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Abstract: Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties.
Their potential health benefits, especially in cancer prevention and treatment, have been a subject
of considerable research in the past decade. Phytoestrogens exert their effects, at least in part,
through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural
estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on
osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and
is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs
axis in bone development and growth, the modulation of ERs has emerged as a highly promising
approach in the treatment of OS. This review provides an extensive overview of current literature
on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms
through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in
the growth and progression of OS, including ER signaling. Moreover, potential interactions between
phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be
examined. Understanding the impact of these compounds in OS holds great promise for developing
novel therapeutic approaches that can augment current OS treatment modalities.
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1. Introduction

Osteosarcoma (OS) is the most primary bone tumor and a major cause of cancer death
during the second and third decades of life with a worldwide incidence of 3.4 cases per
million people per year, for all races and both genders [1,2]. Current disease management
strategies include the surgical resection of all clinically visible tumors and systemic front-
line chemotherapy which uses high doses of methotrexate (MTX), cisplatin (CDDP), and
doxorubicin (DOX). This determines an overall survival level of 65–70% at 5 years [3,4].
However, today, several patients continue to develop metastases with an elective site in
the lung, which causes a high mortality rate. This means that 20–30% of patients are
refractory to these conventional treatments [5]. This discomforting scenario is frequently
attributed to the ineffectiveness of chemotherapy, which can be influenced by chemo-
resistance phenomena [6]. In addition, chemotherapeutic agents often produce various
side effects, including cardiotoxicity, hepatotoxicity, and renal toxicity, which contribute to
the increased likelihood of OS recurrence and progression [7].

While there are an increasing number of targeted therapies being developed and an
improvement in the survival rate of other cancers, OS still stands where it was decades ago.
These unsatisfactory results mean that complementary and alternative treatment options
merit more attention. In this regard, dietary supplements and phytotherapeutic agents,
with high anticancer efficacy and nominal toxicity to normal tissues, have emerged as a
promising avenue that is worth investigating [8].
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Over the past decade, significant attention has been devoted to studying phytoestro-
gens through mechanistic in vitro research which, together with epidemiological observa-
tions, has provided evidence that supports their chemopreventive and chemotherapeutic
effects in different types of malignancies, including breast, prostate, and colon cancer [8].
Phytoestrogens are found in various plants, especially soy and soy-based foods and herbal
medicines [9]. They possess a structural similarity to the estrogen hormone, which en-
ables them to interact with ERs in the body, exerting both estrogenic and anti-estrogenic
effects [10–12]. This characteristic has sparked interest in gaining a better understanding of
the potential influence of this class of plant substances on OS, considering that estrogen
signaling can be implicated in the growth and progression of this malignancy [12–14].
In recent years, studies have shed light on the multifaceted effects of phytoestrogens on
human OS cells. These compounds have been reported to exhibit both pro-apoptotic and
anti-proliferative properties, suggesting their potential as therapeutic agents for OS [8,15].
Several underlying mechanisms have been proposed, including modulation of Ers, in-
hibition of angiogenesis, regulation of apoptosis-related proteins, and interference with
cell signaling pathways involved in OS development, including the phosphatidylinosi-
tol 3-kinase (PI3K)/Akt pathway and the mitogen-activated protein kinase (MAPK) sig-
naling and Wnt/β-catenin pathway [15]. Phytoestrogens also possess antioxidant and
anti-inflammatory properties, which contribute to their anticancer effects by attenuating
oxidative stress and inflammation-mediated processes [8,15].

In this work, we aim to provide a comprehensive synthesis of the existing body of
literature surrounding the impact of phytoestrogens on human OS models, with particular
attention being paid to the potential of these molecules as ER modulators. By examining
preclinical studies and molecular investigations, we seek to gain insights into the mecha-
nisms through which phytoestrogens exert their effects on OS cells and provide support
for the future development of phytoestrogens as effective and safe agents for the therapy
of OS.

2. Phytoestrogens: Chemical Classification and General Aspects

Phytoestrogens are produced by plants (more than 300 various species) as secondary
metabolites which play crucial roles in various plant functions, such as defense against
pathogens, pigmentation and protection from UV radiation, photosynthetic stress, and
reactive oxygen species [16]. The quantity of phytoestrogens produced by a plant in-
creases significantly during extreme growing conditions [17]. The human diet is rich in
plant-containing phytoestrogens (i.e., vegetables, legumes, cereals, fruits, nuts, etc.), and
beverages, such as wine, cider, beer, tea, and many more. Many edible plants contain mul-
tiple classes of phytoestrogens, adding to their diversity and potential health benefits [9].
Regarding their structural features, phytoestrogens represent a large and heterogenic class
of non-steroidal substances characterized by a close structural similarity to the principal
mammalian estrogen 17β-estradiol (E2) [11,12].

Shared structures include a phenolic ring and a pair of hydroxyl groups in opposite
positions on the molecule (as in the case of E2 molecule), which are responsible for the
interaction of phytoestrogens with the ligand-binding domain of ERα and ERβ.

The exact position and number of these hydroxyl substituents is crucial in determining
the binding affinity for the ERs and the activation of hormonal signaling [18,19].

The estrogenic or antiestrogenic properties of phytoestrogens in the target cells depend
on their phenolic ring [20].

The phytoestrogens have been categorized into two main groups: flavonoids and non-
flavonoids based on their chemical structure and properties. The classification and the basic
structures of the most representative dietary phytoestrogens are illustrated in Figure 1. For
further details, see Sections 6 and 7. Isoflavones, flavones, flavonols, flavanones, catechins,
and coumestans belong to flavonoids. Non-flavonoids include stilbenes and lignans. The
most commonly occurring phytoestrogens are the flavonoids (of which the coumestans
and isoflavones have the greatest estrogenic effects) and the lignans [8,21].
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Figure 1. Basic chemical structures of the major classes of phytoestrogens. The different types of
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2.1. Flavonoids

Flavonoids are a large group of substituted phenolic compounds [22]. They share a
common structure consisting of a fifteen-carbon skeleton composed of two benzene rings
(A and B) connected by a heterocyclic pyran structure (C) in a C6–C3–C6 arrangement, as
illustrated in Figure 1 [23]. The basic flavonoid skeleton can have numerous substituents,
including hydroxyl groups typically found at positions 4′, 5′, and 7. Flavonoids can be
further classified into different subclasses. Specifically, isoflavones are flavonoids, where
the B ring is connected to the heterocyclic ring at the C3 position.

On the other hand, flavonoids in which the B ring is linked at position 2 are divided
into several subgroups, namely flavones, flavonols, flavanones, and catechins, depending
on the degree of saturation and oxidation of the C ring (Figure 1). Coumestans are a distinct
flavonoid which are characterized by a 1-benzoxolo (3,2-c)chromen-6-one structure formed
by a benzoxole fused with a chromen-2-one [8]. The presence and position of hydroxyl
groups and/or additional substituents contribute to the diversity of flavonoids and their
biological activities [23–25].

Moreover, the addition of lipophilic prenyl side-chains can occur at different positions
of the flavonoid skeleton, resulting in various prenylated derivatives with improved bioac-
tivities and higher affinity to biological membranes. Prenylated flavonoids are much less
common than flavonoids in nature [26].

Flavonoids are some of the most prevalent compounds found in fruits, vegetables,
legumes, and tea and are generally concentrated in the fruit skin, bark, and flowers of
plants [21]. Certain flavonoids, such as the flavonol quercetin, are found in all plant
products (i.e., fruit, vegetables, cereals, leguminous plants, tea, and wine), but others are
specific components of particular foods (i.e., flavanones in citrus fruit and isoflavones
in soya). In most cases, food contains complex mixtures of flavonoids; for many food
products, the composition is less known (for review, see [27]). In plants, most flavonoids
are conjugated with one or more sugar residues linked to hydroxyl groups or aromatic
carbons, so they mainly exist as glycosides [28].
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2.2. Non-Flavonoids

Non-flavonoids encompass a broad range of plant compounds that do not possess
the characteristic flavonoid structure. Their structure consists of phenolic acids in either
C6–C1 (benzoic acid) or C6–C3 (cinnamic acid) conformations and are mainly represented
by lignans and stilbenes (Figure 1). Non-flavonoids may occur in the form of aglycones
and glycosides [28].

Lignans are dimers of phenylpropanoid units connected via two specific carbons
(C-2–C-2′) and are typically found in plant cell walls [29]. They are widespread and their
content is high in common foods, including grains, nuts, seeds, vegetables, and drinks such
as tea, coffee, or wine. Plant lignans are the principal source of dietary phytoestrogens in
the Western diet [30]. Compounds, such as pinoresinol, lariciresinol, sesamin, enterolactone,
and enterodiol can be found in this group [29].

Stilbenes are among the most relevant non-flavonoid phytoestrogens which consist
of a 1,2-diphenylethylene nucleus that generates two isomers (cis and trans), with the
trans-isomer being the most stable and biologically active [31,32]. More than 400 stilbene
compounds have been identified in plants, with various structures ranging from monomers
to octamers with different substituents, such as glycosyl, hydroxyl, methyl, or isopropyl
radicals [31]. Monomeric stilbenes have been studied the most. These include resveratrol
and polydatin (Section 7). They are naturally occurring in fruits, mostly in grapes, berries,
and peanuts [33]. In general, the occurrence of stilbenes in the human diet is limited but
represents an important part of phytoestrogen intake by people who follow a Mediterranean
diet or who regularly drink wines.

2.3. Metabolism of Dietary Phytoestrogens

Each class of dietary phytoestrogens has its own structural particularities, and studies
regarding their bioavailability and metabolism are still far from being completed. There
is no relation between the quantity of phytoestrogens in food and their bioavailability
in the human body. Indeed, the rate and extent of absorption of dietary phytoestrogens
in the intestine is determined primarily by their chemical structure and by factors such
as molecular size and solubility, extent of glycosylation, hydroxylation, acylation, and
degree of polymerization [12,34]. Most ingested phytoestrogens (e.g., isoflavones, lignans,
and stilbenes), are predominantly present as estrogenically inactive glycosides in plant
material [35]. After ingestion, phytoestrogens undergo extensive metabolization mediated
both by tissue enzymes and gut microbiota, either prior to absorption or during entero-
hepatic circulation. The intestinal flora is capable of transforming aglycones into bioactive
metabolites that are more similar to estrogens, being able to interfere with the endogenous
estrogen signaling and associated cellular processes. In some cases, these metabolites have
greater biological activities and different impacts on targeted tissues than their parent pre-
cursors [36,37]. For a detailed background on the absorption and metabolism of different
phytoestrogens, see ref. [38]. Thus, individual variability in gut microbiota can influence
the metabolism of these estrogenic molecules, contributing to their intake and beneficial
effects [39]. Consequently, the identification, quantification, and individual differences
among phytoestrogen metabolites are important issues when researching the health effects
of phytoestrogens in humans.

3. Phytoestrogen Mechanisms of Action—Anticancer Related Effects

In recent years, significant efforts have been made to elucidate the molecular mecha-
nisms underlying the biological effects of phytoestrogens in both physiological and patho-
logical conditions. The bioavailability and metabolism of phytoestrogens, as well as their
effects on enzymes, nuclear receptors, and intracellular transduction mechanisms, play
a crucial role in determining the overall impact of these compounds on cancer risk and
progression [8]. However, the debate surrounding these effects persists, and further clar-
ification is still needed. Phytoestrogens show a complex mode of action via interaction
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with the ER subtypes (i.e., ERα and ERβ), acting as either estrogen, triggering receptor
pathways, or anti-estrogens, blocking normal estrogenic activity [10,40,41].

