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Abstract: Lung cancer is a leading cause of death worldwide, mostly due to diagnostics in the
advanced stage. Therefore, the development of a quick, simple, and non-invasive diagnostic tool to
identify cancer is essential. However, the creation of a reliable diagnostic tool is possible only in case
of selectivity to other diseases, particularly, cancer of other localizations. This paper is devoted to
the study of the variability of exhaled breath samples among patients with lung cancer and cancer
of other localizations, such as esophageal, breast, colorectal, kidney, stomach, prostate, cervix, and
skin. For this, gas chromatography-mass spectrometry (GC-MS) was used. Two classification models
were built. The first model separated patients with lung cancer and cancer of other localizations.
The second model classified patients with lung, esophageal, breast, colorectal, and kidney cancer.
Mann–Whitney U tests and Kruskal–Wallis H tests were applied to identify differences in investigated
groups. Discriminant analysis (DA), gradient-boosted decision trees (GBDT), and artificial neural
networks (ANN) were applied to create the models. In the case of classifying lung cancer and cancer
of other localizations, average sensitivity and specificity were 68% and 69%, respectively. However,
the accuracy of classifying groups of patients with lung, esophageal, breast, colorectal, and kidney
cancer was poor.

Keywords: exhaled breath; volatile organic compounds; cancer biomarkers; GC-MS; diagnostics

1. Introduction

Cancer is considered as one of the main problems of healthcare. A vast number of
various forms and manifestations of cancer are widespread [1,2]. The most optimal cancer
treatment outcome is in case of diagnostics in the early stage. The majority of cancers are
prone to the lack of symptoms in the early stage, which leads to a high mortality rate due to
late diagnostics. Therefore, the issue of developing new non-invasive techniques to serve
cancer diagnostics is at hand.

Exhaled breath is being actively explored as a source of cancer biomarkers [3–5]. Ow-
ing to its simplicity and convenience of sampling as well as non-invasiveness, the interest
in exhaled breath is gaining momentum. Various scientists published the results of studies
where cancer diagnostic methods based on exhaled breath analysis using different ana-
lytical tools were developed [6–9]. Gas chromatography coupled with mass spectrometry
(GC-MS) has taken a dominant position in the field of exhaled breath analysis since it is
able to provide the most complete information regarding the sample composition [10–12].
Additionally, other analytical methods, including ion mobility spectrometry (IMS) [13],
selected ion flow tube mass spectrometry (SIFT-MS) [14,15], proton-transfer-reaction mass
spectrometry (PTR-MS) [16–18], are widely applied for exhaled breath analysis. Electronic
noses (e-noses) can be considered as a separate group of tools for exhaled breath analysis
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with the advantages of simplicity of construction, mobility of the device, and high speed of
analysis [19]. Various e-nose configurations are known to be good candidates as exhaled
breath analysis instruments: an e-nose based on metal oxide semiconductor sensors [20,21],
a chemoresistive e-nose [22], Cyranose 320 [23], aeonose [24,25], or combined devices
consisting of several types of sensors [26,27]. Exhaled breath sampling techniques and
analytical methods differ in the studies, which can influence the results. Alveolar, end-tidal,
or mixed exhaled breath can be a subject of analysis. The concentration of endogenous
VOCs is higher in samples of alveolar air [28]. However, the sampling of alveolar air
involves using sophisticated equipment, which restricts the mobility and velocity of sam-
pling. Sampling of end-tidal exhaled air allows us to take more alveolar air, but the ratio
of alveolar and dead space air in a sample may differ from one person to another, which
contributes to a distortion of the results. Mixed exhaled air is highly diluted by dead space
air; therefore, the number of endogenous VOCs is lower. However, this approach is simple,
quick, and does not require sophisticated equipment. Obtaining reliable results using
mixed exhaled air is possible only in the case of the strict controlling of ambient air as well
as conducting the sampling procedure [29].

