA IHC staining of sham, BDL, and BD mice; upper 
photos with a 200× magnification and lower photos with a 400× magnification. The quantification of 
PCNA positive nuclear staining is followed, and statistical analysis was performed via one-way 
ANOVA: ** p < 0.01 and *** p < 0.005. (D) Relative mRNA levels of the stemness genes Olfm4 and 
Lgr5 in different mouse groups. Actb was used as a reference gene, n = 5 per group. Data are shown 
as the mean ± SD per group, and statistical analysis was performed via one-way ANOVA: ** p < 0.01, 
*** p < 0.005 and **** p < 0.001. (E) mRNA levels of the bile acid receptors Fxr and Tgr5 in different 
mice groups, Actb was used as a reference gene, n = 5 per group. Data are shown as the mean ± SD 
per group, and statistical analysis was performed via one-way ANOVA: ** p < 0.01. ns: no significant. 

Figure 1. Intestinal bile acid deficiency induced intestinal barrier and stemness and reduced bile
acid receptor expression. (A) Intestine HE staining of sham, BDL, and BD mice; upper photos with
100× magnification and lower photos with 200× magnification. (B) Relative mRNA levels of the
tight junction genes Ocln, Cldn1, and Tjp1 in different mice groups, Actb was used as a reference gene,
n = 5 per group. Data are shown as the mean ± SD per group, and statistical analysis was performed
via one-way ANOVA: * p < 0.05. ns: no significant. (C) intestine PCNA IHC staining of sham, BDL, and
BD mice; upper photos with a 200× magnification and lower photos with a 400× magnification. The
quantification of PCNA positive nuclear staining is followed, and statistical analysis was performed
via one-way ANOVA: ** p < 0.01 and *** p < 0.005. (D) Relative mRNA levels of the stemness genes
Olfm4 and Lgr5 in different mouse groups. Actb was used as a reference gene, n = 5 per group. Data
are shown as the mean ± SD per group, and statistical analysis was performed via one-way ANOVA:
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** p < 0.01, *** p < 0.005 and **** p < 0.001. (E) mRNA levels of the bile acid receptors Fxr and Tgr5
in different mice groups, Actb was used as a reference gene, n = 5 per group. Data are shown as
the mean ± SD per group, and statistical analysis was performed via one-way ANOVA: ** p < 0.01.
ns: no significant. (F) Western blot analysis of FXR and TGR5 in sham and BDL mice intestines. The
quantification of TGR5 and FXR protein expression is followed. Data are shown as the mean ± SD
per group, and statistical analysis was performed via Student’s t test: * p < 0.05.
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Figure 2. The function of Fxr in maintaining intestinal tight junctions and stemness. (A) Intestinal HE
staining of sham, BDL, and BDL+OCA mice; upper photos are shown at 100× magnification, and
lower photos are shown at 200× magnification. (B) Relative mRNA levels of the tight junction genes
Ocln, Cldn1, and Tjp1 in different mice groups, Actb was used as a reference gene, n = 3 per group.
Data are shown as the mean ± SD per group, and statistical analysis was performed via one-way
ANOVA: * p < 0.05 and ** p < 0.01. ns: no significant. (C) Intestine OLFM4 IHC staining of Sham, BDL,
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and BDL+OCA mice; upper photos with a 200× magnification and lower photos with a 400× magni-
fication. (D) Relative mRNA levels of the stemness genes Olfm4 and Lgr5 in different mice groups.
Actb was used as a reference gene; n = 3 per group. Data are shown as the mean ± SD per group, and
statistical analysis was performed via one-way ANOVA: * p < 0.05 and **** p < 0.001. ns: no significant.
(E) The intestine organoids were cultured with 50 µM CDCA, 100 nM OCA, or DMSO as a control, and
the development of organoids on day 1, day 3, and day 5 was recorded at 100× magnification. The
white arrow indicates the lumen of the organoid, and the black arrow indicates the newborn crypts.
(F) Quantification of the number of crypts per organoid in these three groups on days 1, 3, and 5. Data
are shown as the mean ± SD per group, and statistical analysis was performed via two-way ANOVA:
* p < 0.05 and **** p < 0.001. ns: no significant.