The dichotomy of ER modulating action induced by phytoestrogens led to the inser-
tion of these compounds into the class of selective ER modulators (SERMs) [42–45] and
probably provides an explanation regarding the conflicting evidence about the risks and
benefits of these molecules on human health [46]. The activation of ER signaling pathways
plays a vital role in the malignant progression of multiple cancers by comprehensively
regulating downstream genes. The two ER subtypes have been described with different
tissue distribution and ligand-binding affinities. ERα is mainly found in breast and uterine
tissues and has been associated with pro-oncogenic responses while ERβ is the predom-
inant isoform in the brain, bones, and blood vessels and is related to tumor-suppressive
responses [19,47]. The alteration of the ERα/ERβ ratio in the affected tissues is one of the
main reasons for the variability of estrogen-dependent cancer biology [48] and correlates
with the response to the treatments and prognosis [49,50].

Phytoestrogens are known to bind ERs with much lower affinities than that of E2
(from 1/100 to 1/10,000), suggesting their weak estrogenic activities [19,47,51].

Moreover, unlike E2, which binds both ERα and ERβ with similar affinity, several
phytoestrogens, including genistein, daidzein, and naringenin, display a substantially
higher affinity for ERβ [19,52–54] (Table 1). Hence, considering the contrasting pro- and
anti-cancerous effects exerted by ERα and Erβ, respectively, along with the unique ex-
pression patterns of these receptors in various cell types and tissues, the specific impact
of phytoestrogens on each ER subtype becomes crucial in shaping the effects of these
compounds on cancer progression [55].

Table 1. Relative binding affinities of various dietary phytoestrogens for ERα and ERβ, with values
for E2 arbitrarily set as 100. The phytoestrogens reported are those discussed in Sections 6 and 7.

Phytoestrogen Relative Binding Affinity References

ERα ERβ

Isoflavones
Genistein 4 87
Daidzein 0.1 0.5 [19]

Biochanin A <0.01 <0.01
Formononetin <0.01 <0.01

Flavonols
Quercetin 0.01 0.04 [19]
Galangin ND ND

Flavones
Apigenin 0.3 0.6 [19]

Flavanones
Naringenin 0.01 0.11 [19]

Stilbenes
Resveratrol 6.11–11.2 a 4.7–15.66 a [52]
Polydatin ND ND

a values reported by Bowers et al. [52] were obtained using a different methodology.

The actions of phytoestrogens via ERs can be mediated by genomic and/or non-
genomic mechanisms, in a dose- and tissue-specific manner [52,56]. The ER-mediated
genomic effects of phytoestrogens result in the regulation of target genes, which include
anti-inflammatory, anti-apoptotic, metabolic, and mitochondrial genes, as well as an im-
provement in mitochondrial biogenesis and function, which leads to increased resistance to
stress [57,58] (Figure 2).
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Figure 2. Intracellular mediators of the effects of phytoestrogens on cancer cells. Phytoestrogen can
interact with the two types of ER, the intracellular ERα and Erβ, and membrane-associated mERs and
GPER, activating downstream genomic and non-genomic effects which ultimately affect cell cancer
phenotypes. The genomic pathway can involve ER interactions with other transcription factors (TFs),
such as CREB, AP-1, Sp1, and NF-κB. Phytoestrogens can also act through ER-independent mecha-
nisms which induce oxidative stress-mediated signaling by generating ROS, as well as interacting
with other nuclear receptors, such as PPARs and ERRα/γ.

Phytoestrogens also modulate several therapeutically important oncogenic signaling
pathways, including the epithelial–mesenchymal transition (EMT) and MAPK-associated
pathways [46,59], and recruit transcription factors, such as response element binding
protein (CREB), the activator protein 1 (AP-1), the stimulating protein 1 (Sp1), and the
nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), which are correlated
with cell cycle regulation, angiogenesis, metastasis, and apoptosis [60].

Besides nuclear events mediated by intracellular ER binding, many of these com-
pounds also exert non-genomic effects through the activation of the membrane-associated
ERs (mERs) and/or G-protein-coupled estrogen receptor 1 (GPER1/GPR30), which are
involved in a diverse array of disorders, including cancer [61–63]. Among the membrane-
initiated non-genomic effects is the activation of signaling cascades, such as the mitogen-
activated protein extracellular kinase/extracellular signal-regulated kinase (MEK/ERK)
and PI3K pathways, which affect cancer cell apoptosis and proliferation [10,64].

In addition, they can exert estrogenic activity by cross-talk with many other path-
ways, including those related to membrane-associated growth factor receptors, such as
the human epidermal growth factor receptor (EGFR/HER) and the insulin-like growth
factor 1-receptor (IGF1R) [65], as well as nuclear receptors, including [66] peroxisome
proliferator-activated receptors (PPARs) [67] and estrogen-related receptor alpha/gamma
(ERRα/γ) (Figure 2) [68]. Moreover, phytoestrogens can promote apoptosis and prevent the
reproduction of malignant cells by blocking neo-angiogenesis, tyrosine-kinase, and topoi-
somerase proteins [69]. Several studies have also reported that, in addition to the classical
estrogen receptor signaling and the genomic and non-genomic effects mentioned above,
some phytoestrogens, including genistein and resveratrol, exert their anticancer effects by
the epigenetic mechanism, such as the modulation of the chromatin structure [42,70] and
the regulation of different cancer-associated miRNAs [71,72], suggesting new therapeutic
strategies for cancer.

Phytoestrogens are mostly known for their potent antioxidant activity, i.e., another
biological activity that indirectly reduces the risk of various degenerative diseases linked to
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oxidative stress, including cancer [73]. The chemical structures of these compounds consist
of a long-conjugated system that includes phenolic groups. This structural arrangement
confers them significant antioxidant properties [8], which have been linked to their chemo-
prevention potential, particularly in Asian populations. It is worth noting that in these
populations, there is a correlation between soy consumption and a reduced occurrence of
estrogen-related cancers [8,24].

On the other hand, at high concentrations, phytoestrogens may have pro-oxidant
effects and induce cell death. Flavonoids autoxidize in aqueous medium and may form
highly reactive radicals in the presence of transition metals. This effect has been described
for several compounds, including genistein [74,75] and resveratrol [76], suggesting that a
combination of phytoestrogens with anti-cancer treatments may render cancer cells more
sensitive to treatment, in part by increasing the production of reactive oxygen species (ROS).
However, given the high concentration of these compounds required for these activities,
their impact on cancer onset and progression appears to be related to other cellular effects
besides the modulation of oxidative stress [77,78].

Some phytoestrogens have also been shown to possess anti-inflammatory properties
and modulate immune responses. They can inhibit the production of inflammatory media-
tors and reduce the expression of pro-inflammatory genes, contributing to their potential
as anticancer agents [8,15].

As a whole, phytoestrogens exert a plethora of effects through multiple synergistic
signaling pathways, which contribute to the outcome of phytoestrogen exposure on health
and/or cancer cells. The specific effects of phytoestrogen exposure on cancer initiation,
progression, and development may differ depending on the ERα/ERβ ratio in the affected
tissue and the different selectivity and concentration of phytoestrogens [48]. In this regard,
the majority of reported findings indicate distinct effects at low and high concentrations of
phytoestrogens, which may be attributed to the capacity of these molecules to interact with
and modulate ERs, thereby influencing endocrine functions [79]. Indeed, some studies have
raised concerns about the potential adverse effects of soy products, particularly in high
doses or when consumed by individuals with hormone-sensitive cancers [10,42]. Hence, it
is crucial to gain a comprehensive understanding of how phytoestrogens interact with the
ERs to fully evaluate their toxicologic and pharmacologic properties.

4. Molecular Basis of Osteosarcoma Pathogeneses

The difficulty in establishing an efficacious OS therapy is linked to the unclear specific
markers for diagnosis and treatment. It is also due to the complexity of the OS genome,
low incidence of this tumor, and significant biologic differences between OS subtypes.
Nevertheless, the heterogeneity in the genotype of OS has translated into several expression
profiles of macromolecular biomarkers, which are helpful in the clinic [2,80–82]. There are
many genetic mutations observed in OS patients. The p53 and retinoblastoma (Rb) genes
are well-known tumor-suppressor genes. Both germline and somatic mutations of the p53
and Rb genes have been proven to be involved in OS pathogenesis [82–84]. Inherited cancer
predisposition syndromes, such as Li–Fraumeni, hereditary retinoblastoma, Rothmund–
Thomson, Bloom, or Werner syndrome, may also influence the high appearance of this
kind of tumor in young patients [83,85–88]. Among other genes mutated in more than
10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by
activating MEK–ERK pathways. A high expression of c-Myc in OS tumors correlates with
the formation of metastasis and poor prognosis [89].

Several studies have consistently demonstrated that OS cells have the capacity to
develop and secrete a range of growth factors that exert autocrine and paracrine effects.
Vascular endothelial growth factor (VEGF), transforming growth factor (TGF), IGF-I and
IGF-II, and connective tissue growth factor (CTGF) are deregulated in OS, which leads
to tumor progression and growth in target cells [82,90–92]. Parathyroid hormone-related
peptide (PTHrP) and its receptor have also been implicated in OS progression and metas-
tasis development, with PTHrP conferring OS chemoresistance by blocking signaling via
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p53 [93]. Epigenetic events have emerged as significant risk factors for OS, since the DNA
methylation pattern of specific genes or gene regions and histone modifications may be in-
volved in tumor development [94]. In addition, a variety of studies have found abnormally
expressed levels of micro-RNAs (miRs), which have the potential to become prognostic
biomarkers of OS. Overexpression of this molecule results in proliferation, migration, and
invasion of tumor cells [68,95]. Among the miRNAs deregulated in osteosarcoma are
miR-421, miR-16, miR-200b, and miR-101 [81,96,97].

OS is a highly metastatic tumor, and pulmonary metastases are the most common cause
of death [82,98]. The ability of OS cells to metastasize has been found to be correlated with
multiple processes and various cytophysiological changes, including changing the adhesion
capabilities between cells and the extracellular matrix (ECM) and disrupting intercellular
interactions [99,100]. Degradation of the ECM and components of the basement membrane
caused by the concerted action of proteinases, such as matrix metalloproteinases (MMPs),
cathepsins, and the plasminogen activator (PA), can play a critical role in OS invasion
and metastasis [100]. Moreover, in metastatic forms of OS, some specific genetic changes
have been observed, which include upregulation of the Wnt/β-catenin and Src pathways,
the neurogenic locus notch homolog protein 1 and 2 (Notch1/Notch2) receptors [101,102]
together with the downregulation of the Fas/Fas ligand pathway (a cell death pathway),
which increases the metastatic potential of human OS [103,104].

In both primary bone cancer and bone metastases, the bone remodeling process
creates a favorable environment for tumor establishment and progression. Osteoblasts and
osteoclasts are the primary regulators of bone metabolism [105]. Specifically, osteoblasts
secrete multiple components of ECM and MMPs in the OS niche, which are rich promoters
of OS development. Moreover, osteoclasts play a pivotal role as bone-resorbing cells, and
significant osteolysis exhibited in some OS cases can be directly attributed to the heightened
activity of osteoclasts [100].

