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Abstract: Although there is a substantial amount of data on the clinical characteristics, diagnostic
criteria, and pathogenesis of myelin oligodendrocyte glycoprotein (MOG) autoantibody-associated
disease (MOGAD), there is still uncertainty regarding the MOG protein function and the pathogenicity
of anti-MOG autoantibodies in this disease. It is important to note that the disease characteristics,
immunopathology, and treatment response of MOGAD patients differ from those of anti-aquaporin 4
antibody-positive neuromyelitis optica spectrum disorders (NMOSDs) and multiple sclerosis (MS).
The clinical phenotypes of MOGAD are varied and can include acute disseminated encephalomyelitis,
transverse myelitis, cerebral cortical encephalitis, brainstem or cerebellar symptoms, and optic
neuritis. The frequency of optic neuritis suggests that the optic nerve is the most vulnerable lesion
in MOGAD. During the acute stage, the optic nerve shows significant swelling with severe visual
symptoms, and an MRI of the optic nerve and brain lesion tends to show an edematous appearance.
These features can be alleviated with early extensive immune therapy, which may suggest that the
initial attack of anti-MOG autoantibodies could target the structures on the blood–brain barrier or
vessel membrane before reaching MOG protein on myelin or oligodendrocytes. To understand the
pathogenesis of MOGAD, proper animal models are crucial. However, anti-MOG autoantibodies
isolated from patients with MOGAD do not recognize mouse MOG efficiently. Several studies have
identified two MOG epitopes that exhibit strong affinity with human anti-MOG autoantibodies,
particularly those isolated from patients with the optic neuritis phenotype. Nonetheless, the relations
between epitopes on MOG protein remain unclear and need to be identified in the future.

Keywords: myelin oligodendrocyte glycoprotein; autoantibody; optic neuritis; antibody-binding
epitope; animal model

1. Introduction

Myelin oligodendrocyte glycoprotein (MOG), which is exclusively expressed in oligo-
dendrocytes, is a component of the outer surface of myelin in the central nervous system
(CNS) [1]. Although a quantitatively minor component, MOG has strong antigenicity.
In fact, MOG was initially identified as an immunodominant target for demyelinating
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autoantibodies in a guinea pig model of experimental autoimmune encephalomyelitis
(EAE) [2,3]. Subsequent studies have demonstrated that immunization with MOG peptides
can induce an EAE variant that exhibits many of the clinical and pathologic characteristics
of multiple sclerosis (MS) in both rats and primates. Litzenburger T. et al. demonstrated
the persistent presence of MOG-reactive B cells in the peripheral immune system and
suggesting their potential roles as modifiers in inflammatory CNS diseases using transgenic
mice producing MOG-specific immunoglobulins [2]. Anti-MOG autoantibodies have been
detected in many EAE variants, inciting many promising studies in patients with CNS
demyelinating diseases. Over the years, extensive studies conducted in patients with MS
have investigated the presence of anti-MOG autoantibodies using Western blotting and
enzyme-linked immunosorbent assays targeting recombinant mouse MOG, without clear
relation and specificity with MS [4]. Pöllinger B. et al. developed transgenic mice bearing
MOG peptide-specific T cell receptors, resulting in spontaneous relapsing–remitting EAE
along with the expansion of autoreactive B cells that produce autoantibodies binding to
a conformational epitope on the native MOG protein [3]. This important finding that the
pathogenic autoantibodies recognize a conformational epitope on the native antigen protein
led to the designation of the human anti-MOG autoantibody-associated disease [5,6].

In recent years, the presence of anti-MOG autoantibodies has been extensively tested
in patients with CNS inflammatory diseases using a cell-based assay that preserves the
conformational structure of the full-length human MOG [7]. The International Consensus
Group on MOG autoantibody-associated disease (MOGAD) has proposed that the diagnos-
tic criteria for MOGAD should include the presence of anti-MOG autoantibodies detected
using cell-based assays [8]. MOGAD is typically associated with acute disseminated en-
cephalomyelitis (ADEM), optic neuritis (ON), and transverse myelitis (TM) and is less
commonly associated with cerebral cortical encephalitis, brainstem or cerebellar symptoms,
and clinical presentations including the combination of several phenotypes and sometimes
accompanies other autoantibodies such as anti-N-methy-D aspartate receptor (NMDAR)
autoantibodies with symptoms of autoimmune encephalitis [9]. MOGAD can have a
monophasic or relapsing disease course; therefore, detecting anti-MOG autoantibodies
using cell-based assays is essential for diagnostic accuracy.