2.3. Fxr Affects Intestinal Corticosterone Synthesis by Regulating Cyp11a1 Expression

To further investigate the underlying mechanism of intestinal barrier and stemness
dysfunction after biliary obstruction, we collected intestinal crypts from BDL or sham mice,
and RNA was extracted for sequencing. RNA-Seq showed that 339 genes were upregulated
and 333 genes were downregulated (Figure S3A,B). These genes were enriched in the
KEGG pathway, and the most striking enrichment was observed for metabolic pathways,
including 70 genes (Figure S3C). Concomitantly, the largest gene set was lipid metabolism,
with 20 genes (Figure S3D).

The role of bile acids as signaling agents and metabolic rate regulators is increasingly
being recognized, while FXR plays a critical role [27]. To analyze whether these differential
lipid metabolism-related genes were associated with altered FXR expression, we collected
intestinal crypts from Fxr∆IEC and wild-type mice, and RNA was extracted. We mainly
focused on the downregulated lipid metabolism-related genes, while the top five genes
were selected, including Cyp11a1, Agpat9, Asah2, Acacb, and Dgki (Figure 3A). Validation
of these five differentially expressed genes in Fxr∆IEC mice showed that Cyp11a1 may be
regulated by Fxr, and the expression change in the Fxr downstream gene Fgf15 was also
validated (Figure 3B). Deficiency of Fxr reduced the expression of Cyp11a1, while activation
of Fxr had the opposite effect (Figure 3B,C). This effect was also confirmed in Caco-2 cells.
When Caco-2 cells were treated with the FXR agonists CDCA or OCA, the expression of
CYP11A1 was increased. FXR knockdown reduced CYP11A1 expression (Figure 3D,E).

Glucocorticoids are synthesized primarily in the cortex of the adrenal glands; the
main component is cortisol in humans, while in rodents such as mice, it is corticosterone.
Glucocorticoids are also synthesized in the intestinal epithelium, brain, and other tissues,
and CYP11A1 is the key rate-limiting enzyme in all tissues [28–30]. Given the importance of
CYP11A1 during steroid production, we detected the intestinal CORT level by ELISA. The
results showed that BDL mice had a lower intestinal CORT level, and biliary obstruction
had no effect on serum CORT levels (Figure S3E,F). While OCA treatment significantly
increased intestinal CORT levels, Fxr deficiency reduced the synthesis of CORT in the
intestine (Figure 3F,G). A study had shown high expression of FXR in glucocorticoid-
producing adrenocortical cells, and FXR agonist GW4064 increased plasma corticosterone
levels in C57BL/6 [31]. Our data indicate that FXR could regulate intestinal corticosterone
synthesis as well.
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OCA or DMSO as a control. (E) CYP11A1 protein expression in Caco-2 cells after FXR knockdown. 
Data represent the mean ± SD, and statistical analysis was performed via Student’s t test: * p < 0.05. 
(F) The concentration of intestinal CORT in wild-type and FxrΔIEC mice by ELISA, n = 3 per group. 
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Figure 3. FXR regulates CYP11A1 expression, promoting CORT synthesis. (A) Heatmap of the top 5
downregulated lipid metabolism-related genes in BDL mouse intestinal crypts. (B) Relative mRNA levels
of the top 5 downregulated lipid metabolism-related genes and the Fxr-regulated gene Fgf15 in Fxr∆IEC

and wild-type mice intestine crypts. Actb was used as a reference gene, n = 3 per group. Data represent the
mean ± SD, and statistical analysis was performed via Student’s t test: * p < 0.05 and ** p < 0.01. ns: no
significant. (C) Relative mRNA levels of the tight junction gene Cyp11a1 in the sham, BDL, and BDL+OCA
mice groups, Actb was used as a reference gene, n = 3 per group. Data represent the mean ± SD, and
statistical analysis was performed via one-way ANOVA: * p < 0.05, ** p < 0.01. (D) The protein expression
of CYP11A1 in Caco-2 cells after treatment with 50 µM CDCA or 100 nM OCA or DMSO as a control.
(E) CYP11A1 protein expression in Caco-2 cells after FXR knockdown. (F) The concentration of intestinal
CORT in wild-type and Fxr∆IEC mice by ELISA, n = 3 per group. Data represent the mean ± SD, and
statistical analysis was performed via Student’s t test: * p < 0.05. (G) The concentration of intestinal CORT
in sham, BDL, and BDL+OCA mice by ELISA, n = 3 per group. Data represent the mean ± SD, and
statistical analysis was performed via one-way ANOVA: ** p < 0.01.

