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Abstract: As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and
lipid peroxide accumulation, which is different from other regulated cell death forms morphologically,
biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism,
and antioxidant defense systems as well as various transcription factors and related signal path-
ways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and
pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and
ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are
not translated into proteins, which can regulate gene expression in various manners. An increasing
number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs,
can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins
directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferrop-
tosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate
ferroptosis in different physiological and pathological conditions, which will deepen our under-
standing of ferroptosis regulation by noncoding RNAs and provide new insights into employing
noncoding RNAs in ferroptosis-associated therapeutic strategies.
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1. Introduction

Iron is an essential trace element for virtually all living organisms. It plays important
roles in many physiological and cellular processes, including oxygen transport, energy
production, and cellular proliferation [1,2]. Because of its importance, iron levels are finely
tuned in living organisms, and iron overload can damage an organism through a variety
of mechanisms, including the induction of a kind of regulated cell death, ferroptosis. The
term “ferroptosis” was first introduced in 2012, which refers to a type of regulated cell
death resulting from iron overload and lipid peroxidation [3–5]. Therefore, it cannot be
blocked by the specific inhibitors for other regulated cell death types, such as apoptosis,
necrosis, necroptosis, and autophagy, but can be blocked by iron chelators (e.g., deferoxam-
ine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin-1 and liproxstatin-1) [3,6,7].
As a novel form of regulated cell death, ferroptosis is regulated by its unique metabolism
and regulatory mechanism, leading to different morphological, biochemical, and immuno-
logical features from apoptosis, autophagy, necroptosis, and pyroptosis [4,8]. Normally,
ferroptotic cells exhibit morphological changes mainly in their mitochondria, including
obviously smaller mitochondria, rupture of the mitochondrial outer membrane, and re-
duced or absent mitochondrial crista [3,5,6]. They also show necrosis-like features, such
as plasma membrane integrity loss, cytoplasmic and cytoplasmic organelles swelling, and
moderate chromatin condensation. However, there are no apoptotic bodies or autophago-
somes in ferroptotic cells, which are signature morphological features in apoptosis and
autophagy, respectively. Iron accumulation and lipid peroxidation are the main biochemical
features of ferroptosis, both of which are related to the mechanism of ferroptosis [4–6].
Additionally, ferroptosis is considered a form of inflammatory cell death immunologically,
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which is associated with the release of damage-associated molecular pattern (DAMP) or
lipid oxidation products [4]. Since it was discovered, increasing evidence has shown that
ferroptosis plays special roles in many physiological and pathological processes, such as
cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion
injury (IRI) [9–14].

Noncoding RNAs (ncRNAs) refer to the RNA molecules transcribed from genomes
that do not encode proteins. With the advent of powerful sequencing technologies and
in silico tools, it was found that up to 90% of genes in eukaryotic genomes have the
capacity to be transcribed into RNAs [15–17]. Only 1–2% of the genes encode proteins,
whereas the majority of the genes are transcribed as noncoding RNAs (ncRNAs). According
to their length and shape, ncRNAs are divided into various types, including transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs (miRNAs), small interfering RNAs
(siRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), small nuclear
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs),
etc. Different from the message RNAs (mRNAs) that encode proteins, ncRNAs play
important roles in transcriptional and posttranscriptional levels as well as in the epigenetic
regulation of gene expression [18,19]. With in-depth research, ncRNAs have been found to
participate in multiple biological processes, including both physiological and pathological
processes. In the past several years, more and more ncRNAs have been reported to be
involved in ferroptosis, which adds a complex network for the regulation of ferroptosis
in different physiological and pathological conditions. In this review, we summarize the
recent advances in the mechanism of ferroptosis, especially the role of ncRNAs, including
the function of different types of ncRNAs in ferroptosis and the mechanism for ncRNAs
regulating ferroptosis.