It has been demonstrated that OS is a condition characterized by deregulation in the
signaling triad, i.e., the receptor activator of nuclear factor kB Ligand (RANKL), its receptors
RANK, and osteoprotegerin (OPG) [106,107]. In its canonical function, RANKL, which
is secreted by osteoblasts, induces bone destruction by mature osteoclasts. In response,
osteoblasts secrete the OPG–RANKL decoy receptor and in this way inhibit osteoclast
differentiation and resultant bone resorption [106,108]. The RANKL/OPG ratio in the
blood is increased in high-grade OS, leading to the establishment of a vicious cycle between
pathological bone remodeling and OS growth [108]. RANKL/RANK-signaling regulates OS
cell migration and tissue-specific metastatic behavior in the lungs, but has no direct impact
on OS-associated bone destruction and does not impact OS cell proliferation [106,109].
Thus, osteoclast pathways of differentiation, maturation, and activation constitute another
compelling therapeutic target since the inhibition of bone resorption at the tumor–bone
interface may lead to reduced local OS invasion [106].

Among the possible mechanisms that contribute to OS development in the bone mi-
croenvironment are alterations in the osteogenic pathway, which lead to the differentiation
of mesenchymal stem cells (MSCs) into mature osteoblasts [81,110]. Defects in osteogenic
differentiation or exposure to new non-native stimuli, such as pro-inflammatory cytokines
and pro-tumor agents, may cause an imbalance between cell differentiation and prolifera-
tion, thus contributing to a malignant phenotype. OS cells share more characteristics with
undifferentiated osteo-progenitors than with differentiated osteoblasts, including a high
proliferative capacity and resistance to apoptosis. Indeed, osteogenic regulators associated
with mature osteoblast phenotypes, such as CTGF, RUNX2, alkaline phosphatase (ALP),
osteopontin (OPN), and osteocalcin (OCN), are very lowly expressed in both primary OS
tumors and OS cell lines [111].

Although not well understood, some of the potential defects in the MSC differenti-
ation cascade may include genetic and/or epigenetic changes in Wnt signaling, Rb, and
p53. These alterations may lead to uncontrolled cell proliferation and disrupted differ-
entiation, thus producing a tumorigenic phenotype [81,110]. Interestingly, treatments of
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human OS cells with therapeutic agents, such as peroxisome proliferator-activated receptor
(PPAR) agonists [111], growth factors (e.g., PTHrP) [112], and SERMs [113], enable terminal
differentiation and subsequent tumor inhibition. Hence, a better understanding of the
relationship between defects in osteogenic differentiation and tumor development is of
fundamental importance for the treatment of OS and promoting differentiation offers a
potential for disease control.

5. Estrogen Receptors as a Potential Target for the Treatment of Osteosarcoma

A number of studies have established a correlation between the rapid bone growth
experienced during puberty, when endogenous sex hormones, growth hormones, and IGF1
levels are at their highest, and OS development [114]. During the growth phase, there is
greater bone turnover, so the possibility for defects to occur in the differentiation process
and in the signaling pathways is amplified [1].

The estrogen/ERs axis is widely recognized for its essential role in bone development
and growth from puberty through adulthood, acting via a variety of mechanisms and
cell types [14,115,116]. Both ER isoforms, α and β, have been identified in bone, although
their levels are lower than in reproductive tissues and can be affected by many parame-
ters including the cell differentiation state [116–118]. ERα and ERβ have been observed
to antagonize each other (activation vs. repression of transcription) in bone cells [116].
Therefore, ER isoform-specific activation could potentially lead to large differences in the
patterns of gene expression induced by the ER–isoform homodimers [119,120]. In this re-
gard, further work still needs to be completed to identify different genes that are regulated
by estrogens and SERMs, including phytoestrogens, in each bone cell type during different
stages of differentiation.

Several lines of evidence have hinted that the estrogens, which play prominent and
well-described roles in osteoclast biology [14], might have a therapeutic differentiating
effect on OS cells [121]. Accordingly, the loss of estrogens or the impaired functionality of
the ERs appears to be involved in bone-forming cancers such as OS [14,122,123].

The expression of ERs is regulated by the methylation state in the promoter region.
Their lack of expression, caused by epigenetic silencing (methylation) in the promoter
region, is associated with the development of bone cancer and the metastasis of tumors
in bone [95,124]. In line with this evidence, ERs have attracted widespread attention as
promising targets for treating OS.

ERα is essential in osteogenesis and regulates cell growth in various tumors, includ-
ing OS [68,125,126]. The activation of the ERs, especially ERα, triggers the downstream
Wnt/beta-catenin signaling cascade, which promotes osteogenesis [127]. Moreover, target-
ing ERα-sensitive OS cells treated with methotrexate enhances the cytotoxic effects on OS
when combined with DOX treatment [128].

OS typically originates from osteoblasts and/or MSCs, both of which normally ex-
press ERα [116,129]. However, the majority of OS tumors do not exhibit ERα expression,
primarily due to the hypermethylation occurring in the ERα promoter region [122,124,125].
Notably, 143B cells demonstrate complete methylation of the ERα promoter, while U2OS
and MG63 cells display partial methylation [122]. Interestingly, the use of demethylating
agents to reverse the epigenetic silencing had a noteworthy effect on OS cell lines in vitro.
It promoted differentiation and suppressed proliferation, and these effects were partially
replicated in vivo, demonstrating potential disease control [122]. This suggests that the
presence of ERα could serve as a therapeutic target and a prognostic factor for predicting
the response to chemotherapy [122,125].

Regarding ERβ, while its specific functions have not been as extensively studied as
those of ERα, evidence has emphasized its role as a tumor-inhibiting factor in estrogen-
sensitive malignant tumors [130]. The anti-tumor effects of ERβ have also been reported
in OS [13,113,131,132]. Specifically, it was found that ERβ mediates the proliferation, mi-
gration, and invasion of U2OS cells by regulating the integrin, IAP, NF-kB/Bcl-2, and
PI3K/Akt signaling pathways. Moreover, silencing of Erβ promoted the metastatic phe-
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notype in U2OS cells and OS tumors of mice, through the activation of the Wnt signaling
pathway [133]. ERβ also plays an important role in inducing autophagy in U2OS cells
by downregulating the expression of P62 and the phosphorylated mammalian target of
rapamycin (p-mTOR) [13,134]. These findings suggest a role of ERβ agonists as potential
candidates for therapy in OS. This is a noteworthy aspect considering that many phytoe-
strogens exhibit a higher binding affinity for ERβ compared to Erα [19].

The challenge in OS therapy lies in the lack of clearly defined markers for diagnosis
and treatment. Because of the critical role of ERs in bone formation, whether or not the
control of ERs by SERMs can modulate new bone formation and affect the prognosis or
chemosensitivity of bone tumors is an interesting subject of study.

6. Anti-Osteosarcoma Effects of Flavonoids
6.1. Genistein and Related Isoflavones

Genistein is a 15-carbon skeleton compound, chemically known as 5,7-dihydroxy-3-
(4-hydroxyphenyl)chromen-4-one, which was first isolated from Genista tinctoria. It is the
most prominent isoflavone from soy and soy-based food products [135,136].

In addition to genistein, soy foods are rich in daidzein, which differs from genistein in
its lack of hydroxyl group at position 5 [137,138]. Genistein and daidzein derive from the
O-methylated precursor biochanin A and formononetin, respectively [138,139] (Figure 3),
which are generally less prevalent in soy and are found mostly in clover and alfalfa
sprouts [138,140]. They are present as either aglycons or as glycosides [140,141]. The
presence of hydroxyl groups and sugars increases their solubility in water, whilst methyl
groups confer them lipophilicity [21].
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Figure 3. Chemical structure of the most common isoflavones and some of their possible targets
in OS cells. Isoflavones, especially genistein, bind ERβ with a significant higher affinity than ERα.
Downward arrows represent downregulation or reduction. Upward arrows represent upregulation
or increase.

Genistein and its related compounds are well known for their weak estrogen-like
activity in mammals, including the prevention of bone loss and other estrogen decrease-
related conditions [142]. Indeed, data have revealed a reduced occurrence of breast and
prostate tumors as well as osteoporosis in human populations that consume a soybean-rich
diet [143]. Isoflavones interfere with ERα and ERβ isoforms with higher binding affinity
for the latter, particularly genistein (20- to 30-fold higher) and daidzein (five-fold) [19]
(Table 1), producing distinct clinical effects from estrogens and contributing to the treatment
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of various cancers, such as gastric, breast, prostate, and non-small cell lung cancer prostate
cancer [136,144–146].

Consistent with the above-reported ERβ anti-proliferative effects [10], it is believed that
the chemotherapeutic potential of isoflavones is mainly due to their interactions with ERβ
and vary in different cancer types, based upon their specific selectivity for target cells and
their concentration, highlighting the complexity of dietary isoflavone functions [147–149].
ER-independent signaling mechanisms have also been described for isoflavones, including
protein kinase regulation, enzymatic inhibition, growth factor modulation, antioxidant
activity, or epigenetic changes [42].

Among the soybean isoflavones, genistein has shown to be one of the most potent
inhibitors of cell proliferation in vitro by affecting protein tyrosine kinase (PTK) activ-
ity [150], suppressing the mammalian DNA topoisomerase II [136], and interacting with
ERs on the nuclear envelope to promote G2/M phase arrest in various types of cancer
cell lines [151,152]. The anticancer efficiency of genistein has been proven in numerous
preclinical investigations [136]. Genistein from soy extracts, its free form, and its glycoside
genistin are readily bioavailable and well tolerated with minimal toxicity [136,139]. Studies
on OS cells suggest that genistein and its naturally occurring prenylated derivatives exert
an inhibitory activity by binding ER isoforms with a statistically significant effect from
1 nmol/L [153]. The specific activation of ER signaling by genistein has been reported to be
involved in the downregulation of the expression of the EGFR gene. This influences events
strictly controlled by its signaling pathway, such as the differentiation of U2OS human
OS cells that stably express ERs [154]. Indeed, previous studies have demonstrated that
genistein and daidzein can induce osteoblast differentiation through the enhanced expres-
sion of ALP, bone morphogenetic protein 2 (BMP-2), and OPG, [155,156], which suggests
that soybeans are able to prevent osteoporosis. In addition, the treatment of osteoblasts
with genistein and other soybean isoflavones induces calcified bone noduli [157]. The
osteogenic activity of genistein was also observed in the human MG-63 OS cell line [158]
and the murine cell line LM8 [159] using a variety of approaches. Treatment with genis-
tein switched the osteoblasts towards a more differentiated phenotype that was able to
synthesize many of the essential factors required for the production of a new mineralized
extracellular matrix, such as collagen type I (Col I) and ALP, even in a non-osteogenic
growth medium [158].

As mentioned earlier, extensive vascularization and rapid growth are considered to be
associated with the high metastatic potential and recurrence rate of OS [82,98].

The modulation of ECM components is a key element in cancer progression and
invasion [99,100]. Glycosaminoglycans (GAGs)/proteoglycans (PGs) are the major macro-
molecules composing ECM [160]. Their localization can be both extracellular and cellular
(cell membrane and intracellular granules), and they participate in the regulation of various
cellular events, such as cell adhesion, migration, differentiation, and proliferation, criti-
cally affecting broader aspects in cancer initiation and progression [160]. In vitro studies
have shown that the pathogenesis of OS implies qualitative and quantitative changes in
PGs, which have important consequences on cell proliferation and/or differentiation [161].
Nikitovic and coauthors [162] investigated the activity of genistein on the synthesis and
distribution of GAGs/PGs in the MG-63 and SaOS-2 cell lines, which differ in the density
of the ERs they express. They observed a dose-dependent inhibitory effect of genistein on
OS cell growth, which was accompanied by a reduction in both secreted and cell-associated
GAGs/PGs by both cell lines, so suggesting a PTK mechanism. On the other hand, the
MG-63 cell line showed a complex pattern of PG synthesis, indicating a dual action of
genistein via the PTK mechanism and through the ER receptors, which are present in much
higher density in MG-63 cells as compared to SaOS-2 cells [162].