2.4. Corticosterone Mainly Protects Intestinal Stemness after Biliary Obstruction

To study the effects of CORT on the intestinal barrier and stemness in BDL mice,
BDL mice were gavaged with CORT at a dose of 2 mg/kg (Figure S1C). The intestine
morphologies of sham, BDL mice, and CORT-treated BDL mice were analyzed and com-
pared by HE staining, and the results showed that the villus shortening caused by BDL
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was not significantly improved after CORT gavage treatment. However, CORT treatment
significantly reduced the loss of goblet cells (Figure 4A). Meanwhile, CORT-treated BDL
mice showed more PCNA- or C-MYC-positive cells in intestinal crypts than BDL mice
(Figure S4A,B). The loss of Olfm4-positive stem cells in the BDL mice was significantly
improved by CORT treatment (Figure 4A,B). At both the protein and mRNA levels, the
expression of Olfm4 was significantly higher after CORT treatment (Figure 4C,D). The tight
junction proteins ZO-1 and Claudin 1 showed a slight improvement (Figure 4C).

Then, we analyzed goblet cell and Paneth cell compositions in the intestine in these
three groups of mice by immunofluorescence staining. This result indicated that BDL
caused a loss of goblet cells and Paneth cells, while CORT treatment could attenuate the
effects of BDL (Figure S5). This suggested that CORT might play a role in intestinal cell
differentiation. We also cultured intestinal organoids with 50 nM CORT or DMSO as a
control and recorded the development of organoids in each group. Consistent with the
preceding results, CORT treatment increased crypt formation and promoted organoid
growth (Figure 4E,F). Furthermore, we also found that Fxr deficiency inhibited crypt
formation, and CDCA could not improve this effect, while CORT treatment could promote
crypt formation in Fxr-deficient organoids (Figure S4C). This indicated that CORT synthesis
might be a key step in intestinal stemness maintenance regulated by Fxr.

2.5. Corticosterone Reduces Liver Injury by Decreasing Intestinal Permeability

Given that intestinal barrier function is mainly reflected by intestinal permeability,
we investigated it by administering 4 kDa FITC-dextran to sham, BDL mice, and CORT-
treated BDL mice and found that CORT treatment could decrease intestinal permeability
caused by BDL (Figure 5A). In addition, serum LPS levels were also significantly reduced
by CORT treatment (Figure 5B). LPS is a major pathogenic factor derived from Gram-
negative bacteria, and it may accumulate in the liver after crossing the intestinal barrier
through the portal vein. Therefore, we detected the mRNA expression of Tlr4, Tlr2, and
Cd14 in the livers of the three groups of mice. These genes were mainly activated by LPS,
and the results showed that CORT treatment decreased LPS-associated gene expression
(Figure 5C). As shown by Sirius Red staining, CORT treatment also reduced liver damage
and ductular reactions induced by BDL (Figure 5D). Moreover, CORT treatment improved
liver function by decreasing ALP, AST, and ALT (Figure 5E). To confirm the attenuation of
liver inflammation by CORT treatment, we measured the mRNA levels of inflammatory
cytokines in the liver. Il1a, Il1b, Il-6, Il-10, and Tnf-α were downregulated (Figure 5F).