The majority of adult patients who are positive for anti-MOG autoantibodies exhibit
ON or TM, while ADEM with or without ON is the most frequent presentation in pediatric
patients with MOGAD. Factors that determine age-specific clinical phenotypes and CNS
lesions in patients with MOGAD remain unclear. Furthermore, the MOG protein function
and the pathogenicity of anti-MOG autoantibodies in MOGAD have not been fully clarified.

The development of appropriate models is critical to elucidate the specific functions of
anti-MOG autoantibodies. However, the low affinity of human anti-MOG autoantibodies
for mouse MOG has hindered the establishment of reliable models. Several studies have
shown that the recognition of MOG by anti-MOG autoantibodies involves highly complex
mechanisms [10–12]. The antigen-recognition patterns of MOGAD might differ from
those of anti-aquaporin 4 (AQP4) autoantibody-related neuromyelitis optica spectrum
disorders (NMOSDs) and anti-NMDAR autoantibody-related autoimmune encephalitis,
two clinical presentations with well-characterized antibody-binding sites on the disease-
related antigen [13,14].

In this article, we summarize the latest studies examining anti-MOG autoantibody
recognition in patients with MOGAD and provide a review of the clinical characteristics of
this disease with a focus on ON, the most prevalent phenotype of MOGAD.

2. Comparison of Clinical Characteristics of ON between Anti-MOG
Autoantibody-Positive and Anti-AQP4 Autoantibody-Positive Patients
2.1. Epidemiology

We have recently reported ON’s clinical and epidemiologic characteristics based on
the neuroimmunological background in a large Japanese cohort of 531 patients [15]. In that
study, 12% of the patients (n = 66, 84% females) were anti-AQP4 autoantibody-positive,
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with a median onset age of 51 years, whereas 10% of the patients (n = 54, 51% females)
were anti-MOG autoantibody-positive, with a median onset age of 43 years. In that cohort,
77% (n = 440, 64% females) of the patients were negative for both anti-MOG and anti-AQP4
autoantibodies, with a median onset age of 48 years, and included patients with MS (8%)
(Table 1). The anti-AQP4 autoantibody positivity increased with age whereas the anti-MOG
autoantibody positivity exhibited biphasic peaks in the fourth and sixth decades of life [15].

Table 1. Brief summary of the optic neuritis patients in a large Japanese cohort (Ishikawa H, Ophthal-
mology 2019).

Total MOG (+) AQP4 (+) Both (−)

531 cases (54 cases: 10.2%) (66 cases: 12.4%) (410 cases: 77.2%)
Female ratio 51.0% 84.1% 63.7%
Age at onset 42.9 ± 19.3 51.1 ± 14.0 48.0 ± 10.0

Annual relapse rate 1.56 ± 0.7 1.50 ± 0.4 0.6 ± 0.4
Nadir visual acuity 0.15 0.09 0.1
Outcome of visual 0.93 0.54
acuity after 1st Tx.

Pre Tx. 0.3> 76.8% 82.5% 73.8%
Post Tx. 0.7< 80.0% 44.9% 56.8%

Optic disc swelling 34/45 (76%) 21/61 (34%) 166/361 (46%)
Pain on eye movement 36/47 (77%) 31/59 (53%) 161/347 (46%)

Visual field loss
Complete 9/41 (22%) 14/55 (26%) 45/311 (15%)

central/temporal/altitude/nasal (%) 46/7/22/0 73/0/2/2 61/4/15/5
MRI

Optic nerve swelling 91% 82% 67%
Optic nerve lesion

(ant./post./entire/chiasma) (%) 44/22/34/8 24/49/27/10 41/44/15/6
Lesion length (long/short) (%) 61/39 67/33 47/53

A cross-sectional cohort study conducted in the Mayo Clinic, which included 246 patients
with recurrent ON, revealed that 19% and 13% of the patients were positive for anti-
AQP4 and anti-MOG autoantibodies, respectively [16]. In other large cohort studies with
recurrent ON with or without other demyelinating lesions conducted in China, South Korea,
and Germany, anti-MOG antibodies were found in 6.3~18.3% of the participants [17–19].
(Supplementary Table S1 and Figure S1). Overall, these studies highlight the comparable
prevalence of MOGAD among various populations across the globe.