Attempts to create a diagnostic method using exhaled breath to reveal cancer of var-
ious localizations have already been demonstrated [30,31]. The majority of studies are
devoted to the identification of an exact disease, as a rule, lung [21,24,26,27] or breast [6,23]
cancer. Benzene, 2-propanol, styrene, and pentane were often assigned as metabolites
linked with lung cancer development [32]. Breast cancer biomarkers in common signif-
icantly differ in various studies [23,33]. However, heptanal was noted as a biomarker
in several studies [34,35]. Exhaled breath can be useful for diagnosing cancer of other
localizations. For example, a diagnostic model was created in [36], which allowed for the
identification of cirrhosis, and primary and secondary liver tumors. Ethane, (E)-2-nonene,
acetaldehyde, and acetone contributed the most to the diagnostic accuracy. Ovarian can-
cer can be diagnosed with 89% accuracy using a diagnostic model based on decanal,
nonanal, styrene, 2-butanone, and hexadecane, which were identified in exhaled breath
using GC-MS [37]. Cyclohexanone, 2,2-dimethyldecane, dodecane, 4-ethyl-1-octyn-3-ol,
ethylaniline, cyclooctylmethanol, trans-2-dodecen-1-ol, 3-hydroxy-2,4,4-trimethylpentyl,
2-methylpropanoate, and 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were assigned to
colorectal cancer biomarkers [38].

Another interesting issue is to find alternative evidence that the tumor affects VOC
levels in exhaled breath. It can be achieved by comparing exhaled breath profiles of
patients before and after surgery. This approach was demonstrated on 84 patients with lung
cancer [39]. Concentrations of 2,5-dimethylfurane, cyclohexanone, propyl cyclohexane,
octanal, nonanal, decanal, and 2,2-dymethyldecane differed the most in exhaled breath of
patients with lung cancer before and after surgery. An alternative approach is to study the
VOC profile extracted by cancer cell lines. The authors [40] compared metabolite profiles
of adenocarcinoma, squamous cell carcinoma, large cell carcinoma, small cell carcinoma
cell lines, and one normal small airway epithelial cells. Benzaldehyde, 2-ethylhexanol, and
2,4-decadien-1-ol were found as potential lung cancer biomarkers. Comparing profiles of
VOCs from different subjects allows one to trace metabolic pathways and obtain additional
proof of biomarkers’ origins. Correlations between the results of exhaled breath and fecal
samples of patients with gastric cancer were found in study [41].

Considering the highest mortality rate and sophisticated diagnostic procedures ap-
plied in clinical practice nowadays, the development of a non-invasive and accurate lung
cancer diagnostic tool is the most urgent task [2,8,42]. A conventional approach to devel-
oping a diagnostic method is the comparison of healthy volunteers and patients with the
studied disease. However, the accuracy of the diagnostic model can be unknown when it
comes to other diseases. Therefore, it is essential to consider the accuracy of biomarkers
not only in relation to heathy subjects, but the selectivity of potential biomarkers to other
diseases. Some studies have considered the development of a diagnostic method able to
simultaneously detect several cancer types, for example, an electronic nose was presented
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in [30] consisting of an array of cross-reactive nanosensors based on organically functional-
ized gold nanoparticles for diagnosing lung, breast, colorectal, and prostate cancer. VOC
profiles of patients with lung cancer, lung cancer and COPD, COPD, and healthy subjects
were compared in the study [42].

The paper is focused on the selectivity of exhaled breath analysis using GC-MS to
distinguish lung cancer from cancer of other localizations. Breast, esophageal, colorectal,
kidney, prostate, cervix, and skin cancer localizations were considered.

2. Results

The study includes two groups of cancer patients: 85 patients with lung cancer and
85 patients with cancer of other organs, including 11 patients with esophageal cancer,
22 patients with mammary cancer, 16 patients with colorectal cancer, 14 patients with
kidney cancer, 7 patients with stomach cancer, 6 patients with prostate cancer, 5 patients
with cervix cancer, and 4 patients with skin cancer. These samples of exhaled breath were
analyzed using GC-MS.

VOCs and their ratios, which were different in lung cancer and other cancer localiza-
tion groups, were found using a Mann–Whitney U test. Hexane (p = 0.013), acetonitrile
(p = 0.036), 1-methylthiopropene (p = 0.010), 1-methylthiopropane (p = 0.006), and dimethyl
sulfide (p = 0.021) show a significant difference between groups of patients with lung cancer
and cancer of other localizations. Also, several ratios were significantly different between
lung cancer and cancer of other localizations (Table 1).