The results above suggested that CORT could reduce liver damage induced by BDL
in mice, possibly by decreasing intestinal permeability. However, CORT is a type of
corticosteroid that itself has an anti-inflammatory effect, and we cannot exclude this effect.
Further experiments are needed to confirm this hypothesis.
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Figure 4. CORT protects the intestinal barrier and stemness after BDL. (A) HE staining and OLFM4
IHC staining of intestine in Sham, BDL, and BDL+CORT mice group, with a 100× magnification.
(B) Quantification of the OLFM4-positive area, n = 4 per group. Data are shown as the mean ± SD
per group, and statistical analysis was performed via one-way ANOVA: *** p < 0.005. (C) The protein
expression of OLFM4, ZO-1, and Claudin 1 in sham, BDL, and BDL+CORT mice intestines. (D) Relative
mRNA levels of Lgr5 and Olfm4 in sham, BDL, and BDL+CORT mice intestines. Actb was used as a
reference gene, n = 4 per group. Data are shown as the mean ± SD per group, and statistical analysis was
performed via one-way ANOVA: *** p < 0.005 and **** p < 0.001. (E) The intestine organoids were cultured
with 50 nM CORT or DMSO as a control, and the development of organoids on day 1, day 3, and day 5
was recorded at 100× magnification. The white arrow indicates the lumen of the organoid, and the black
arrow indicates the newborn crypts. (F) Quantification of the number of crypts per organoid in these three
groups on days 1, 3, and 5. Data are shown as the mean ± SD per group, and statistical analysis was
performed via two-way ANOVA: * p < 0.05 and ** p < 0.01.
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Figure 5. CORT alleviates liver injury by decreasing intestinal permeability. (A) Concentration of
serum FITC-dextran 4 kDa to assess the change in intestinal permeability, n = 4 per group. Data are
shown as the mean ± SD from each group. Statistical analysis was performed via one-way ANOVA:
** p < 0.01. (B) Concentration of serum LPS in the sham, BDL, and BDL+CORT mice groups, n = 4
per group. Data are shown as the mean ± SD from each group. Statistical analysis was performed
via one-way ANOVA: * p < 0.05. (C) Relative mRNA levels of LPS-related genes in sham, BDL, and
BDL+CORT mice livers. Actb was used as a reference gene, n = 4 per group. Data are shown as the
mean ± SD from each group. Statistical analysis was performed via one-way ANOVA: ** p < 0.01.
ns: no significant. (D) Sirius Red staining of sham, BDL, and BDL+CORT mouse livers and quantifi-
cation of the Sirius Red-positive area, n = 4 per group. Data are shown as the mean ± SD from each
group. Statistical analysis was performed via one-way ANOVA: *** p < 0.005. (E) Serum concentra-
tions of ALT, AST, and ALP in sham, BDL, and BDL+CORT mice, n = 4 per group. Data are shown as
the mean ± SD from each group. Statistical analysis was performed via one-way ANOVA: ** p < 0.01,
*** p < 0.005 and **** p < 0.001. (F) Relative mRNA levels of inflammatory cytokines in sham, BDL,
and BDL+CORT mice livers. Actb was used as a reference gene, n = 4 per group. Data are shown as
the mean ± SD from each group. Statistical analysis was performed via one-way ANOVA: * p < 0.05,
** p < 0.01, and **** p < 0.001. ns: no significant.

3. Discussion

Although surgery is the best treatment option for biliary obstruction-related diseases,
some malignant biliary obstructions due to pancreatic adenocarcinoma and cholangiocar-
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cinoma, or intractable biliary obstructions, including primary sclerosing cholangitis and
primary biliary cholangitis, are often not immediately operable or inoperable [3,10,32].
Chronic biliary obstruction impairs the intestinal barrier and increases intestinal permeabil-
ity, causing endotoxemia or bacteremia, which can aggravate liver injury [33–35]. Therefore,
targeting the intestinal barrier is a promising treatment to attenuate liver injury in these ma-
lignant biliary obstructions and intractable biliary obstructions and may prolong survival
or increase the chance of surgery.

The BDL mouse model could simulate the changes in the intestinal environment
and pathophysiology in biliary obstruction to a certain extent, and to determine whether
intestinal barrier and stemness dysfunction after biliary obstruction are directly related to
intestinal bile acid deficiency, we also performed a BD mouse model to simulate intestinal
bile acid deficiency. Our work suggests that bile acids are essential for maintaining the
intestinal barrier and stemness and that the bile acid receptor FXR might play a key role
(Figure 1). Interestingly, FXR activation protected intestinal stem cells from BDL and pro-
moted the development of intestinal organoids. In intestinal organoids from Fxr∆IEC mice,
crypt formation was inhibited (Figure S4C). Conversely, selective activation of intestinal
FXR could restrict intestinal cancer stem cell proliferation, as Ting et al. reported [24]. This
suggests that the function of FXR in noncancerous or cancerous tissues might be different,
and the mechanism requires further experiments.