2.2. Characteristics of Visual Symptoms

In patients with MOGAD, ON stands as the most frequent symptom. Those with anti-
AQP4 autoantibodies experienced a significantly higher rate (53%) of severe disturbance in
visual acuity compared to patients with anti-MOG autoantibodies. Patients having anti-
MOG autoantibodies exhibited a higher frequency of optic disc swelling and pain related to
eye movement than those with anti-AQP4 autoantibodies. More than 95% of patients with
anti-MOG autoantibodies displayed complete visual field loss or central scotoma, while
patients with anti-AQP4 autoantibodies demonstrated diverse visual field abnormalities,
including altitudinal hemianopsia, nasal hemianopsia, and temporal hemianopsia (Table 1).
Among the characteristics, bitemporal hemianopsia, homonymous hemianopsia [20], and
binocular vision loss from chiasmal lesions were relatively common in patients with anti-
AQP4 autoantibodies but rare in those experiencing ON due to other causes [21].

In patients with anti-MOG autoantibodies, the primarily affected area was the proxi-
mal part of the optic nerve, especially the anterior intra-orbital part, which constituted over
half of the total intra-orbital optic nerve. Inflammation in ON with anti-AQP4 autoanti-
bodies usually is not extended to this proximal optic nerve portion and extension to the
proximal portion was a significant prognostic factor in this group [22].
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Within our ON patient cohort, MRI scans revealed swollen optic nerves in 91% of
those with anti-MOG autoantibodies and 82% of those with anti-AQP4 autoantibodies [15]
(Table 1). In differentiating between the two disorders, the presence or absence of optic disc
swelling is a crucial observation. Patients with MOGAD typically demonstrate substantial
swelling in both the optic disc and nerve, accompanied by pronounced inflammation
encompassing the orbital tissues surrounding the optic nerve. This inflammation-induced
pain during eye movement is further intensified by the effects of the dural sheath encom-
passing the optic nerve, the sclera, and intra-orbital tissues that influence the extraocular
muscles at the common tendinous ring through the trigeminal nerve. In patients with
anti-AQP4 autoantibody-positive ON, lesions were also detected at sites outside of the
optic nerve, including cerebral white matter, brainstem, and particularly spinal cord. In our
study, lesions in the spinal cord were found in eight patients (22%), including one patient
with longitudinally extensive transverse myelitis [15].

2.3. ON Recurrence

ON with anti-MOG autoantibodies exhibits a considerable recurrence rate (44–83%),
similar to that observed in anti-AQP4 autoantibody-positive patients [23]. However,
biomarkers that can predict ON relapses are lacking. Contentti et al. noted that patients
with higher anti-MOG autoantibody titers or those with rapidly disappearing antibodies
after treatment during the acute phase tended to show a monophasic clinical course. They
recommended that treatment with oral steroids could be tapered and discontinued at six
months following the initial relapse [24,25]. Within our cohort, 353 of 531 patients (66.5%)
were experiencing relapsing ON episodes. Unfortunately, long-term follow-up data were
not available, and the medications used for relapse prevention varied among the participat-
ing facilities. According to reports, the greatest risk of relapse occurs during the first year
and remains high within the next 5 years [26,27].

3. Other Immunologic Parameters

In addition to anti-AQP4 autoantibodies, various systemic autoantibodies are fre-
quently detected in patients with NMOSD, including antinuclear, anti-Sjögren’s syndrome
type-A and -B, antithyroid stimulating hormone receptor antibody, antithyroglobulin, and
anti peroxidase autoantibodies [28]. However, these autoantibodies are not commonly
found in patients with ON due to MOGAD.

Anti-MOG autoantibodies primarily exist as IgG1 isotypes capable of activating the
complement. However, the role of complement activation in MOGAD remains a focus
of debate and is not well established. In contrast, complement activation has a strong
association with ON pathogenesis in patients with anti-AQP4 autoantibodies, rendering
treatment with complement inhibitors a potential approach. In a rodent model of ON, the
administration of human anti-MOG-IgG in combination with human complement resulted
in low levels of complement deposition [29]. The administration of anti-MOG antibodies
that cross-reacted with rodent MOG led to increased T cell infiltration and complement
deposition in addition to the observation of MOG- or myelin basic protein-specific T
cells [29]. On the other hand, genetic studies in MOGAD show no strong correlation
between human leukocyte antigen genotypes [30].