Other than ERs, genistein can also regulate other nuclear malignancy-related receptors,
such as peroxisome proliferator-activated receptor γ (PPARγ), an isotype of PPARs, which
may further explain its activity against a range of cancers, including OS [163,164]. In
OS, PPARγ plays a key role in suppressing cell proliferation and promoting osteoblastic
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terminal differentiation, suggesting a potential use of PPARγ agonists as chemothera-
peutic and/or chemopreventive agents for human OS [111]. It has been reported that
genistein treatment triggers growth inhibition and G2/M cell cycle arrest in human MG-
63 cells by acting as a non-toxic activator of PPARγ expression [164]. In addition, the
genistein-induced PPARγ signaling resulted in the downstream activation of the tumor
suppressor phosphatase and the tensin homolog (PTEN), which in turn potently regulated
the PI3K/Akt pathway involved in cell proliferation and survival [164]. Additionally, the
anti-OS activity of genistein was examined in SaOS-2 and MG-63 OS cells in combina-
tion with calcitriol [165], the most active component of the vitamin D family [166]. The
synergistic action of both of these substances had already proven effective in preventing
osteoporosis and reducing hip fracture risk in postmenopausal women [167]. In OS cells,
combined treatment significantly increased the expression of the enzyme sphingosine-1-
phosphate lyase (SGPL1) [165], which irreversibly degrades sphingosine-1-phosphate (S1P)
and whose production and secretion is associated with an increased capability of migration
and invasion of cancer cells [151]. Besides the synergistic effects on the proliferation be-
havior, co-treatment increased the expression of the vitamin D receptor (VDR) and ERβ
and influenced the cellular metabolism by decreasing extracellular acidification (which is
a measure of glycolytic flux in cancer cells) as well as cell respiration rates (a measure of
mitochondrial respiration) [165].

Gemcitabine is one of the commonly used anti-metabolite drugs. It is an analog of
cytosine arabinoside which shows pronounced anti-tumor activity, in vitro and in vivo, in a
variety of solid tumors, including OS [168]. Data reported by Zhang et al. showed that the
combination of gemcitabine and genistein enhance the antitumor efficacy of gemcitabine in
MG-63 and U2OS cell lines and helps to overcome resistance to gemcitabine treatment [169].
The induction of NF-kB activation and upregulation of its target genes by many anticancer
agents, including gemcitabine, may mediate the cellular resistance to anticancer drugs [170].
In contrast, the activation of the Akt and NF-kB signaling pathways can be inhibited by
genistein [144]. Combined treatment of genistein with gemcitabine reversed the cancer’s
resistance to gemcitabine by abrogating the Akt/NF-κB pathway, which led to a significant
reduction in cell viability and induction of apoptosis in OS cell lines [169,171]. The structure
of genistein and some of its potential effects on OS cells are reported in Figure 3 and Table 2.

Table 2. Effects of flavonoids on osteosarcoma. Downward arrows represent downregulation or
reduction. Upward arrows represent upregulation or increase.

Phytoestrogen Cell Line/
In Vivo Model Concentrations Combined

Treatment Molecular Mechanism Observed Effects References

Genistein

U2OS 1 µM ER-mediated
downregulation of EGFR

↑ differentiation
↑ apoptosis

↑ cell cycle arrest
[154]

MG-63 2.5–30 µmol/L ↑matrix vesicles,
↑ ALP activity

↑ differentiation
↑mineralized
bone noduli
↓ proliferation

[158]

MG-63, SaOS-2 10–30 µM ↓ PTK, ↑ ER ↓ synthesis and secretion
of GAGs/PGs [162]

MG-63 40–80 µM ↑ PPARγ pathway ↑ cell cycle arrest
↓ proliferation [164]

SaOS-2, MG-63 1–100 µM
calcitriol
10 nM

for 48 h
↑ SGPL1, VDR, ERβ

↑ calcitriol sensitivity
↓ proliferation
↓ extracellular
acidification
↓mitochondrial

respiration

[165]

MG-63, U2OS 10–100 µmol/L
gemcitabine
0.5 µmol/L

for 72 h
↓ Akt/NF-κB pathway ↑ gemcitabine sensitivity

↑ apoptosis [169]
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Table 2. Cont.

Phytoestrogen Cell Line/
In Vivo Model Concentrations Combined

Treatment Molecular Mechanism Observed Effects References

Daidzein

U2OS 1 µM ER-mediated
downregulation of EGFR

↑ differentiation
↑ apoptosis

↑cell cycle arrest
[154]

143B, U2OS
xenograft mouse

model

10–500 µmol/L
20 mg/kg

every 2 days
↓ Src-ERK pathway

↑ apoptosis
↑ cell cycle arrest
↓migration

↓ tumor weights

[172]

Biochanin A

MG-63, U2OS 5–30 µg/mL DOX 1 µg/mL
for 24 h

↑ caspase-3/9,
↑ Bax: Bcl-2/Bcl-XL ratio

↑ DOX sensitivity
↓ proliferation
↑ apoptosis

[173]

MG-63, U2OS 5–80 µM

↓ PCNA, cyclin D1, Bcl-2,
↑ Bax, caspase-3;

↓MMP-9, N-cadherin,
↑ E-cadherin

↑ cell cycle arrest
↑ apoptosis

↓migration, invasion
[174]

Formononetin

U2OS,
tumor-bearing

nude mice

20–80 µM,
80 mg/kg/d ↓ Bcl-2, miR-375, ↑ Bax ↑ apoptosis

↓ tumor weights [175]

U2OS 5–100 µM

↑ caspase-3 and Bax,
↓ Bcl-2
↓ ERK and

PI3K/AKT pathway

↑ apoptosis [176]

MG-63 15–45 µM ↑miR-214-3p/PTEN
pathway

↓ proliferation
↑ apoptosis [177]

tumor-bearing
nude mice 25–100 mg/kg/d ↓ ESR1, p53, ERBB2 ↓ tumor weights [178]

Quercetin

MG-63 20–320 µM
↑ cytochrome C,

caspase-3/9, Bax,
↓ Bcl-2

↑ apoptosis [179]

HOS,
ATCC 1543 10–1000 µM ↓ cyclin D1,

↑ caspase-3, cleaved PARP

↑ cell cycle arrest
↓ proliferation
↑ apoptosis

[180]

U2OS/MTX300 10–50 µM
↑ cytochrome C,

caspase-3, Bax, cleaved
PARP; ↓ Bcl-2, Akt

↑ apoptosis
↓ proliferation [181]

143B 10–100 µM ↑ caspase-3, cleaved PARP

↑ cell cycle arrest
↑ apoptosis
↓ adhesion
↓migration

[182]

MG-63 50–200 µM ↑ LC3B-II/LC3B-I ratio,
↓ ROS-NUPR1 pathway ↑ autophagy [183]

HOS, MG-63,
tumor-bearing

nude mice

20–100 µM
25–100 mg/kg/d

↓ HIF-1α, VEGF,
MMP-2/9

↓migration, invasion
↓ tumor growth [184]

U2OS, SaOS-2 ↓ PTHR1
↓ proliferation
↓ adhesion

↓migration, invasion
[185]

143B 5 µM CDDP 5 µM
for 24 h ↑miR-217- KRAS axis

↑ CDDP sensitivity
↓ proliferation

↓migration, invasion
[186]

SaOS-2 10–200 µM MTX 10–200
µMfor 48 h

↑ p53, CBX7, CYLD,
↓ Bcl-2, miR-223

↑MTX sensitivity
↓ proliferation
↑ apoptosis

[187]

Galangin

MG-63, U2OS 5–300 µM
↓ PI3K/Akt pathway
↓ cyclin D1, MMP-2/9,
↑ p27Kip1, caspase-3/8

↓ proliferation
↑ apoptosis
↓ invasion

[188]

MG-63, U2OS
tumor xenograft

mouse

25–100 µM
50, 100 mg/kg/d

↑ TGF-β1/
Smad2/3 pathway

↑ Col I, ALP, OPN, OCN

↑ differentiation
↓ tumor growth [189]
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Table 2. Cont.

Phytoestrogen Cell Line/
In Vivo Model Concentrations Combined

Treatment Molecular Mechanism Observed Effects References

Apigenin

U2OS
tumor xenograft

mouse

50–200 µM
2 mg/kg every

3 days

↑ caspase-3/8/9,
BAX, AIF

↑ apoptosis
↓ tumor growth [190]

U2OS, MG-63 20–100 µg/mL ↓Wnt/β-catenin pathway ↓ proliferation
↓ invasion [191]

Naringenin HOS, U2OS 100–500 µM ↑ ROS-Mediated ER Stress ↑ autophagy
↑ apoptosis [192]

EGCG

MG-63, 143B,
SaOS-2

tumor-bearing
nude mice

10–50 µM
10–40 mg/kg
every 2 days

↓Wnt/β-catenin pathway
↓ proliferation

↓migration, invasion
↓ tumor growth

[193]

MG-63, U2OS
tumor-bearing

nude mice

0.0125–0.1 g/L
30 mg/kg/d ↑miR-1 ↓ proliferation

↓ tumor growth [194]

U2OS 5–50 µM IL-1Ra1 ng/mL ↓MMP-2, VEGF
↓ IL-6/8

↓ proliferation
↓ invasion [195]

U2OS, SaOS-2 20 µg/mL DOX 1–2.5 µM ↓ SOX2OT ↑ autophagy [196] (p. 7)

6.1.1. Daidzein

The analog of genistein, daidzein (7,4-dihydroxyisoflavone) (Figure 3), is a well-
studied isoflavone with a high nutritive value. It is predominantly found in soy and many
unfermented foods not only in the form of daidzein, a glycoside conjugate, but also as
acetylglycoside and aglycone [197]. The complex pharmacokinetic features of daidzein,
along with its insolubility in water and oil, have blocked their use as a highly common
compound in medicine or as a nutraceutical [197].

Although daidzein has been proven to have in vitro antitumor effects on a variety
of cancers [8,198–200], there are few reports concerning its inhibitory activity towards
OS [154,172] (Table 2). Daidzein inhibited proliferation and cell cycle progression and
promoted apoptosis in the U2OS cell line that stably expresses either ERα or ERβ [154]. In
addition, similarly to genistein, daidzein is able to modulate the expression level of EGFR,
an estrogen-responsive gene, through the specific activation of both ER isoforms, thus
affecting multiple intracellular events that are tightly controlled by the EGFR transduction
pathway, such as the maturation of osteoblasts.

The link between the ER and EGFR pathways was confirmed by treatment with
4-hydroxytamoxifen (4OH-T), a synthetic estrogen receptor ligand, which regulated the
EGFR level producing differentiation and proliferation effects via ERs. Since the treatments
did not induce any significant change in ER-negative U2OS cells, the results found in the
U2OS-ERα and U2OS-ERβ cell lines could be totally ascribed to ER-mediated effects [154].
Recently, Zhu and coworkers investigated the underlying mechanism of daidzein against
OS by means of an in-depth systematic pharmacological analysis, which identified the
Src-MAPK pathway as the highest-ranked target of daidzein in 143B and U2OS cells and in
in vivo OS models [172].