Previous studies have found that corticosterone can be synthesized in tissues other
than the adrenal gland, such as the intestinal epithelium, thymus, and brain, and CYP11A1
and other synthetases can also be expressed [28,29]. However, the role of these nonadrenal
corticosterone in the tissues is still unclear. In our study, decreased mRNA expression of
Cyp11a1 after BDL was shown in the results of RNA-Seq in the BDL and sham mouse
crypts. Cyp11a1 expression was also downregulated in Fxr∆IEC mouse crypts. Meanwhile,
FXR activation promoted CYP11A1 expression in vivo and in vitro and promoted intestinal
corticosterone synthesis, while BDL reduced intestinal corticosterone without affecting
the concentration of corticosterone in the blood (Figure 3). Therefore, we suggest that
the expression of CYP11A1 and corticosterone synthesis in the intestine are regulated
by FXR. Further study is needed to clarify the detailed mechanism. Corticosteroids (in-
cluding corticosterone) have two roles in regulating various barrier functions or stem cell
functions in vivo. Some studies believe that their role is to protect barrier function and
promote stem cell proliferation and differentiation [36,37]. It has also been suggested that
corticosteroids may increase barrier damage and inhibit stem cell growth [38–40]. In our
study, corticosterone treatment significantly decreased the intestinal permeability of BDL
mice, reduced the amount of FITC-dextran penetrating the intestinal barrier, reduced LPS
translocation, and promoted the expression of the tight junction protein ZO-1. On the other
hand, corticosterone also reduced the loss of stemness genes in the intestine of BDL mice
and maintained the number of various cells in the intestine. The intestinal epithelium of the
BDL mice treated with corticosterone had more goblet cells and Paneth cells than that of the
BDL mice without corticosterone treatment (Figure S5). Corticosterone stimulation in vitro
also promoted the growth of small intestinal organoids and promoted crypt formation in
Fxr-deficient organoids (Figures 4E and S4C). Our results suggest that corticosterone has
positive effects on intestinal barrier function and stemness.

Some clinical trials have reported that corticosteroids combined with ursodeoxycholic
acid (UDCA) can effectively improve biochemical markers of disease activity caused by
primary biliary cholangitis [41,42]. Our results showed that corticosterone treatment
significantly reduced serum liver function indexes, liver inflammation-related indexes,
and histopathological liver injury and fibrosis (Figure 5). Therefore, our study validates
the feasibility of corticosteroids in the treatment of cholestatic liver injury after biliary
obstruction, and the reduction in the intestinal barrier and stemness dysfunction may be
one of the key factors of corticosterone protection of the liver. However, this study still
has some limitations. Although corticosterone treatment was administered by gavage, the
possibility that corticosterone entering the blood directly works on the liver and reduces



Int. J. Mol. Sci. 2023, 24, 13494 12 of 15

inflammation cannot be excluded. Therefore, corticosterone attenuates liver injury in mouse
models of biliary obstruction, most likely because it plays an important role in both the liver
and intestine. A study reported that individuals with high serum glucocorticoid levels also
inhibited hepatic FXR transcriptional activity, thereby promoting intrahepatic cholestasis in
mice [43]. Thus, the dose of glucocorticoids for the treatment of biliary obstruction in the
clinic needs to be further determined.

In conclusion, our findings suggest that biliary obstruction could induce intestinal
barrier and stemness dysfunction, which was mainly associated with intestinal bile acid
deficiency. The bile acid receptor FXR plays a key role. FXR activation promoted the
expression of CYP11A1 and increased corticosterone synthesis in the intestine. Then,
corticosterone is involved in maintaining intestinal barrier function and stemness. Corti-
costerone treatment decreased intestinal permeability, reduced harmful substances in the
blood, and attenuated liver injury, inflammation, and fibrosis in the BDL mouse model.
Our study showed the mechanism by which bile acid deficiency mediated intestinal barrier
and stemness dysfunction after biliary obstruction and demonstrated the feasibility of glu-
cocorticoid treatment in biliary obstruction disease. It hopefully provides a new theoretical
basis for the prevention and treatment of intestinal complications and alleviation of liver
injury after biliary obstruction.