The cytokine and chemokine profiles of patients with MOGAD show high levels of
T-helper (Th)17-related cytokines and chemokines [31]. These findings suggest that both
Th17 and Th1 cells, along with B cells, may contribute to the pathogenesis of MOGAD.
However, memory cells and long-lived plasma cells were also elevated in patients with
MOGAD [32]. In one study, MOG-specific B cells did not correlate with the serum anti-
MOG-IgG autoantibody titer [33]. Moreover, human anti-MOG-IgG autoantibodies were
shown to induce natural killer cell-mediated death of MOG-expressing cells in vitro [34,35].

MOG-IgG was detected in the CSF of 12 of 18 (67%) patients with seropositivity for
anti-MOG-IgG autoantibodies, suggesting an extrathecal origin. The oligoclonal IgG bands
were not commonly detected in patients with MOGAD, while anti-MOG-IgG antibodies
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were present at disease onset and remained detectable in 40 out of 45 (89%) follow-up
samples obtained over a median period of 16.5 months (range 0–123 months) [19].

4. Immunopathology of MOGAD

Although systematic neuropathological evaluation of MOGAD patients is rare, several
studies including autopsy and biopsy samples from patients with anti-MOG autoantibodies
have revealed a distinct pattern of perivenous and confluent demyelination in white matter,
cortex, and deep gray matter structures [36–38].

In a study of biopsy samples, meningeal inflammation was observed in 86% of the
cases, subpial lesions were present, and active demyelinating areas showed an abundance
of myelin-laden macrophages/microglial cells [36]. However, the majority of the infiltrating
lymphocytes were CD4-positive, with few B cells and CD8+ T cells [36,37].

In some studies, complement activation was demonstrated in active lesions, resem-
bling pattern II demyelinating lesions of MS [36], but it was largely absent in another
study of 11 biopsies [37]. Additionally, the destruction of oligodendrocytes displayed
a varying pattern and selective MOG loss was not observed [36]. However, the loss of
MOG expression was described in another study by Takai et al. [37] who showed that
most of the demyelinating lesions exhibited a perivenous demyelinating or fusion pattern
mainly in the corticomedullary junction and white matter, suggesting that ADEM-like
perivenous inflammatory demyelination was a characteristic finding of MOGAD. The
early-phase demyelinating lesions of MOGAD exhibited MOG-dominant myelin loss with
relatively preserved oligodendrocytes. This feature distinguishes MOGAD from anti-
AQP4 autoantibody-related NMOSD, including pronounced perivascular deposition of
immunoglobulins and complement together with demyelinating lesions containing myelin
degradation products in numerous macrophages [39]. The pathologic features of MOGAD
are clearly different from those of MS and NMOSD, suggesting an independent autoim-
mune demyelinating disease entity [37]. The optic nerve is a vulnerable organ in MOGAD
which might be based on that both the protein and mRNA expression levels of MOG are
higher in the optic nerve than in the spinal cord and brain in mice [40,41].

5. Treatment and Visual Outcome

There are currently no randomized control trials or evidence-based guidelines for the
treatment of acute disease and relapse in patients with MOGAD [42]. In the acute stage,
most patients with MOGAD are treated with high-dose methylprednisolone pulse therapy
with or without intravenous immunoglobulin therapy (IVIg) and plasmapheresis, with
favorable response observed. Recovery was significantly better in patients with anti-MOG
autoantibodies than in those with anti-AQP4 autoantibodies who require additional plasma-
pheresis [43]. In patients displaying resistance to these mentioned treatments, alternative
therapeutic approaches, such as immunosuppressants (azathioprine, cyclophosphamide,
tacrolimus, mycophenolate mofetil), satralizumab, or B cell depletion therapy, may be
considered [25,44–46]. In the nationwide survey of epidemiological and clinical characteris-
tics of Japanese patients with MOGAD, the favorable therapeutic effect of tacrolimus was
shown as 72.7% (40 out of 55 treated with tacrolimus) [47].

While monthly intravenous immunoglobulin treatment was associated with a re-
duction in annual relapse rate in pediatric and adult cohorts, 20–71% of treated patients
experienced relapses [48]. Moreover, some disease-modifying treatments used for MS,
including fingolimod or natalizumab, might induce severe relapse in patients with MO-
GAD [49].