2. The Core Mechanism and Regulators of Ferroptosis

Ferroptosis is an iron-dependent, oxidative-damage-related type of regulated cell
death [4,5]. Although ferroptosis has been studied for more than ten years, our knowledge
of its mechanism is still limited. An increased iron accumulation and lipid peroxidation
can induce ferroptosis, whereas the antioxidant defense systems inhibit lipid peroxidation
and ferroptosis [4–6]. Generally, it is universally accepted that ferroptosis is regulated by
iron metabolism (leading to abnormal iron accumulation), lipid metabolism (leading to
increased lipid peroxidation), and the antioxidant defense systems (leading to the dysregula-
tion of antioxidant defense) (Figure 1). Additionally, many proteins, especially transcription
factors, regulate ferroptosis by directly or indirectly modulating iron metabolism, lipid
metabolism, and the antioxidant defense systems.

2.1. Iron Metabolism

Ferroptosis is a form of regulated cell death dependent on iron, which exchanges
between two states, ferrous (Fe2+) and ferric (Fe3+), in cells. Indeed, only intracellular
free Fe2+ (but not Fe3+) induces ferroptosis. Fe2+ induces lipid peroxidation and ferrop-
tosis in two ways, by directly generating ROS by the Fenton reaction or by activating
iron-containing enzymes that catalyze lipid peroxidation (e.g., lipoxygenase) [5,11]. The
absorption, storage, efflux, and utilization of iron, which regulate intracellular free Fe2+

levels, may affect ferroptosis [5,11].
Dietary non-heme iron is absorbed by proximal small intestinal mucosal absorptive

cells and is then transported to the blood, where it is oxidized to Fe3+ and binds to trans-
ferrin (TF) [20]. TF with Fe3+ is recognized by the transferrin receptor (TFRC) in the cell
membrane, and the Fe3+-TF-TFRC complex comes into the cytoplasm through endocy-
tosing [20,21]. In the endosome, Fe3+ is reduced to Fe2+ by the ferrireductase activity of
six-transmembrane epithelial antigens of the prostate 3 (STEAP3) [22]. The reduced Fe2+

is further released into a free iron pool in the cytoplasm by divalent metal transporter 1
(DMT1, also known as solute carrier family 11 member 2, SLC11A2) [20,21]. Elevation
of TF, TFRC, STEAP3, or DMT1 was found to promote ferroptosis by enhancing iron up-
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take [5,21]. It was also found that heat shock protein family B (small) member 1 (HSPB1),
when phosphorylated at serine 15 by protein kinase C (PKC), inhibits the iron uptake
process by regulating the cytoskeleton organization, resulting in the suppression of fer-
roptosis [23]. Heme iron is taken up as heme by receptor-mediated endocytosis or heme
transporters [24]. Internalized heme is then degraded by heme oxygenase 1 (HO-1) or
HO-2, releasing the Fe2+ to the cytoplasm. Both HO-1 and HO-2 were reported to be
ferroptosis regulators [25,26]. Two mitochondrial iron importers, mitoferrin-1 (also known
as solute carrier family 25 member 37, SLC25A37) and mitoferrin-2 (also known as solute
carrier family 25 member 28, SLC25A28), were found to facilitate ferroptosis by increasing
mitochondrial free iron accumulation [27,28].
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dihydrobiopterin; Cys: cysteine; Cys-Cys: cystine; Cys-Gly: cysteinylglycine; Gln: glutamine; GGC: 
γ-glutamyl cysteine; GSSG: glutathione oxidized; Glu: glutamate; Gly: glycine; and Trp: tryptophan. 
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Figure 1. Schematic illustration of the core mechanisms of ferroptosis. Ferroptosis is regulated by
iron metabolism, lipid metabolism, and antioxidant defense systems. α-KG: α-ketoglutarate; BH2:
dihydrobiopterin; Cys: cysteine; Cys-Cys: cystine; Cys-Gly: cysteinylglycine; Gln: glutamine; GGC:
γ-glutamyl cysteine; GSSG: glutathione oxidized; Glu: glutamate; Gly: glycine; and Trp: tryptophan.