4. Materials and Methods
4.1. Animals and Models

The animal care and experiments were approved by the Tab of Animal Experi-
mental Ethical Inspection of the First Affiliated Hospital, Zhejiang University School
of Medicine. Male C57BL/6 mice, male Nr1h4fl/fl; Vil-Cre mice with intestinal epithelial-
specific Fxr knockout (Fxr∆IEC), and Nr1h4fl/fl mice without Cre expression (WT) were used
in this study, supplied by Cyagen Biosciences (Suzhou, China).

Six to eight-week-old male C57BL/6 mice were used to construct bile duct ligation
(BDL) and bile drainage (BD) models. The detailed procedures for BDL and BD were
performed as described in our previous study [44]. BDL brief procedure: ligation of
proximal and distal common bile duct was performed, and then the common bile duct
was cut. BD brief procedure: the common bile duct was opened, sterile drainage tube was
inserted and reinforced with sutures, and the end of the drainage tube was extracted from
the skin of the back of the mice.

4.2. Mice Small Intestinal Crypt Isolation

The mice’s small intestines were cut from the terminal ileum up to approximately
15–20 cm, flushed with cold PBS, and opened, and villi with mucus were scraped by using
a glass slide. The intestine was cut into small fragments approximately 3–5 mm in length
and incubated in 3 mM EDTA solution on ice for 30 min. After removing EDTA solution,
crypts were blown down with cold PBS and filtered through 70 µm cell mesh. Crypts were
collected by centrifugation at 200× g for 5 min.

4.3. Organoid Culture

Crypts were resuspended in IntestiCultTM Organoid Growth Medium (STEMCELL
Technologies, Vancouver, Canada), plated (approximately 50–100 crypts per 40 µL drop
of 50% Matrigel), and overlaid with IntestiCultTM Organoid Growth Medium. Then, the
organoids were maintained in a cell incubator at 37 ◦C containing 5% CO2.

4.4. Cell line and Cell Culture

The human colon adenocarcinoma cell line Caco-2 was used in this study and obtained
from the China Center for Type Culture Collection (CCTCC). Caco-2 cells were cultured in
DMEM (Biological Industries, Beit-Haemek, Israel) supplemented with 10% fetal bovine
serum (Gibco, Vacaville, CA, USA) and 1% MEM nonessential amino acids (Gibco, Vacaville,
CA, USA) and incubated in a cell incubator at 37 ◦C containing 5% CO2.
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4.5. Chemicals

Chenodeoxycholic acid (CDCA, HY-76847), obeticholic acid (OCA, HY-12222), and
corticosterone (CORT, HY-B1618) were obtained from MedChemExpress (Shanghai, China).
Dimethyl sulfoxide (DMSO) was obtained from Sangon Biotech (Shanghai, China). Mice
were gavaged daily with 10 mg kg−1 OCA, 2 mg kg−1 CORT, or stroke-physiological saline
solution as a control after BDL. Intestinal organoids or Caco-2 cells were treated with 50
µM CDCA, 100 nM OCA, 50 nM CORT, or DMSO as a control.

4.6. Serum LPS Detection

A Chromogenic LAL Endotoxin Assay Kit (GenScript, Nanjing, China) was used to detect
serum LPS. The protocol can be viewed on the website (https://www.genscript.com.cn/,
accessed on 23 Augest 2023).

4.7. Statistical Analysis

The data are shown as the means and standard errors and were analyzed via GraphPad
Prism 6.0 (GraphPad Software, San Diego, CA, USA). Statistical analysis was expressed with
Student’s t test, one-way ANOVA, or two-way ANOVA, and differences were considered
statistically significant at a level of p < 0.05.

Other materials and methods are provided in the Supplementary Information
(Tables S1 and S2; Figures S1–S5).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241713494/s1.
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