6.1.2. Biochanin A

Biochanin A (5,7-dihydroxy-4′-methoxy-isoflavone) (Figure 3) is a phytoestrogenic
isoflavone found in legumes, particularly red clover (Trifolium pratense), but it is also present
in cabbage, alfalfa, and many other herbal products [152]. The biological effects of biochanin
A observed in vitro and in vivo are different from those observed for its derivative genistein.
It plays complex roles in the regulation of multiple biological functions by binding DNA
and some specific proteins or acting as a competitive substrate for some enzymes. Biochanin
A extract from plants is already commercially available because of its potential benefits to
human health despite its limited bioavailability [201,202]. It is used for the reduction in
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oxidative stress, treatment of osteoporosis, anti-inflammatory effects, regulation of blood
glucose levels, and for treatment of allergies [203,204]. Moreover, like other isoflavones,
biochanin A exhibits chemopreventive activity against various cancers [202].

Several studies have suggested that biochanin A has the potential to prevent and treat
OS [173,174] (Table 2). The antiproliferative potential of biochanin A and its underlying
mechanisms in human OS have been investigated by Hsu and et al. They reported that
biochanin A dose-dependently inhibits cell growth and induces apoptosis in the MG-63
and U2OS OS cells by triggering the activation of the intrinsic mitochondrial pathway and
caspase-9 and -3 and increasing the Bax: Bcl-2/Bcl-XL ratio.

DOX is probably the most studied drug in combination with phytoestrogens. It is an
antitumor antibiotic which acts by interfering with the enzymes involved in DNA replica-
tion or by causing strand breakage [205]. Hsu et al. also demonstrated that a combination
of the chemotherapeutic agent DOX with biochanin A had synergistic cytotoxicity [173].
Supporting evidence for the anti-OS activity of biochanin A has been recently reported by
Zhao et al. [174]. Biochanin A treatment clearly increased apoptotic rates and decreased
migration and invasion abilities in MG-63 and U2OS cells, in a time- and dose- dependent
manner. Relevant genes involved in cell proliferation, apoptosis, invasion, and migra-
tion (i.e., proliferating cell nuclear antigen (PCNA), caspase-3, cyclinD1, Bcl-2, MMP-9,
N-cadherin, and E-cadherin) showed altered expressions in both OS cell lines [174]. E-
cadherin is an important factor of cell–cell adhesion. It is classified as a cancer depressor
because the loss of E-cadherin may lead to the destruction of the cytoskeleton, promoting
cell invasion and migration [206]. The expression of N-cadherin in epithelial tumors char-
acterizes tumorigenesis as it may induce EMT, reinforce tumor cell activity, and promote
the interaction between tumors and neighboring cells [207]. OS cells treated with biochanin
A exhibited a decreased expression of MMP-9 and N-cadherin, while showing increased
expression of E-cadherin. These findings strongly indicated that biochanin A may possess
a suppressive function in cancer invasion and migration by mediating the process of tumor
EMT [174].

6.1.3. Formononetin

Formononetin (7-hydroxy, 4′-methoxy isoflavone) (Figure 3) is the active ingredient of
the traditional Chinese medicines astragalus, angelica, and Pueraria lobate. Formononetin
exhibits anticancer effects against ovarian cancer, colorectal cancer, and gastric cancer by
suppressing cell viability and inducing apoptosis through the regulation of the estrogen-
dependent signaling pathway [208,209].

Reports have also documented the anti-OS activity of formononetin (Table 2). It
promoted the apoptosis of human bone cancer in vitro and in vivo in nude mice that had
undergone orthotopic tumor implants by modulating the expression levels of the apoptosis-
related factors ERK, Akt [176], Bcl-2, Bax, and caspase-3 and decreasing the level of miR-
375, an ER signaling-related miRNA, in ER-positive U2OS cells [175]. Further evidence
showed that in MG-63 cells, the anti-proliferative function of formononetin is related
to the upregulation of the expression of the tumor suppressor PTEN gene, via miR-214-
3p [177], which is one of the miRs with oncogene properties that is considerably increased
in OS [210]. Recently, bioinformatic-based network pharmacology has been used to disclose
other therapeutic targets and bio-mechanisms of anti-OS formononetin activity [178]. The
biological processes of formononetin against OS were principally linked to the regulation of
cell motility, cell proliferation, and the regulation of gene expression. The main core targets
of formononetin were determined as estrogen receptor 1 (ESR1), TP53, and receptor tyrosine-
protein kinase erbB-2 (ERBB2). Interestingly, they were representatively validated following
formononetin treatment in vivo in tumor-bearing mice and clinical cases, suggesting that
these predictive targets might be potential biomarkers for the screening and treatment of
OS [178].
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6.2. Flavonols
6.2.1. Quercetin

An intake of flavonols is found to be associated with a wide range of health benefits,
which include antioxidant potential and anti-inflammatory effects. Flavonols may also play
a role in reducing the risk of chronic diseases, such as cardiovascular disease, cancer, and
neurodegenerative disorders [211].

Quercetin (3,5,7,3′,4′-pentahydroxyflavone) (Figure 4) is the most abundant plant
pigment in the extensive class of flavonols. It can be found in numerous plant species and
in daily foods, such as vegetables (capers contain the greatest quantity in relation to their
weight), fruits, nuts, and teas. The average daily dietary intake of quercetin is estimated
to be 16 mg [212]. Due to its potent anti-inflammatory and antioxidant effects, quercetin
is considered an advantageous agent for therapeutic purposes for a number of diseases,
including cardiovascular diseases, arthritis, allergies, and diabetes [213]. Indeed, it is
commercially accessible as a supplementary agent. Oral administration of 1 g of quercetin
per day is safe and is absorbed up to 60% [214].
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Extensive studies have demonstrated the efficacy of quercetin for the prevention and
treatment of several types of cancer, in in vivo and in vitro models [215]. Quercetin can
significantly prevent the cell cycle, promote cell apoptosis, and suppress tumor invasive
behavior via a variety of mechanisms [216]. There is evidence that several of the effects of
quercetin on the survival of cancer cells might rely on ER-dependent mechanisms.

In particular, it has been shown that quercetin can impair the ERα-mediated rapid
signaling, preventing the anti-apoptotic and proliferative ERK/MAPK and PI3K/Akt
pathway activation and sustaining the persistent phosphorylation of p38/MAPK and,
in turn, the blockage of cell cycle progression and the induction of the pro-apoptotic
cascade, without affecting the transcriptional effect of activated ERα [217]. Thus, quercetin
can influence cancer cell proliferation and survival by acting as partial antagonists of
ERα-activated rapid signals [218,219]. To the contrary, quercetin can behave as an E2-
mimetic agent in the presence of ERβ by activating the p38/MAPK and the downstream
pro-apoptotic caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage.
This indicates the pivotal role of both ER subtypes and a differential agonist or partial
antagonistic effect of quercetin in the definition of its anti-carcinogenic potential [220].
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The strong cytotoxic activity of quercetin against OS has been largely demonstrated
(Table 2). Although the related studies are mainly limited to in vivo and in vitro investiga-
tions, findings are promising. Quercetin treatment results in the suppression of proliferation,
cell cycle arrest, induction of apoptosis, and reduced potential for adhesion and migration
in several human OS cells lines, including 143B [182,186], HOS, MG-63 [179,184], U2OS,
and SaOS-2 cells [185]. Regarding the effect on OS cell growth, a number of key elements of
the cellular apoptotic signaling pathway seems to be involved in the quercetin-dependent
regulation of apoptosis. In an early study, Liang and coworkers [179] evaluated the effects
of quercetin on the viability of human OS MG-63 cells. Quercetin treatment resulted in a
decreased expression of the anti-apoptotic protein Bcl-2, which was paralleled with the
increase in the pro-apoptotic proteins BAX and cytochrome C, activation of caspase-3
and -9, and loss of mitochondrial membrane potential, indicating that quercetin was able
to promote apoptosis via activation of the mitochondrial-dependent pathway [179]. Ad-
ditional evidence demonstrated that the administration of quercetin to HOS and ATCC
1543 human OS cell lines leads to cell cycle arrest at the G(1)/S phase accompanied by
the downregulation of cyclin D1, one of the cyclins required for G(1) to S progression.
Subsequent apoptosis was induced by gradual activation of caspase-3 and subsequent
PARP cleavage [180].

The ability of quercetin to induce apoptotic cell death has also been associated with
overcoming drug-resistance in OS cells. High-dose methotrexate (HDMTX) is considered
to be a key agent in determining the chemotherapeutic outcome of OS patients [221].
However, drug resistance often develops in the late stage of treatment. Data reported by
Xie et al. [181] revealed an apoptosis-inducing activity of quercetin in an MTX-resistant
OS model (U2OS/MTX300 cells). Exploring the mechanism underlying these effects,
the authors found that cell death was accompanied by mitochondrial dysfunction and
dephosphorylation of Akt, suggesting that quercetin-induced apoptosis might be associated
with the apoptosis pathway of mitochondria and Akt activity [181]. Similar evidence
was provided by Yin et al. [222], further sustaining the role of quercetin as a potential
chemotherapeutic agent for MTX-resistant osteosarcoma.

OS is known to be a disease with a high propensity for metastasis to the lung [5]. In
comparison to other cell lines, only 143B cells are able to generate a reliable and reproducible
in vivo mouse model that develops primary tumors after intratibial injection within three
to five weeks [223]. This mouse model also more closely reflects human disease because it
develops metastases in the lung, which is the main location of metastasis in humans [224].
An early study by Berndt et al. [182] evaluated the anticancer properties of quercetin in
human a 143B OS cell line. Quercetin treatment caused an arrest of 143B cells in the G2/M
transition of the cell cycle. The cell cycle arrest was followed by cell death via activation of
the apoptotic signaling pathway, as shown by a dose-dependent caspase-3, caspase-7, and
PARP cleavage after 36 h of incubation with quercetin. The pan-caspase inhibitor Z-VAD
prevented PARP cleavage-dependent apoptosis. Quercetin also effectively blocked some
hallmarks of metastatic behavior, such as adhesion and migration. Overall, these findings
suggested a role for quercetin as a potential drug that can target cells of the primary tumor
and metastasizing foci [182].

Quercetin’s ability to induce cell death in OS cell lines is not limited to apoptosis. A
recent study by Wu et al. [183] showed for the first time a role for quercetin in promoting
autophagic cell death in human OS cells. It is well accepted that autophagy plays a two-
faced role in cancer as a tumor suppressor or as a pro-oncogenic mechanism. Indeed, there
is a dynamic relationship between the rate of protein degradation through autophagy,
i.e., autophagic flux, and the susceptibility of tumors to undergo apoptosis which is critical
in the autophagy/cancer relationship [225]. Therefore, an accurate modulation of this
pathway is the challenge faced when targeting autophagy in the clinical setting [226].