To maintain the free iron hemostasis in cells, excess intracellular Fe2+ is stored to avoid
iron overload. Ferritin is a cytosolic iron-storage protein complex comprising 24 subunits
of two types, ferritin-light chains (FTL) and ferritin-heavy chains 1 (FTH1) [21]. Increasing
the expression of FTL and FTH1 will reduce intracellular free Fe2+ and inhibit ferropto-
sis [21]. When ferritin binds to nuclear receptor coactivator 4 (NCOA4), it is transported to
autophagosome for lysosomal degradation (known as ferritinophagy), releasing ferritin-
bound iron in order to increase intracellular free Fe2+ levels and result in ferroptosis [29].
DNA (cytosine-5)-methyltransferase 1 (DNMT-1) can enhance NCOA4 expression via DNA
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methylation in the NCOA4 promoter, leading to NCOA4-mediated ferritinophagy and
ferroptosis [30]. Poly(RC)-binding proteins (PCBPs) act as iron chaperones to deliver Fe2+

to different proteins [21]. It was found that PCBP1 and PCBP2 deliver Fe2+ to ferritin,
resulting in the suppression of ferroptosis [31,32]. PCBP2 was also reported to inhibit
ferroptosis by transporting Fe2+ to ferroportin [33].

Iron-efflux protein ferroportin (FPN1, also known as solute carrier family 40 member 1,
SLC40A1) is responsible for the exportation of intracellular free Fe2+ and the re-oxidation
of Fe2+ to Fe3+ [34]. Hepcidin (encoded by the Hamp1 gene) can induce the internalization
and degradation of FPN1 [35]. A decrease in FPN1 or an increase in hepcidin levels can
promote ferroptosis by increasing intracellular free Fe2+ levels [21]. Prominin 2 (PROM2), a
pentaspanin protein involved in the organization of plasma membrane microdomains, was
also found to export iron by promoting a form of ferritin-containing multivesicular bodies,
resulting in the resistance of ferroptosis [36,37]. Iron is also used for iron-sulfur cluster
biogenesis. The expression of some mitochondrial proteins with an iron-sulfur cluster,
such as NFS1, CISD1, and CISD2, may reduce the available iron levels and thus inhibit
ferroptosis [38–40].

Moreover, iron-regulatory proteins (IRPs), including IRP1 (also known as aconitase
1, ACO1) and IRP2 (also known as iron-responsive element binding protein 2, IREB2),
register cytosolic iron concentrations and post-transcriptionally regulate the expression
of iron metabolism genes to optimize cellular iron availability [41,42]. IRPs can bind to
iron-responsive elements (IREs), the specific RNA stem–loop structures located in 5′- or
3′- untranslated regions (UTR) of mRNA, leading to the opposite effect: the inhibition
of translation at 5′- UTR or the promotion of translation at 3′- UTR. IRPs can bind to the
mRNA of TFRC, DMT1, FTH1, FTL, and FPN, affecting ferroptosis sensitivity [3,21,43].

2.2. Lipid Metabolism

Ferroptosis directly results from lipid peroxidation, which occurs in polyunsaturated
fatty acids (PUFAs) through both non-enzymatically spontaneous autoxidation and enzyme-
mediated processes [44,45]. Lipoxygenases (LOXs) are the major enzymes responsible for
enzymatical lipid peroxidation by catalyzing the oxygenation of PUFAs to generate var-
ious hydroperoxy PUFA derivatives, including the initial lipid hydroperoxides and the
subsequent reactive toxic aldehydes (e.g., malondialdehyde and 4-hydroxynonenal). The
inhibition of LOX activities or reducing their levels inhibit ferroptosis [46]. The arachido-
nate lipoxygenase (ALOX) family, a class of non-heme-iron-containing LOXs, play a tissue-
or cell-dependent role in mediating ferroptosis [44,45]. Additionally, cyclooxygenase-2
(COX-2, encoded by the PTGS2 gene) oxidizes lysophospholipids but not phospholipids;
therefore, it was considered as a biomarker but not a driver for ferroptosis in early stud-
ies [5,47]. However, recent studies have found that COX-2 can mediate lipid peroxidation
and induce ferroptosis in certain conditions [48,49]. Alternatively, non-enzymatic lipid per-
oxidation requires free radicals, including ROS. Some membrane electron transfer proteins,
including nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and
cytochrome P450 oxidoreductases (PORs), contribute to ROS production and thus induce
ferroptosis [50–52].