Table 1. VOCs and their ratios, which have a significant difference between groups of patients with
lung cancer and cancer of other localizations.

VOC or VOC Ratio p-Value

Acetonitrile 0.035681
1-Methylthiopropene 0.010414
1-Methylthiopropane 0.005953

Dimethyl sulfide 0.021984
2-Butanone/1-methylthiopropene 0.000567
2-Butanone/1-methylthiopropane 0.002528

2-Butanone/dimethyl sulfide 0.004545
Allyl methyl sulfide/dimethyl disulfide 0.033031

Allyl methyl sulfide/acetone 0.045749
2-Pentanone/1-methylthiopropene 0.008109
2-Pentanone/1-methylthiopropane 0.024048

2-Pentanone/dimethyl sulfide 0.030791
Dimethyl disulfide/1-methylthiopropene 0.044414

Dimethyl disulfide/dimethyl sulfide 0.031523
1-Methylthiopropene/isoprene 0.047466
1-Methylthiopropene/acetone 0.012438
1-Methylthiopropane/isoprene 0.041529
1-Methylthiopropane/acetone 0.025859

Dimethyl sulfide/acetone 0.049961

The ratios were used as input values for the creation and validation of the diagnostic
model using an artificial neural network (ANN). The accuracy for training, validation, and
test datasets was calculated. The efficiency of Broyden–Fletcher–Goldfarb–Shanno (BFGS)
and nonlinear conjugate gradient algorithms was compared for the creation of the model.
To validate the model, three-fold cross-validation was implemented (Table 2). As seen from
Table 2, the BFGS algorithm is better on a test dataset.
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Table 2. Performance of ANN models.

Algorithm Dataset
Training Dataset Validation Dataset Test Dataset

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Broyden–Fletcher–
Goldfarb–Shanno

1 62 62 89 60 66 68
2 77 56 70 100 57 69
3 80 87 70 50 79 71

Nonlinear
conjugate gradient

1 66 63 89 80 55 43
2 81 48 70 100 71 59
3 43 77 30 75 41 79

The variability of exhaled breath samples of patients with lung, esophageal, breast,
colorectal, and kidney cancer was estimated by Kruskal–Wallis H tests. Each pairwise
comparison was conducted using Mann-Whitney U tests with a subsequent adjustment of
p-value for false discovery rate (FDR).

Some VOCs were found to be different in the studied groups (Table 3). Figure 1
represents a median and interquartile range of parameters with the lowest p-value.
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Table 3. Statistically significantly different parameters in groups of patients with lung, esophageal, breast, colorectal, and kidney cancer (bold p-values were
statistically significant).

VOC or VOC Ratio
Kruskal–

Wallis H Test
p-Value

Mann–Whitney U Test p-Value

Lung vs.
Esophageal

Lung vs.
Breast

Lung vs.
Colorectal

Lung vs.
Kidney

Esophageal
vs. Breast

Esophageal vs.
Colorectal

Esophageal
vs. Kidney

Breast vs.
Colorectal

Breast vs.
Kidney

Colorectal
vs. Kidney

Dimethyl sulfide 0.0056 0.0076 0.0743 0.8634 0.0040 0.1752 0.1323 0.9782 0.4688 0.1313 0.1095
2-butanone/1-

methylthiopropene 0.0037 0.0143 0.0480 0.0403 0.0058 0.5929 0.6044 0.8695 0.9882 0.6496 0.7870

2-butanone/1-
methylthiopropane 0.0093 0.0089 0.4593 0.1086 0.0101 0.0929 0.1748 0.4434 0.3517 0.2299 0.4669

2-butanone/dimethyl sulfide 0.0057 0.0124 0.1849 0.0683 0.0054 0.2519 0.3001 1.0000 0.8360 0.2299 0.1834
2-pentanone/dimethyl sulfide 0.0095 0.0019 0.0569 0.3265 0.1184 0.1314 0.0318 0.0846 0.5059 0.9353 0.5194

Dimethyl sulfide/acetone 0.0057 0.0079 0.0743 0.3948 0.0049 0.2599 0.0983 0.4273 0.4688 0.3223 0.1190
Dimethyl disulfide/dimethyl

sulfide 0.0077 0.6620 0.7490 0.0158 0.0014 0.6331 0.2462 0.0846 0.0891 0.0363 0.5194

1-methylthiopropene/acetone 0.0321 0.0674 0.0671 0.0179 0.1115 0.6468 0.9410 0.3380 0.5643 0.8584 0.4928
Dimethyl disulfide/1-

methylthiopropene 0.0272 0.9358 0.3035 0.0219 0.0057 0.7168 0.2887 0.0589 0.3994 0.2237 0.9503
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Discriminant analysis (DA) was applied to classify groups of patients with lung,
esophageal, breast, colorectal, and kidney cancer. Ratios of VOCs, which were significantly
different between the groups, were used as input values. The DA classification matrix is
presented in Table 4.