The quercetin dependent increase of autophagic flux was shown by a dose-dependent
upregulation of LC3B-II/LC3B-I ratio, a hallmark of autophagy, in quercetin-treated MG-63
cells. Moreover, pharmacological inhibition of autophagy or genetic blocking autophagy
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by autophagy-related gene 5 (ATG5) knockdown efficiently protected against quercetin-
induced cell death, supporting the role of quercetin in triggering autophagic cell death
in MG-63 cells [183]. The authors also investigated the effect of quercetin exposure on
transcription factor nuclear protein 1 (NUPR1) activity [183]. NUPR1 is a master regulator
of the autophagy flux typically expressed in response to stress signals induced by genotoxic
signals and agents [227]. Under stressful conditions, such as chemotherapy treatment, an
interplay between the homeostatic NUPR1 and autophagy pathways may occur in cancer
cells, ultimately dictating their fate between cell death or survival [227]. Data revealed
that quercetin increased NUPR1 expression and activated NUPR1 reporter activity, which
contributed to the expression of autophagy-related genes by disturbing ROS homeostasis,
indicating an important role for NUPR1 signaling in quercetin-induced autophagy in
MG-63 cells [183].

Activating local cell invasion and distant metastasis represents another important
hallmark of cancer that mainly reflects the progression of carcinomas to a higher grade of
malignancy. Cell migration is a critical process for cancer cell spread, invasion, and distant
metastasis [228]. Hypoxia-inducible factor (HIF)-1α was shown to be correlated with tumor
grade, metastasis, and poor outcomes in various cancers including OS.

Its upregulation results in increased cell proliferation and migration, as well as the
development of chemotherapeutic resistance [229]. Lan et al., [184] reported a dose- and
time-dependent reduction in cell migration and invasion in human HOS and MG-63 cell
lines, which was paralleled with a significant quercetin-induced downregulation of the
expression of HIF-1α and downstream genes, such as, VEGF, MMP-2, and MMP-9, which
play essential roles in promoting cancer invasion and metastasis. In addition, quercetin
treatment suppressed the formation and proliferation of metastatic lung tumors in vivo
in an OS nude mouse model [184]. In U2OS and SaOS-2 cells, the quercetin-mediated
inhibition of the metastatic phenotype was associated with a significant downregulation of
parathyroid hormone receptor 1 (PTHR1) [185], an important G-protein coupled receptor
involved in OS pathophysiology [230].

Many lines of compelling data indicated the role of quercetin in sensitizing cancer
cells to the action of several anti-cancer drugs [231,232]. In this respect, synergistic anti-
tumor activities of quercetin and CDDP, a widely used chemotherapeutic agent, have been
reported in cancer treatment in several in vivo and in vitro models [231–233].

Regarding OS, the efficacy of quercetin in enhancing CDDP sensitivity has been
demonstrated by Zhang et al. in 143B cells [186]. miR-217 is a tumor suppressor which
inhibits cell proliferation and metastasis in OS. Its over-expression could reverse CDDP
chemoresistance in lung cancer cells [234]. Expression of miR-217 was upregulated after
quercetin and/or CDDP treatment, while its target, Kirsten rat sarcoma virus (KRAS),
was downregulated both at mRNA and protein levels, thus suggesting an involvement
of the miR-217-KRAS axis in the QUE-improved sensitivity of CDDP [186]. Quercetin
has also been shown to be effective in boosting the anticancer activity of MTX on SaOS-2
cancer cells. A decline in MTX IC50 value was observed from 13.7 ng/mL to 8.45 ng/mL in
the presence of quercetin. Moreover, the mRNA expression outcomes indicated that the
combination therapy significantly upregulates the tumor suppressor genes, such as p53,
CBX7, and CYLD, and declines anti-apoptotic genes BCL-2 and miR-223, which can lead to
proliferation, inhibition, and apoptosis inducement [187].

Taken together, these findings provide experimental evidence of the effectiveness of
quercetin in treating OS in human cell lines. On the other hand, further research, including
clinical trials, is needed to support the future development of quercetin as an effective and
safe candidate agent for the prevention and/or therapy of OS.

6.2.2. Galangin

Galangin (3,5,7-trihydroxyflavone) (Figure 4) is another plant flavonol from the
flavonoid group of polyphenols. It is primarily extracted from the rhizome of Alpinia
officinarum, which has been used as an herbal medicine in Asia for decades. Studies have
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shown that galangin has anti-inflammatory [235], antibacterial [236], and antiviral [237]
activities in vitro. Currently, its antitumor properties are the subject of attention. Studies
have shown that galangin suppresses the proliferation and functions of various tumor
cells [238–240]. However, research on galangin’s effects on OS, specifically, is limited
(Table 2). In a study conducted by Yang et al. [188], exposure to galangin significantly sup-
pressed MG-63 and U2OS cells by inhibiting their proliferation and invasion and triggering
their apoptosis in a concentration-dependent manner. The underlying mechanism was
associated with the suppression of PI3K and its downstream regulators, cyclin D1 and
MMP-2/9, and upregulation of p27Kip1, caspase-3, and caspase-8 [188]. Other evidence
indicated that, in addition to effectively attenuating cell proliferation, incubation of MG-63
and U2OS cells with galangin increased dose-dependently the expression levels of several
markers for osteogenic differentiation, such as Col I, ALP, OPN, OCN, and the transcription
factor Runx2. Galangin could also attenuate OS growth in vivo, in the xenograft mouse
model [189]. There are several cytokines that control bone formation, among which TGF-β1
has been proven to be fundamental in osteoblastic differentiation and bone matrix synthesis,
through Smads-dependent signaling [241]. TGF-β1 secretion and the phosphorylation of
Smad2 and Smad3 were triggered in a dose-dependent manner after galangin treatment,
clearly indicating that galangin-mediated cell differentiation was dependent on its selective
activation of the TGF-β1/Smad2/3 signaling pathway [189].

6.3. Apigenin

Apigenin (4′,5,7-trihydroxyflavone) is the main compound in the flavone group
(Figure 4). It is widely contained in many fruits and vegetables, such as oranges, tea,
chamomile, onions, and wheat sprouts [242]. Apigenin is thought to protect cells against
oxidative damage by enhancing mitochondrial function [243]. Furthermore, it possess
anticancer properties in vitro and in vivo, inducing cell cycle arrest and DNA damage in
different types of cancer cells [242,244,245].

Results reported by Lin et al. showed that apigenin triggers apoptosis in U2OS cells
and inhibits xenograft tumor growth [190]. Liu et al. [191] confirmed the cytotoxic role
of apigenin on both U2OS and MG-63 cells and investigated the underlying molecular
mechanisms of its anti-OS effect.

The canonical Wnt-β-catenin signaling pathway is widely expressed in bone tissue
and cells, and its deregulation is closely associated with the progression of OS [101,102,246].
It has been reported that a decreased β-catenin expression can downregulate MMP-14 ex-
pression, thereby resulting in suppression of the invasion and motility of MG-63 cells [247].
Apigenin was able to decrease the expression of β-catenin. Moreover, overexpression of
β-catenin reversed the inhibitory effect of apigenin on OS cells and knockdown of β-catenin-
enhanced apigenin-inhibited proliferation and invasion in OS cells. These results supported
the hypothesis that the Wnt/β-catenin pathway is involved in OS cell proliferation and
invasion in response to apigenin [191].

6.4. Naringenin

Citrus fruits (grapefruit and oranges) and tomatoes are rich sources of flavanones,
which are known for their numerous health benefits due to their ability to scavenge free
radicals in various basal metabolic conditions [24].

Naringenin (4′,5,7-trihydroxyflavonone), especially abundant in the Mediterranean
diet, is the most extensively studied flavanone (Figure 4). Despite its limited bioavail-
ability [248], it shows great promise in various therapeutic applications. Its notable
benefits in in vivo and in vitro models, which have been comprehensively reviewed by
Arafah et al. [249], include anti-inflammatory, antioxidant, and anticancer properties. How-
ever, a scarce number of clinical studies have been conducted to date compromising its
commercial exploitation [248]. The generation of ROS is one of the key mechanisms respon-
sible for promoting different stages of cancer [250]. Naringenin, as an antioxidant, does
efficiently counter such effects [249]. In this regard, it has been reported that the long-term
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administration of naringenin (20 mg daily) inhibits OS progression and local recurrence
in the patients (n = 47) who underwent OS surgery by improving the antioxidant and
anti-inflammatory capacities of OS patients [251].

The cytotoxicity of naringenin has been demonstrated in numerous in vitro studies
using various kinds of cancer cells, e.g., breast, colon, and liver cancer cell lines [252,253].
Antioxidant activities and kinase and glucose uptake inhibition, have been proposed as
molecular mechanisms for these effects. In addition, naringenin stimulation is believed to
inhibit unregulated growth and induces apoptotic cascade in different cancer cell types by
ERα or ERβ signaling [253]. Notably, naringenin shows an anti-estrogenic effect only in
ERα containing cells, whereas in ERβ containing cells, naringenin mimics E2 effects [253].
A recent study conducted by Lee et al. [192] has shown for the first time the cytotoxic and
antiproliferative effects of naringenin on human OS cells. Although a high naringenin con-
centration was used during the study, it selectively inhibited the growth of OS cells (IC50
values for HOS and U2OS cells were 276 and 389 µM, respectively) with less cytotoxicity in
normal human bone cells. The suppression of cell growth was accompanied by a signifi-
cant increase in intracellular ROS generation and mitochondrial dysfunction, resulting in
the activation of endoplasmic reticulum stress-mediated autophagy and apoptosis. This
evidence suggested that this flavanone exerts its mechanism of action in cancer OS cells
through ROS-mediated endoplasmic reticulum stress signaling pathways [192].

6.5. Catechins

Catechins, which are considered readily applicable and safe phytochemicals [250], are
the major bioactive constituent in green tea polyphenols. Their basic structure consists
of a flavan-3-ol unit with a catechol (1,2-dihydroxybenzene) moiety. There are different
types of green tea catechins (GTC), including epicatechin (EC), epicatechin gallate (ECG),
epigallocatechin (EGC), and epigallocatechin gallate (EGCG), among others. These varia-
tions occur due to the number and position of hydroxyl groups attached to the flavan-3-ol
structure. The arrangement of hydroxyl groups determines the distinct properties and
potential health benefits of each catechin [251]. EGCG is the most abundant and biologically
active catechin [252]. Its chemical structure is reported in Figure 4. Based on decades of
research, EGCG has received considerable attention due to its inhibitory activities against
carcinogenesis at all stages, i.e., initiation, promotion, and progression [253,254]. Other
catechins, such as ECG and EGC, have been shown to have similar, albeit lower, activities
in numerous studies [255,256]. However, in humans, plasma bioavailability of GTCs is very
low, which has been in part attributed to their oxidation, metabolism, and efflux [257]. The
low bioavailability and absorption of GTCs are considered to be the major reason behind
the differing effects between in vitro and in vivo studies. In fact, extensive studies on the
improvement of GTC bioavailability should help in this regard [257].