Lipid peroxidation occurs in PUFAs, which are supplied by the lipid synthesis and
metabolism pathways. Ferroptosis results from the peroxidation of PUFA-phospholipids
in the membrane [5,45]. Two PUFAs, arachidonic acid (AA) and adrenic acid (AdA), are
the main substrates in PUFA-phospholipids during ferroptosis [44,45]. AdA/AA is ligated
with CoA by Acyl-CoA synthetase long-chain family member 4 (ACSL4) to form CoA-
AdA/AA, which then undergoes esterification with membrane phosphatidylethanolamine
by lysophosphatidylcholine acyltransferase 3 (LPCAT3) to form PE-AdA/AA. A deficiency
of either ACSL4 or LPCAT3 leads to the suppression of ferroptosis [53]. On the contrary,
because of the lack of the bis-allylic positions readily available for peroxidation, monoun-
saturated fatty acids (MUFAs) in membrane phospholipids may inhibit ferroptosis by
competing with PUFAs. Similarly, MUFAs are converted to MUFA-CoAs by Acyl-CoA
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synthetase long-chain family member 3 (ACSL3) and then form PE-MUFAs by membrane-
bound O-acyltransferase domain containing 1/2 (MBOAT1/2). Therefore, promoting
ACSL3 or MBOAT1/2 expression inhibits ferroptosis by elevating PE-MUFAs [54–56].

Long-chain PUFAs, including AA and AdA, are synthesized from dietary essential
fatty acids (e.g., linoleic acid) by a series of enzymatic reactions in cells. These reactions
are catalyzed by the elongation of very-long-chain fatty acid proteins (ELOVLs) and fatty
acid desaturases (FADSs). It was reported that the inhibition or silencing of these enzymes,
such as ELOVL5, FADS1, and FADS2, can repress ferroptosis [57,58]. Different from PUFAs,
MUFAs come from saturated fatty acids (SFAs) produced by stearoyl-CoA desaturase
1 (SCD1), whereas SFAs can be de novo synthesized from acetyl-CoA by acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FASN). Increasing the expression of SCD1,
FASN, and ACC protects cells from ferroptosis [55,59–61]. Alternatively, dietary fatty acids
are another important source of PUFAs, MUFAs, and SFAs, especially for cells incapable of
synthesizing fatty acids. Fatty acid translocase (FAT/CD36), fatty acid transport proteins
(FATPs), and fatty-acid-binding proteins (FABPs) mediate the uptake of fatty acids [62].
It was reported that CD36 and FATP2, which mediate the absorption of AA and AdA,
promote ferroptosis in certain cells [63,64]. FABP3, FABP4, and FABP7 were also reported
to inhibit ferroptosis by regulating fatty acid uptake [55,65].

2.3. Antioxidant Defense Systems

Different from iron metabolism and lipid metabolism, the antioxidant defense sys-
tem in cells suppresses lipid peroxidation, leading to the inhibition of ferroptosis. A
selenocysteine-containing enzyme of the antioxidant defense system, glutathione perox-
idase 4 (GPX4), plays a central role in ferroptosis inhibition. GPX4 is the only known
enzyme that directly inhibits lipid peroxidation by using glutathione (GSH) to reduce
toxic phospholipid hydroperoxides (PL-OOH) to non-toxic phospholipid alcohols (PL-
OH) [66,67]. Therefore, its dysfunction always leads to the accumulation of lipid peroxides
and ferroptosis. Many small-molecule ferroptosis inducers, such as RSL3, ML162, ML210,
FIN56, and FINO2, induce ferroptosis by inhibiting GPX4 activity or promoting its degra-
dation [66–69]. Interestingly, GPX4 can be regulated by lipid metabolism. GPX4 is a
selenocysteine-containing protein, which needs selenocysteine tRNA for its synthesis.
Selenocysteine tRNA comes from isopentenyl pyrophosphate (IPP), a product of the meval-
onate pathway for lipid synthesis [70]. Thus, GPX4 levels are regulated by the mevalonate
pathway via selenocysteine tRNA. Moreover, it was also reported that GPX4 is regulated
by SCD1/FADS2, two important enzymes involved in lipid metabolism [71].