Table 4. Classification matrix of DA model.

Cancer
Sample Classification Results

Lung Esophageal Breast Colorectal Kidney Total Percentage of Correct
Classification, %

Lung 81 3 1 0 0 85 95
Esophageal 9 1 0 1 0 11 9

Breast 18 2 2 0 0 22 9
Colorectal 12 0 0 4 0 16 25

Kidney 12 0 0 1 1 14 7

Figure 2 represents a scattering diagram of canonical values for exhaled breath samples
depending on cancer localization.
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Figure 2. Scattering diagram of canonical values for exhaled breath samples depending on cancer
localization.

In addition, the gradient-boosted decision trees (GBDT) algorithm was used to separate
groups of patients with lung, esophageal, breast, colorectal, and kidney cancer. To validate
the model, three-fold cross-validation was used. The performance for training and test
datasets was calculated (Table 5).
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Table 5. Classification matrix of GBDT model.

Sample Classification Results
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Lung

1

46 3 1 6 0 56 82
Esophageal 3 4 0 0 1 8 50

Breast 6 1 2 5 0 14 14
Colorectal 3 0 1 7 0 11 64

Kidney 4 2 1 1 1 9 11

Te
st

Lung 20 3 1 5 0 29 69
Esophageal 1 2 0 0 0 3 67

Breast 5 2 0 1 0 8 0
Colorectal 3 1 0 1 0 5 20

Kidney 2 0 0 3 0 5 0

Tr
ai

ni
ng

Lung

2

40 7 5 2 3 57 70
Esophageal 2 2 0 0 3 7 29

Breast 4 3 6 0 2 15 40
Colorectal 4 2 1 1 2 10 10

Kidney 4 0 4 0 2 10 10

Te
st

Lung 16 5 6 0 1 28 57
Esophageal 2 0 0 0 2 4 0

Breast 3 1 3 0 0 7 43
Colorectal 3 0 3 0 0 6 0

Kidney 3 0 0 0 1 4 25

Tr
ai

ni
ng

Lung

3

46 1 5 2 2 56 82
Esophageal 0 7 0 0 0 7 100

Breast 0 0 15 0 0 15 100
Colorectal 0 0 0 11 0 11 100

Kidney 0 0 0 0 9 9 100

Te
st

Lung 18 0 6 3 2 29 62
Esophageal 1 0 2 1 0 4 0

Breast 2 0 4 0 1 7 57
Colorectal 1 0 2 0 2 5 0

Kidney 2 1 2 0 0 5 0

3. Discussion

The development of a non-invasive cancer diagnostic method is an urgent challenge,
which attracts the attention of many researchers worldwide [4,8,10,18,21]. Despite the
attempts of many research groups to solve the problem, the breath test for cancer diagnostics
has not yet been implemented in clinical practice. It can be explained by the many pitfalls
that are often omitted during research. A conventional approach of biomarker identification
assumes comparing a group of pathology with a group of healthy volunteers. However, the
approach can lead to false-positive results linked to a lack of considering other disorders.
An issue of this work was to compare groups of patients with cancer of various localizations.
Breast, esophageal, colorectal, kidney, prostate, cervix, and skin cancers were considered.
Not only peak areas but also their ratios were considered in terms of the difference between
lung cancer and cancer of other localizations. The implementation of this approach was
demonstrated earlier [43].