Bone strength mainly relies on selenium (Se), calcium, and vitamin (K and D) con-
tents. Se deficiency is associated with the risk of developing multiple cancers, including
OS [258]. To minimize the risks associated with Se deficiency, its doping with hydroxya-
patite (HAp) can be an effective approach which may potentially reduce the growth of
OS cells. Currently, HAp has received considerable attention in reconstructive surgeries,
orthodontic, and three-dimensional printing of scaffolds, owing to its high bioactive and
osteoconductive properties [259,260]. Given the known antitumor properties of catechins,
a recent study by Khan et al. aimed to develop catechin-modified Se-doped HAp nanocom-
posites (CC/Se-HAp) for potential application in OS therapy [261]. Cell toxicity analysis
showed that CC/Se-HAp were rapidly internalized into the MNNG/HOS cells and im-
proved anticancer activity as compared to a Se-doped HAp nanocomposite, by inducing
ROS-mediated apoptosis through the activation of the caspase-3 pathway [261]. This sug-
gests that CC/Se-HAp nanoparticles possess the potential for the targeted treatment of
OS. Further studies on the anti-OS properties of catechins have mainly focused on EGCG
(Table 2). This green tea polyphenol can effectively inhibit the tumor characteristics of
OS cells (i.e., 143B, MG-63, U2OS and SaOS-2), including proliferation, migration, and
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apoptosis [262–264]. Moreover, it protects local bone tissue from destruction and prevents
lung metastasis of tumor cells [263,264]. These effects may occur by regulating the activity
of the Wnt/β-catenin pathway, as demonstrated by cell and animal experiments [264].
Additional EGCG targets have been identified. In MG-63 and U2OS, the inhibitory activity
of EGCG treatment has been partially associated with the upregulation of miR-1, one of
the miRNAs critically involved in the pathogenesis and progression of human OS [263].
Moreover, the combined administration of EGCG and the IL-1 receptor antagonist (IL-
1Ra) efficiently downregulated IL-1-induced IL-6 and IL-8 release from U2OS cells. This
treatment approach also reduced the secretion of invasiveness-promoting MMP-2 and
pro-angiogenic VEGF, without affecting the metabolic response and caspase-3 activity [262].
EGCG has also been shown to act as a chemosensitizer for DOX in OS models. The syner-
gistic interaction between EGCG and DOX has been shown to be mediated by the SOX2
overlapping transcript (SOX2OT), which contributes to suppress OS via autophagy and
stemness inhibition [265] (p. 7).

7. Anti-Osteosarcoma Effects of Non-Flavonoids
7.1. Stilbenes
7.1.1. Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a powerful nutritional polyphenol
found in more than 70 plant species and is especially abundant in food products, such
as red grapes (up to 14 mg/L) and their derived products, peanuts, mulberries, and
soy [33,266]. Resveratrol is a phytoalexin. These chemicals are characterized by their low
molecular weight and their ability to inhibit the progress of infections and other adverse
stressful conditions for the plants [267]. Resveratrol is characterized by a stilbene structure
which consists of two phenolic rings bonded together by a double styrene bond, which is
responsible for the isometric cis- and trans-forms of resveratrol (Figure 5). The trans-isomer
appears to be the more predominant and stable natural form [268]. There are many syn-
thetic and natural analogues of resveratrol as well as adducts, derivatives, and conjugates,
including glucosides [269]. In red and white grape juice, resveratrol exists mostly as poly-
datin, its glycosidic form (see next section). Red grape juices contain significant amounts of
trans-polydatin, followed by cis-polydatin and trans-resveratrol. These compounds are
considered the primary compounds responsible for the health benefits associated with
wine consumption [266].
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Resveratrol is commonly used as a nutraceutical in the management of high cholesterol,
cancer, heart disease, and many other pathological conditions [270–272]. Its chemopreven-
tive and anticancer effects have been documented in in vivo and clinical studies in a wide
variety of tumor cell types, highlighting its role in diverse cellular events associated with
all stages of carcinogenesis, i.e., tumor initiation, promotion, and progression [8,273–276].
Unlike other phytoestrogens which bind ERβ with higher affinity, resveratrol binds ERα
and ERβ with comparable affinity but with 7000-fold lower affinity than estradiol, acting
as mixed agonist/antagonist [52]. Many lines of compelling data indicate that the effects
of resveratrol on the survival of estrogen-related cancer cells might rely on ER-dependent
mechanisms [277,278].

Regarding the bone microenvironment, resveratrol has been shown to have multiple
bioactivities, including antioxidative, anti-inflammatory, estrogen-like, and proliferative
properties that can influence bone metabolism [105,279]. In particular, in normal osteoblasts
and osteoclasts, it regulates cell proliferation, cellular senescence and apoptosis, and
inflammation processes, reducing the activity of NF-B and MAPK, and also acts through
an epigenetic control, modulating the expression and activity of sirtuin-1 (SIRT-1), which is
capable of increasing osteoblast survival and differentiation [280].

A body of studies on the effect of resveratrol on OS demonstrated a strong suppression
of cell viability as well as self-renewal ability and tumorigenesis of OS cells, whereas
no significant inhibition effect on normal osteoblasts was observed [281–286]. However,
the underlying mechanisms of action of resveratrol on OS cells have only been partially
defined (Table 3). The Janus kinase 2/signal transducer and activator of transcription
3 (JAK2/STAT3) pathway is involved in different biological processes, such as immunity,
cell division, cell death, and tumor formation [287]. Aberrantly activated JAK2/STAT3
is frequently detected in many cancer diseases that are usually refractory to standard
chemotherapy [287]. Studies have demonstrated a critical role of STAT3 signaling in the
persistence of cancer stem cells (CSCs) [288], which is a primary cause of tumor relapse
and metastasis [289]. Peng et al. [284] investigated the underlying molecular mechanism
of resveratrol activity against OS CSCs, reporting that resveratrol treatment inhibited
tumorigenesis ability by decreasing the synthesis of cytokines, such as IL-6, IFN-γ, TNF-
α, and Oncostatin M and preventing the JAK2/STAT3 signaling pathway, which was
consistent with the decline of the CSC marker CD133. On the other hand, exogenous STAT3
activation had the opposite effect and could abrogate the effect of resveratrol on CSCs,
suggesting that resveratrol may be a promising therapeutic agent for OS management [284].

Additional studies have reported a correlation between resveratrol activity and the
canonical Wnt/β-catenin cascade [283,290]. Aberrant activation of the Wnt-β-catenin
signaling pathway plays a critical role in OS pathogenesis, which makes the Wnt/β-
catenin pathway a hot topic in OS research [101,102,246]. Nevertheless, the development
of therapeutic agents specifically targeting the aberrant Wnt activation in OS cells is still
in its infancy. Exploring the effects of the resveratrol treatment against U2OS cells, Xie
and coworkers found that the antitumor effects of resveratrol occurred by suppressing the
activity of the Wnt/β-catenin pathway and the expression of related genes, such as c-myc,
cyclin D1, MMP-2, and MMP-9 [290].

Moreover, resveratrol was able to upregulate the expression level of Connexin 43 (Cx43)
and E-cadherin [290], two important mediators of cell–cell adhesion which are critical in
tumor progression [206,291]. The association between the anti-OS effect of resveratrol and
the Wnt signaling was further demonstrated by Zou et al. [283].

Using β-catenin as a drug target, they performed a high content screening of botanical
extracts to identify potential drugs against the human MG-63 OS cell line. β-catenin is
a pivotal member of the canonical Wnt signaling pathway with the dual functions of
regulating the coordination of cell–cell adhesion and gene transcription [292]. Aberrant
expression of β-catenin activates numerous downstream target genes of the Wnt signaling
pathway, a number of which are associated with cancer progression [293,294]. In a total
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of 14 botanical extracts assessed, resveratrol markedly downregulated the expression of
β-catenin and significantly inhibited MG-63 cell proliferation [283].

OS is characterized by a high metastatic potential which is associated with a high
death rate [82,98]. Proteinase enzymes, such as cathepsins, MMPs, and PA, are involved
in many steps of tumor metastasis, including tumor invasion, migration, host immune
escape, angiogenesis, and tumor growth [295]. MMPs, especially MMP-2 and MMP-9, are
usually over-expressed in a wide range of human cancer types, including OS, providing
a potential therapeutic target [100]. Based on in vitro, in vivo, and clinical evidence, Yang
and coauthors showed that resveratrol can suppress the metastatic potential of human
OS cells (i.e., HOS, MG-63, U2OS, Saos-2, and 143B) through transcriptional and epige-
netic regulation of MMP-2, by, respectively, inhibiting cAMP CREB-DNA-binding activity
and upregulating miR-328, which was initiated by the inhibition of the p38 MAPK/JNK
pathways. Consistently, suppression of miR-328 significantly relieved MMP-2 and motility
inhibition imposed by resveratrol treatment [296]. The proliferation, invasion, and metasta-
sis of tumor cells, as well as tumor relapse, are strongly correlated with the interactions
of several factors, in which angiogenesis is a prerequisite. During this process, VEGF
functions as the most significant vascular endothelial stimulating factor [297,298]. Accord-
ing to Liu et al. [299], resveratrol exerts a time and dose-dependent inhibition of OS cell
invasion capabilities and proliferation, which is mediated by the downregulation of VEGF
expression [299].

Recently, De Luca and colleagues [286] made a series of important observations on
different human OS cell lines (i.e., MG-63, SaOS-2, KHOS, U2OS). They found that resvera-
trol was involved in the pAKT and caspase-3 pathway, causing cell growth inhibition and
increase in apoptosis. Moreover, a significant increase in osteoblastic differentiation genes,
such as osterix (Osx), OPN, ALP, Col I alpha 1, and OCN, was observed, suggesting that
resveratrol may act as an inducer of differentiation, which is known to make OS cells more
vulnerable to the action of chemotherapeutic agents [300]. Furthermore, they highlighted
an epigenetic action of resveratrol on the promoters of interleukins IL-6 and IL-8, whose
role in tumor progression is a well-described process in several cancer models [301,302].
The epigenetic change induced the reduction in the secretion of interleukins IL-6 and IL-8,
which further explained the inhibitory effects of resveratrol on OS cellular growth and
motility. In line with data previously reported [281], the OS cell lines examined, which
represent the various typical characteristics of OS, responded in a variable manner to
resveratrol treatment. This explained why, by calculating the IC50 of resveratrol, different
values were obtained, i.e., around 120 µM for MG-63 and SaOS-2 and around 60 µM for
KHOS and U2OS treatment [286].

Table 3. Effects of non-flavonoids on osteosarcoma. Downward arrows represent downregulation or
reduction. Upward arrows represent upregulation or increase.

Phytoestrogen Cell line/
In Vivo Model Concentrations Combined

Treatment Molecular Mechanism Observed Effects References

Resveratrol

MNNG/HOS,
MG-63

tumor xenograft
mouse

10–40µM
100 mg/kg/d

↑ caspase-3, Bax,
cleaved PARP,
↓ Bcl-2, Bcl-xL;
↓ cytokines

↓ JAK2/STAT3 pathway

↑ apoptosis
↓ CSCs survival
↓ tumor growth

[284]

U2OS 6–24 µg/mL

↓Wnt/β-catenin pathway
↓ β-catenin, c-myc, cyclin

D1, ↓MMP-2/9
↑ Cx43, E-cadherin

↓ proliferation
↑ apoptosis

↓migration, invasion
[290]

MG-63 10–40 µg/mL ↓ β-catenin signaling ↓ proliferation [283]

HOS, MG-63, U2OS,
SaOS-2, 143B

HOS orthotopic
graft model

25–200 µM
40, 100 mg/kg/d

↓ p38 MAPK/
JNK pathways
↓ CREB, ↓MMP-2,
↑miR-328

↓migration, invasion,
adhesion

↓ tumor growth,
metastasis

[296]
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Table 3. Cont.