GPX4 uses GSH to reduce PL-OOH to PL-OH; therefore, the availability of GSH is
also important for the inhibition of lipid peroxidation and ferroptosis by GPX4. GSH is syn-
thesized from glutamate, cysteine, and glycine by glutamate cysteine ligase (GCL) and glu-
tathione synthetase (GSS), whereas ChaC glutathione-specific γ-glutamyl-acyltransferase 1
(CHAC1) cleaves GSH into 5-oxo-L-proline and a Cys-Gly dipeptide. The inhibition of GCL
or GSS, or activating CHAC1, may reduce GSH levels and induce ferroptosis [3,68,72–74].
Moreover, amino acid metabolism, which regulates the supply of glutamate, cysteine, or
glycine, also plays crucial roles in ferroptosis. Among the metabolism of amino acids, the
uptake of cystine, which can be further converted into cysteine by GSH and/or thioredoxin
reductase 1 (TXNRD1), is considered to be a key mechanism for inducing ferroptosis [75].
Many small-molecule compounds, including erastin, sulfasalazine, and sorafenib, trigger
ferroptosis by inhibiting system Xc−, a glutamic acid/cystine antiporter in the plasma mem-
brane responsible for the uptake of cystine [68,75,76]. The suppression of the expression
levels of its two subunits, solute carrier family 7 member 11 (SLC7A11) and solute carrier
family 3 member 2 (SLC3A2), also exhausts GSH and induces ferroptosis [77,78]. Cysteine
is also synthesized through the trans-sulfuration pathway by cysteinyl-tRNA synthetase
(CARS) and cystathionine-β-synthase (CBS), leading to resistance to ferroptosis [79–82].
Additionally, glutaminolysis, the catabolism of glutamate and glutamine, is another tar-
get for the regulation of ferroptosis. Glutamine is absorbed mainly by glutamine trans-
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port, solute carrier family 1 member 5 (SLC1A5), and solute carrier family 38 member 1
(SLC38A1) [83,84]. It is converted into glutamate by glutaminases, and glutamate can
be further converted into α-ketoglutarate by glutamic oxaloacetic transaminase (GOT).
Glutamate can help the system-Xc−-mediated absorption of cystine and can supply the
GSH synthesis directly. Some studies showed that SLC1A5 and SLC38A1 suppress fer-
roptosis [85–87], whereas GOT1 promotes ferroptosis through elevating GSH levels [88].
However, more studies found that SLC1A5, SLC38A1, and glutaminase 2 (GLS2) promote
glutaminolysis and ferroptosis [83,89–96]. These were attributed to the enhancement of
α-ketoglutarate, which promotes ferroptosis probably by increasing lipid synthesis, the
local iron level, and mitochondrial ROS [83,97,98]. It seems that glutaminolysis has a
context-dependent dual function in ferroptosis.

In addition to the GPX4-GSH system, many other members of the antioxidant defense
system were also found to regulate ferroptosis. Ferroptosis-suppressor protein 1 (FSP1,
previously known as apoptosis-inducing factor mitochondria-associated 2, AIFM2) can
trap lipid peroxides using NADPH to reduce non-mitochondrial coenzyme Q10 (CoQ),
thereby repressing ferroptosis in a GPX4-independent manner [99,100]. Moreover, FSP1
was also reported to activate the ESCRT-III-dependent membrane repair system to inhibit
ferroptosis, which is independent of its oxidoreductase function [101]. Tetrahydrobiopterin
(BH4) is another radical-trapping antioxidant that protects lipid membranes from ferrop-
tosis, which prevents two PUFA acyl tails from consuming phospholipids [102]. Both
GTP cyclohydrolase-1 (GCH1) and dihydrofolate reductase (DHFR) can inhibit ferroptosis
by producing BH4 [102,103]. In mitochondria, dihydroorotate dehydrogenase (DHODH)
reduces CoQ to radical-trapping antioxidant ubiquinol (CoQH2), leading to the restoration
of peroxide-damaged mitochondrial lipids and the inhibition of ferroptosis [104]. Addi-
tionally, several peroxiredoxins (PRDXs), members of a selenium-independent glutathione
peroxidase family, were reported to inhibit ferroptosis [105–107]. It was also found re-
cently that tryptophan can produce two radical-trapping antioxidants, serotonin (5-HT)
and 3-hydroxyanthranilic acid (3-HAA), to eliminate lipid peroxidation, thereby inhibiting
ferroptosis [108].