5.1. Recent Novel Therapeutics
5.1.1. IL-6 Receptor Inhibitor

IL-6 is a proinflammatory cytokine whose signaling pathway is triggered by com-
plement deposition; IL-6 promotes B cell stimulation, blood–brain barrier dysfunction,
leukocyte migration, and cytokine and chemokine production [50–52]. In one study, 73%
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(n = 11) of the patients with MOGAD treated with tocilizumab, a humanized IL-6 receptor
inhibitor, for 12 months remained relapse-free, which was higher than the relapse-free rate
of 57% (n = 28) observed in patients with anti-AQP4 autoantibody-related NMOSD [52].

5.1.2. Rituximab

One of the most frequently used drugs in MOGAD is rituximab, which targets CD20+
B cells [53]. However, despite efficient B cell depletion, only 55% and 33% of the patients
treated with rituximab were relapse-free in 1 and 2 years after treatment, respectively [54].
Thus, B cell depletion was less effective in patients with MOGAD than in those with anti-
AQP4 autoantibody-related NMOSD, indicating that B cells are not the only effector in
MOGAD.

5.1.3. Inebilizumab

Regarding inebilizumab, a humanized anti-CD19 monoclonal antibody, six of seven
patients with anti-MOG autoantibody positivity did not experience relapse during the
follow-up period of 210 days [55]. Inebilizumab was generally well tolerated and the
adverse event profile observed was similar to that of anti-AQP4-positive patients.

6. Survey of Antibody-Binding Sites of Anti-MOG Autoantibodies in Patients
with MOGAD

Conformation-dependent MOG-specific antibodies can initiate demyelination in EAE,
as demonstrated by the evaluation of anti-MOG antibodies in MS [56], even if denatured
MOG protein could still trigger T cell immunity.

MOG is essential for the formation, maintenance, and degradation of the myelin
sheath through its adhesive properties and by mediating interactions between myelin and
the immune system. The structure of the extracellular N-terminal portion of MOG forms
an immunoglobulin variable (Ig-V) fold consisting of two antiparallel β-sheets located
in the FG loop; this fold is recognized by the rodent anti-MOG monoclonal antibody
8-18C5 [57–60]. Up to 15 MOG splice variants have been described in humans and non-
human primates. Anti-MOG-IgG has been shown to bind to six major MOG isoforms. The
human MOG epitopes most frequently recognized by anti-MOG autoantibodies are located
within the extracellular Ig-V-like domain. In this region, proline 42, located in the CC’ loop,
is the most important amino acid for antibody recognition, followed by histidine 103 and
serine 104, both located in the FG loop (Figure 1). In addition, all monoclonal antibodies
bind to the native glycosylated extracellular domain of MOG expressed at the cell surface,
and six of them recognize pure discontinuous epitopes [61].

We have previously explored the binding site of anti-AQP4 autoantibodies by ex-
ploiting the differences in AQP4 structure between humans, mice, and rats [62,63]. Using
these strategies, we examined the binding site of MOG antibodies with three extracellular
N-terminal exons exchanged between human and mouse MOG and found that exon 2 of
human MOG was the major binding site for anti-MOG autoantibodies in patients with ON
due to MOGAD (presented at ECTRIMS 2018 Scientific Session 15 Berlin 12 October 2018).