Taking into account difficulties concerning lung cancer diagnostics, the most essential
task was to separate samples of exhaled breath of lung cancer patients and patients with
cancer of other localizations. For this, a Mann–Whitney U test was applied. Acetonitrile,
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1-methylthiopropene, 1-methylthiopropane, and dimethyl sulfide were different between
patients with lung cancer and cancer of other localizations. Acetonitrile [44], dimethyl
sulfide [45], and 1-methylthiopropene [46] were determined as lung cancer biomarkers
earlier. Dimethyl sulfide was also listed as a putative biomarker of esophageal cancer [17].
The ratio of 1-methylthiopropane/acetone was different in groups of lung cancer and
healthy volunteers in the previous work [43].

To create a model capable of separating patients with lung cancer and patients with
other cancer localizations, ANN was used. ANN is one of the most powerful machine-
learning algorithms. It was used in many research works to create diagnostic models [24,47].
Our previous research has shown that the diagnostic model created using ANN is more
accurate than random forest, support vector machine, and logistic regression on the same
dataset [43]. ANN is the most flexible method capable of revealing complex patterns that
may be inaccessible to traditional algorithms. Therefore, ANN was used in this work to
create a classification model to separate lung cancer patients from patients with cancer of
other localizations. The efficiency of two algorithms: Broyden–Fletcher–Goldfarb–Shanno
(BFGH) and nonlinear conjugate gradient was compared to train the ANN. The nonlinear
conjugate gradient algorithm is attractive due to the simplicity of the iterations and lower
storage requirements [48]. BFGS is one of the most effective quasi-Newton methods [49].
BFGS surpassed the conjugate gradient algorithm: the average sensitivity and specificity
on the test dataset were 67% and 69% for BFGS and 56% and 57% for conjugate gradient.
Accuracy, which is achieved by comparing lung cancer patients with healthy individuals, is
significantly greater in most cases [50–53]. The accuracy obtained in our research is utterly
inadequate for a large-scale screening due to the high number of expected false positives.
The study has several limitations: the group of patients with other cancer localization
includes uneven distribution of various cancer localizations. Another drawback is the
sample size, which is too small to obtain reliable results. However, this study highlights the
problem of differentiating various diseases through exhaled breath analysis. Prospectively,
the diagnostic models aimed to identify lung cancer may classify patients with cancer of
various localizations as lung cancer patients. Therefore, it is essential to compare not only
samples of lung cancer patients and healthy volunteers but also consider other pathologies,
which can be potentially confused with the disease.

Another task of this work was to evaluate the possibility of classifying patients with
various cancer localizations, namely lung, esophageal, breast, colorectal, and kidney cancer,
and find the parameters specific to each group. For this, a Kruskal–Wallis H test was used.
As can be seen from Figure 2, there are no parameters that can classify each cancer in the
separate groups. However, the level of dimethyl sulfide is elevated in the case of lung
and esophageal cancer in comparison with other cancer localizations. The majority of
ratios containing sulfuric compounds is higher in the case of esophageal and colorectal
cancers. Dimethyl sulfide and ratios containing this component were significantly different
in groups of lung and esophageal cancer as well as lung and kidney cancer. Levels of the
set of VOCs and their ratios were equal for the rest of the cancer localizations (Table 2).

An attempt to classify lung, esophageal, breast, colorectal, and kidney cancer using DA
was applied owing to the ability of visualization using a scattering diagram of canonical
values. As shown in Figure 2, the exhaled breath samples of patients with cancer of various
localizations cannot be separated. Most samples of esophageal, breast, colorectal, and
kidney cancer are classified as lung cancer. ANN is one of the most effective machine
learning algorithms [38]. It is worth noting that ANN works better when the groups have an
equal number of cases. Considering the task of separation of groups with different numbers
of observations, one of the most effective machine-learning algorithms is GBDT [45], which
was applied to classify the exhaled breath samples of patients with cancer of different
localizations. The accuracy of classification on the training data was relatively high for
lung and esophageal cancer, but on the test data, it was significantly worse for all cancer
localizations. Among the studied cancer types, the model better recognized lung and breast
cancer on the test dataset (Table 5). Lung, breast, colorectal, and prostate cancers were
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classified through exhaled breath analysis using electronic nose based on cross-reactive
nanosensors [30]. The groups of patients with lung, breast, and colon cancer were fully
separated, but prostate and lung cancer and healthy individual groups were overlapped.
Our study also demonstrates a better separation of lung and breast cancer, but accuracy is
significantly lower. The main limitation of this part of the study is a small sample size with
a lot of comparable groups, each of which contains a low number of samples.