Phytoestrogen Cell line/
In Vivo Model Concentrations Combined

Treatment Molecular Mechanism Observed Effects References

Resveratrol

U2OS 10–40 µM ↓ VEGF [299]

MG-63, SaOS-2,
KHOS, U2OS 50–100 µM

DOX 0.1–10 µM
or

CDDP 0.2–2 µg/mL
for 24 h

↓ pAKT, ↑ caspase-3
↓ IL-6/8

↑ Osx, OPN, ALP, Col I,
OCN

↓ proliferation
↑ apoptosis
↑ differentiation
↑ DOX/CDDP

sensitivity

[286]

Polydatin
143B, MG-63 1–100 µM ↓ β-catenin signaling

↑ Bax/Bcl-2, caspase-3
↓ proliferation
↑ apoptosis [303]

MG-63 10–160 µM ↓ STAT3 signaling ↑ apoptosis, ↑ autophagy [304,305]

Polydatin

SaOS-2/DOX,
MG-63/DOX
MG-63/DOX

xenograft model

50–250 µM
150 mg/kg/d ↓ TUG1/Akt signaling

↓ proliferation
↑ apoptosis
↓ tumor growth

[306]

U2OS, MG-63 paclitaxel
↓ proliferation
↓migration

↑ cell cycle arrest
[304]

SaOS-2 1–150 µM ionizing
radiation

↓Wnt/β-catenin pathway
↑ lipid metabolite

secretion

↑ differentiation
↑ cell cycle arrest

↑ radiation sensitivity
[307]

Enterodiol,
Enterolactone MG-63 0.1–10 mg/mL ↑ ALP activity

↑ ON, Col I
↓ proliferation
↑ differentiation [308]

Strong evidence from breast, gastric, and prostate cancer cells subjected to combined
treatment with resveratrol–DOX or resveratrol–CDDP has shown a synergistic behavior of
resveratrol towards chemotherapeutic agents [309–311]. According to De Luca et al., the
cotreatment of resveratrol with DOX and CDDP increased their cytotoxic effect on OS cells,
suggesting that resveratrol might be a promising therapeutic adjuvant agent for OS cell
treatment [286].

7.1.2. Polydatin

Polydatin (3, 4′, 5-trihydroxystibene-3-β-mono-D-glucoside), also known as piceid,
is a naturally occurring glucoside derivative of resveratrol, in which the glucoside group
linked to position C-3 replaces the hydroxyl group [312,313] (Figure 5).

Polydatin was first extracted from the roots of Polygonum cuspidatum (Polygonaceae),
which have a long history of use in traditional Chinese and Japanese medicines, but it also
exists in a variety of other sources, including dietary plants such as grape, peanut, berries,
and chocolate [313]. The trans form of polydatin is well known for its high therapeutic
potential in a variety of medical domains, for example infection, inflammation, cardiovas-
cular disorders, and aging-related diseases such as osteoporosis [314–316]. The Chinese
FDA has approved polydatin for multiple phase II clinical trials, mainly for anti-shock
applications [317].

Glucose substitution gives polydatin a more hydrophilic character than resveratrol,
resulting in a significantly increased bioavailability and higher health-promoting/disease-
modifying activities [318,319]. Furthermore, comparative studies of polydatin and resvera-
trol regarding antioxidative effects in vivo have revealed a better antioxidant activity of
polydatin than resveratrol [312,320]. Polydatin has been recognized as a potent anticancer
agent, with the ability to regulate various signaling pathways involved in the progression
of several kinds of cancers [321,322]. It is mainly involved in cell cycle regulation, apopto-
sis, autophagy, signaling pathways, EMT, inhibition of inflammation and metastasis, and
regulation of enzymes related to oxidative stress [323,324].

Moreover, recent studies by Mele et al. demonstrated that polydatin exerts a signif-
icant cytotoxic effect on cancer cells by Glucose-6-phosphate dehydrogenase inhibition,
a rate-limiting enzyme in the pentose phosphate pathway which is altered in different
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malignant tumors [325]. A beneficial role of polydatin was also documented in prevention
and treatment of OS. In an early study, Xu et al. evaluated the anti-OS activity of polydatin
in human OS cell lines (i.e., 143B and MG-63). Polydatin dose-dependently inhibited prolif-
eration by suppressing the β-catenin signaling and promoted apoptosis via upregulated
expressions of Bax/Bcl-2 and caspase-3 in OS cells [303].

Polydatin also induced apoptosis via different mechanisms, such as reducing the
expression/phosphorylation of STAT3 and increasing the expression of autophagy-related
genes (Atg12, Atg14, BECN1, PIC3K3), thereby triggering autophagic cell death in MG-63
cells [305]. Further studies reported the efficacy of polydatin in drug-resistant models
of OS [304,306]. The therapeutic effect of polydatin against DOX-resistant OS, in vitro
and in a MG-63/DOX xenograft model, occurs via the oncogene taurine-upregulated
gene 1 (TUG1)-mediated suppression of Akt signaling, which promotes apoptosis and
prevents cell proliferation [306]. Additionally, polydatin enhances the chemosensitivity to
the antineoplastic agent paclitaxel of U2OS and MG-63 cells and their paclitaxel-resistant
variants, suppressing cell growth and migration and inducing cell cycle arrest in the S
phase [304]. Interestingly, a recent study investigated the role accomplished by polydatin,
alone or after radiation therapy, in the osteogenic differentiation of SaOS-2 and MG-63 [307].

As mentioned above, the osteogenic differentiation has a role in the pathogenesis
of OS, considering that OS tumors deregulate the signaling pathways associated with
osteogenic differentiation by arresting the cells as undifferentiated precursors [110].

In combination with radiotherapy, the pretreatment with polydatin promoted a ra-
diosensitizing effect on OS cancer cells as demonstrated by the increased mineralization
and osteogenic markers levels. The differentiation process was paralleled by the activa-
tion of the Wnt-β-catenin pathway and cell cycle arrest in the S phase. Additionally, the
secretions of sphingolipid, ceramides, and their metabolites were analyzed using mass spec-
trometry in OS-treated cells. In past years, evidence has accumulated demonstrating that
2′-hydroxy ceramide/sphingolipids have distinct biological functions to regulate various
cellular processes and cell differentiation by binding to specific target proteins [326].

Moreover, Sphingosine-1-phosphate has been reported to inhibit osteoclast formation
and mineralization [327]. MS analysis demonstrated that polydatin-induced osteogenic
differentiation was mediated by an increased expression and secretion of ceramides and
sphingolipids and pretreatment with polydatin sensitized OS cells to ionizing radiation,
suggesting that polydatin, in combination with radiotherapy, can consolidate the response
to therapy of OS cells [307].

Various novel drug delivery systems, including nanoparticles [328], liposomes [329],
micelles [330], quantum dots [331], and polymeric nanocapsules [332], have been designed
to enhance polydatin pharmacodynamics and pharmacokinetics [333]. Polycaprolactone
(PCL) is a biodegradable hydrophobic polyester used to obtain clinically applicable im-
plantable nanostructures [334]. In their study, Lama and coworkers demonstrated that
PCL nanofibers complexed to polydatin supported adhesion and promoted osteogenic
differentiation in both SaOS-2 cells and bone MSCs, providing evidence of the osteogenic
capacity of polydatin to create a biomimetic, innovative, and patented scaffold for both
anticancer and regenerative purposes [335].

7.2. Lignans

In contrast to other types of phytoestrogens, lignan-type phytoestrogens have rarely
been studied, although they are widely distributed in the plant kingdom. Cereals, grains,
berries, and garlic are good dietary sources of lignans [30]. The plant lignans may occur
in the form of aglycones and glycosides. After consumption, they can be converted by
gut bacteria to form enterolignans (enterodiol and enterolactone), also known as “mam-
malian lignans”, which have a variety of biological activities, including tissue-specific ER
activation and anti-inflammatory and apoptotic effects, that may influence disease risk in
humans [336].
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The effects of enterodiol and enterolactone on the viability and differentiation of MG-
63 cells have been examined. Data suggested that both enterolactone and enterodiol have
biphasic effects on cell proliferation, ALP activity, and transcriptional levels of osteonectin
(ON) and Col I, showing induction at low doses and inhibition at high doses.

The dose-dependent effects have been linked to the estrogenic and antiestrogenic
properties of estrogen-like molecules as well as their ability to induce multiple signaling
transduction [308].

8. Conclusions and Perspectives

OS is a disease of multifactorial origin which involves a complex interaction between
a wide variety of factors and mechanisms that, when acting together, promote the deregula-
tion of cellular signaling pathways, causing disturbances in bone tissue homeostasis [81,82].
Though rare, OS is the prevalent form of bone cancer among children and young adults.
Despite advancements in treatment modalities, the prognosis for OS patients remains unfa-
vorable, particularly in cases of metastasis and resistance to conventional therapies [5,6].
With the aim of improving patient outcomes, researchers have turned their attention to ex-
ploring new second-line treatment options (i.e., complementary and integrative medicine).

Evidence collected from the literature indicates that phytoestrogens hold promise
as a complementary therapeutic approach for OS, making them attractive candidates for
further exploration. Mechanistically, phytoestrogens can interfere with genomic and non-
genomic signaling pathways, such as NF-kB, PI3K/Akt, or MAPK/ERK, control cell cycle
progression, initiate apoptosis events, and inhibit angiogenesis and metastasis. Several
reports have also highlighted their ability to enhance the efficacy of chemotherapy agents
and overcome drug resistance. Among them, genistein, resveratrol, and quercetin have the
most evidence of effectiveness [169,171,181,186,187,286,306].

Despite the abundance of in vitro studies, the role and involvement of ERα and/or
ERβ in the phytoestrogen-dependent modulation of OS cells has been only partially in-
vestigated to date, although the estrogen signaling may be involved in the growth and
progression of this malignancy [14,122,124].

To fully assess the impact of these compounds on OS initiation, progression, and
development, the Erα/ERβ ratio in specific OS models should also be considered. This
is important due to the considerable variation in ER-mediated cellular response based on
cell type, along with the selectivity and concentration of phytoestrogens. Taken together,
these factors play a crucial role in determining the multifaced effects exerted by these plant
estrogenic molecules on cancer cells [48–50].

Although in vitro and preclinical studies have shown promising results, it is crucial to
evaluate the true potential of phytoestrogens as a viable option for OS therapy through the
rigorous assessment of their efficacy, safety, optimal dosage, and treatment duration in clin-
ical settings. In this regard, preliminary clinical studies have been conducted to investigate
the pharmacokinetics of compounds derived from plant sources, including phytoestrogens,
in individuals with premalignancies or patients with different types of cancer [79,197,337].
Among the various molecules studied, only clinical investigations on green tea extracts
have consistently yielded results, supporting their potential for chemoprevention in prema-
lignant cervical disease, prostate cancer, and leukoplakia. Moreover, existing data generally
supports the safety of small doses of purified phytoestrogen consumption as a medication
for breast cancer [215]. Conversely, further clinical trials are needed to sustain the role of
soy isoflavones in preventing cancer development and progression [215,337]. Overall, the
protective effect of phytoestrogens against cancer development remains a topic of ongoing
debate [79]. This controversy stems primarily from a notable discrepancy between the
outcomes of mechanistic studies conducted in vitro and the observations made in clinical
settings. The main reason for these inconsistencies is the frequent use of non-physiological
concentrations of phytoestrogens in mechanistic studies, which are difficult to achieve
through normal dietary intake [79,338].
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Interestingly, some ongoing research is focusing on the development of highly specific
and long-acting analogues or drug delivery strategies to improve the pharmacodynamics
and pharmacokinetics of phytoestrogens in human OS models [265,276,328,332,335]. This
may encourage the exploitation of the therapeutic potential of phytoestrogens in managing
OS and other types of cancers.
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