Mayer et al. investigated the binding epitopes of anti-MOG autoantibodies in the
sera of 111 patients, including 104 children and 7 adults, with anti-MOG autoantibodies,
including patients with ADEM, TM, ON, MS, NMOSD, and chronic relapsing inflammatory
ON [64]. A human mature MOG is a protein containing a single peptide of 29 amino acids
followed by 218 amino acids of the mature protein. The authors constructed several expres-
sion vectors harboring different mutations in MOG peptides and tested the binding ability
of patient serum samples to these recombinant human MOG proteins (hMOG) (N31D,
S104E, H103A/S104E, P42S, P42S/H103A/S104E, R9G/H10Y, and R86Q) in comparison
to the wild-type human and mouse MOG proteins (mMOG). In 52 of 111 patients, the
anti-MOG autoantibody response was directed against a single epitope in proline 42. In
addition, the tip of the FG loop of MOG was detected in the serum samples of 36 patients
(32%). However, the positions of P42S and H103A/S104E were detected in 19 out of 32 sam-
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ples. Using the combination of each mutant, the authors showed seven different patterns
of antibody binding in patients with MOGAD. However, the most frequently recognized
epitopes were found in the CC’ and FG loops of hMOG. In addition, reactivity to both
loops is the most common combination among sera recognizing multiple epitopes that are
too far apart to be recognized together with an antibody to a single binding epitope [65],
suggesting that patients’ sera contain at least two distinct antibody populations. Overall,
half of the patients showed an immune response directed against a single epitope, whereas
the remaining patients showed recognition of multiple epitopes. The observed pattern of
recognition was not related to the clinical phenotypes and this recognition pattern remained
constant over the observation period of 50 months.
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Bettelli et al. [41] generated MOG-specific T cell receptor (TCR) transgenic mice of the
C57BL/6 strain expressing a TCR composed of Vα3.2 and Vβ11. These mice developed ON
without involvement of other neuronal tissues. And these mice preferentially showed ON
when immunized with MOG35-55 peptide and MOG protein without showing encephalitis
or myelitis. When the TCR encounters an antigen–MHC complex that fits the binding
site, it initiates a signaling cascade inside the T cells. Upon antigen recognition, the T cells
are activated and proliferate. The mice harboring the TCR that preferentially recognizes
antigen expressed on optic nerves tend to develop ON without accompanying encephalitis
or myelitis, which might suggest that MOG in the optic nerve has a specific binding epitope
different from that in other nervous tissues or the initial target of MOGAD might be
the optic nerve. In particular, the optic nerve is reported to show higher expression of
MOG compared to the spinal cord. However, it has not been shown that the anti-MOG
autoantibodies themselves produced in these mice specifically recognize the optic nerve. It
is also not clear that the structure of the epitopes is associated with this antibody binding.
Although there are many unanswered questions, this is one of the suggestions for the
relationship between antigen epitope and clinical phenotypes. In humans, autoantibody
production is usually polyclonal and has multiple binding capabilities, so another factor is
needed to evaluate the relationships between antigen epitopes and clinical phenotypes.

Autoantibodies produced in peripheral lymphoid organs must traverse the blood–
brain barrier to encounter antigens in the CNS. MOG-IgG from the acute phase of MOGAD
patients has been shown to activate endothelial cells that form the blood–brain barrier with
increased vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule
(ICAM)-1 proteins [65,66]. Autoantibodies other than MOG-IgG may also directly or
indirectly disrupt the functions of adhesion molecules. It is also possible that there are
differences in the nature of blood–tissue barriers between the optic nerve and the CNS.
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Based on several lines of research, it is suggested that the sera from MOGAD patients
initially target the blood–tissue barrier of the optic nerve, causing edematous swelling of
the optic nerve before directly binding anti-MOG autoantibodies to the myelin sheath.

7. Conclusions

The clinical spectrum of MOGAD is expanding. The most common clinical pheno-
type in children is ADEM with or without ON, whereas adult patients often develop
ON and myelitis or cerebral cortical encephalitis. Compared to patients with anti-AQP4
autoantibody-associated NMOSD, patients with MOGAD respond well to immunotherapy;
however, some patients experience multiple relapses. Detection of anti-MOG autoanti-
bodies requires a cell-based assay using structure-preserved antigens. However, most
of the serum samples that recognized human MOG did not recognize mouse MOG well,
highlighting that the diagnosis may be missed if the presence of anti-MOG autoantibodies
is evaluated only with rodent tissue.

Factors associated with age-specific clinical phenotypes with lesion selectivity in the
CNS in MOGAD patients are unknown. In addition, the functions of MOG protein are
not fully understood and the pathogenicity of anti-MOG autoantibodies in MOGAD has
not been demonstrated. To study the role of anti-MOG autoantibodies, it is necessary to
develop a model system; however, human anti-MOG autoantibodies have low affinity for
mouse MOG, which interrupts the development of the disease model.

The anti-MOG autoantibody-binding sites on MOG in the CNS have been extensively
studied and it has been found that the most important part for human antibody recognition
is located in the CC’ loop with proline at amino acid number 42, followed by histidine 103
and serine 104 in the FG loop, but the antibody-binding epitopes differ between patients
without clear relevance to the clinical phenotype. It is possible that triggering factors other
than anti-MOG autoantibodies are involved in MOGAD target vessel walls, blood–brain
barrier structures, etc. to form barrier–loose edematous lesions. Among the patients affected
by the site-directed pathogenicity of anti-MOG autoantibody-mediated inflammation, only
a small number of studies have examined the different clinical phenotypes of MOGAD,
and a better understanding of the underlying immunopathology requires the evaluation of
more patients with different clinical phenotypes in the future.
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