The exhaled breath VOC profiles of lung cancer patients and patients suffering from
other lung diseases (e.g., chronic obstructive pulmonary disease (COPD), asthma, pneumo-
nia, pulmonary embolism, benign lung tumors) as well as healthy controls were compared
in this study [42]. It was shown that the discrimination of lung cancer and healthy con-
trols was better than between lung cancer and other lung diseases. The classification of
50 breast cancer patients, COPD patients, and healthy volunteers was fulfilled with 100%
accuracy on test data using hemoresistive gas sensors and canonical analysis of principal
coordinates [54].

The results obtained in this study additionally prove the assumption of obtaining
a potentially incorrect diagnosis since the samples of patients with cancer of various
localizations are poorly separated. The issue of separating cancer of various localizations is
essential for the development of a reliable and accurate cancer diagnostic tool.

4. Materials and Methods
4.1. Materials

Acetone and 1-propanol (99.9%) were obtained from Ecos-1 (Moscow, Russia); o-
xylene, p-xylene, m-xylene, and 2-propanol (>95%) were obtained from Vecton (Moscow,
Russia); acetonitrile, ethanol, benzene, n-hexane, methanol, toluene (>95%) and octane,
nonane, decane, and dodecane (≥99%) were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.2. Study Participants

The study includes 2 groups of cancer patients: 85 patients with lung cancer and
85 patients with cancer of other organs, including 11 patients with esophageal cancer,
22 patients with mammary cancer, 16 patients with colorectal cancer, 14 patients with
kidney cancer, 7 patients with stomach cancer, 6 patients with prostate cancer, 5 patients
with cervix cancer, and 4 patients with skin cancer. All patients involved in the study
were examined in the State budgetary healthcare institution “Research Institute—Regional
Clinical Hospital N◦ 1 named after Professor S.V. Ochapovsky”. Biopsy results were
used for diagnosis confirmation. The samples were collected at the stage of the diagnosis
verification before treatment. The data on the participants are summarized in Table 6.

Table 6. Information on the participants.

Group of Patients Number Male/Female Age (Median, Range) Smokers

Lung cancer 85 63/22 66, 30–79 32

Esophageal cancer 11 10/1 61, 45–74 5

Breast cancer 22 22 60, 30–73 1

Colorectal cancer 16 6/10 66, 35–85 1

Kidney cancer 14 8/6 63, 49–81 6

Stomach cancer 7 5/2 64, 54–79 2

Prostate cancer 6 6 69, 58–76 2

Cervix cancer 4 4 57, 42–61 1

Skin cancer 4 2/2 64, 59–67 1
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4.3. Exhaled Breath Collection and GC-MS Analysis

Considering the simplicity and mobility of mixed expiratory breath sampling, this
approach was chosen to collect the samples. Mixed expiratory breath was collected in
5 L Tedlar (Supelco, Bellefonte, PA, USA) sampling bags. Nitrogen was used for cleaning
the bags. The participants provided the samples of exhaled breath in the hospital. Am-
bient air was used as a blank sample. The patients underwent overnight fasting before
sampling. Smokers were not involved in the study if they smoked less than 2.5 h prior
to breath collection. Exhaled breath was sampled after a 10 min rest of the participant
in a separate sampling room. Patients were asked to breathe, hold their breath for 10 s,
and breathe out into the sampling bag. The procedure was repeated until the sampling
bag was filled. Sample treatment and chromatographic analysis conditions were opti-
mized and applied earlier [43,55]. A PV-2 aspirator (Chromatec, Yoshkar-Ola, Russia)
and Tenax TA (60–80 mesh, Chromatec, Yoshkar-Ola, Russia) sorbent tubes were applied
to preconcentrate the samples. The rate and time of aspiration were 200 mL/min and
2.5 min, respectively. A system consisted of a gas chromatograph (Chromatec crystal 5000.2,
Chromatec, Yoshkar-Ola, Russia) combined with a quadrupole mass spectrometer with an
electron ionization source (Chromatec MSD, Chromatec, Yoshkar-Ola, Russia) and a two-
stage thermal desorber TD2 (Chromatec, Yoshkar-Ola, Russia). Separation of analytes was
conducted using a Supelco Supel-Q PLOT (30 m × 0.32 mm × 15 µm) column (Bellefonte,
PA, USA). Data were acquired using Chromatec Analytic (Chromatec, Yoshkar-Ola, Russia)
software and mass spectral library NIST 2017, Version 2.3 (Gatesburg, PA, USA). GC-MS
analysis conditions are presented in Table 7.

Table 7. GC-MS analysis conditions.

Equipment Parameter Value

Thermal desorber

Carrier gas Helium
Carries gas flow rate (desorption from the

sorption tube), mL/min 30

Desorption temperature, ◦C 250
Initial trap temperature, ◦C −10
Final trap temperature, ◦C 250

Carrier gas flow rate (desorption from the
trap), mL/min 50

Desorption time, min 5
Speed of the trap heating, ◦C/min 2000

GC-MS

Carrier gas Helium
Injector temperature, ◦C 250

Split ratio 1:10
Ion source temperature, ◦C 200

Transfer line temperature, ◦C 250
Scan range, amu 29–250

Electron impact ionization, eV 70

4.4. Statistical Analysis

The chromatograms of exhaled breath samples were obtained in a full scan mode.
Peak areas of individual VOCs were calculated in extracted ion chromatogram (EIC) mode.
The influence of ambient air was eliminated by subtraction of room air peak area values
from the exhaled breath ones. Negative results of subtraction were set to zero. VOCs with
peak area values exceeding room air levels by at least 50% were selected for statistical
analysis. Another criterion for selection was occurring the VOC in more than 50% of
samples. The ratios of the compound peak areas to the main ones (present in more than 88%
of the samples) as well as ratios of the main VOCs were considered for statistical analysis.
The description of ratio calculations was presented earlier in detail [43].

StatSoft STATISTICA (version 10) was applied for statistical analysis and building
the diagnostic model. At the first stage, the normality of data distribution was checked
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applying Kolmogorov–Smirnov test. The distribution was not normal. Therefore, a Mann–
Whitney U test (p = 0.05) was used to select the VOCs and their ratios, which are different in
groups of lung cancer patients and patients with cancer of other organs. A Kruskal–Wallis
H test (p = 0.05) was used to assess the mean differences between groups of patients with
lung, esophageal, breast, colorectal, and kidney cancer. Each pairwise comparison was
conducted using a Mann–Whitney U test. A Type I error from multiple hypothesis testing
was addressed with False Discovery Rate (FDR) correction using the Benjamini–Hochberg
adjusted p-value cutoff of ≤0.05.

The diagnostic model for selecting lung cancer patients from patients with other
cancer localizations was built by applying a multilayer perceptron artificial neural network
(ANN). A recurrent feedforward ANN with fully connected one hidden layer was created.
Model training was fulfilled using 2 algorithms: Broyden–Fletcher–Goldfarb–Shanno and
nonlinear conjugate gradient. The model has the following structure: the input layer
consists of 15 neurons corresponding to VOC, which were significantly different between
the studied groups (Table 1), a hidden layer, including 7 neurons, and the output layer,
including 2 neurons, which corresponded to the group of lung cancer or cancer of other
organs. The hidden layer activation function was identity, output layer—SoftMax. The data
were divided into 3 datasets: training (60%), validation (10%), and test (30%). To provide
reliable results, three-fold cross-validation was used.

To create the model allowing classification of patients with different cancer localiza-
tions, the gradient-boosted decision trees (GBDT) algorithm was applied. The data were
divided into 2 datasets: training (70%) and test (30%). The reliability of the results was
provided by three-fold cross-validation.

5. Conclusions

In the present research, we shed a light on the problem of classifying patients with vari-
ous diseases using exhaled breath analysis. The classical approach supposes the comparison
of patients with certain diseases with healthy persons, but putative biomarkers can indicate
not only the investigated diseases but other pathologies. To avoid incorrect classification,
the other pathologies must be considered before the implementation of exhaled breath
tests in clinical practice. Exhaled breath VOC profiles of patients with cancer of various
localizations were considered in this work. The results obtained prove the assumption
about overlapping the VOC profiles of patients with various cancer localizations. Further
research is required to determine biomarkers specific to each cancer localization type for
providing accurate diagnosis.
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