2.4. Transcription Factors Regulating Ferroptosis

Many transcription factors, as well as their related signaling pathways, are also
involved in the regulation of ferroptosis by directly or indirectly affecting the above-
mentioned mechanisms. Nuclear factor erythroid 2-related factor 2 (NRF2, also known as
nuclear factor erythroid-derived 2-like 2, NFE2L2) is a master regulator of oxidative stress
signaling and redox homeostasis [109,110]. NRF2 transcriptionally regulates a group of
genes involved in antioxidant defense, such as SLC7A11, TXNRD1, GSS, GCLC, GCLM,
CHAC1, GPX4, FSP1, ARK1C1, ALDH1A1, and NQO1, to inhibit ferroptosis. It was also re-
ported that NRF2 can suppress ferroptosis by transcriptionally regulating the expression of
FPN1, HO-1, FTL, FTH1, ABCB6, FECH, and HRG1 (SLC48A1) involved in iron metabolism
and PPARG and NROB2 involved in lipid metabolism [109,110]. Sterol regulatory-element
binding proteins (SREBPs) are transcription factors that regulate the expression of genes
involved in lipid synthesis [111,112]. SREBP1 is the master regulator of lipogenesis through
transcriptionally inducing the expression of ACC, FASN, and SCD1. The knockdown of
SREBP1 or SCD1 will sensitize cancer cells to ferroptosis [55,61]. Signal transducer and acti-
vator of transcription 3 (STAT3), a transcription-factor-regulating gene associated with cell
survival, the cell cycle, and immune reaction, was found to inhibit ferroptosis by increasing
the expression of SLC7A11 and GPX4 for antioxidant defense, reducing ACSL4 expression
for lipid metabolism, and increasing hepcidin expression for iron metabolism [113–116].

Some transcription factors have a dual function in ferroptosis. Tumor suppressor
p53 is a transcription factor that mediates a variety of anti-proliferative processes via
transcriptionally regulating many stress-response genes [117]. Normally, the activation of
p53 induces ferroptosis by transcriptionally regulating SLC7A11, GLS2, CBS, and lncRNA-
LINC00336/miR-6852/CBS involved in the anti-oxidant defense, ALOX12, SAT1/ALOX15,
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PTGS2, and iPLA2β involved in lipid metabolism, and FDXR, mitoferrin-2, and lncRNA-
PVT1/miR-214/TFRC involved in iron metabolism [117,118]. p53 was also reported to be a
ferroptosis suppressor by enhancing GSH levels via its target, p21, inducing mitophagy via
Parkin and inhibiting NOX-mediated lipid peroxidation via directly binding the dipeptidyl
peptidase DPP4 [117,118]. Thus, p53 regulates ferroptosis in a bidirectional and context-
dependent way. Hypoxia-inducible factors (HIFs) are transcription factors that respond
to decreases in available oxygen (hypoxia). HIF-1 and HIF-2, two HIFs mediating most
of the cellular response to hypoxia, transcriptionally regulate TFRC, FTMT, and CA9 for
iron metabolism, FABP3, FABP7, and lncRNA-CBSLR/CBS/ACSL4 for lipid metabolism,
and PDK1, BNIP3, METTL14/SLC7A11, and lncRNA-PMAN/ELAVL1/SLC7A11 for an-
tioxidant defense, eventually inhibiting ferroptosis in certain conditions, whereas under
some different conditions, they can also transcriptionally regulate TF, TFRC, DMT1, ZIP8,
and ZIP14 for iron metabolism, ACSL4, PTGS2, and HILPDA for lipid metabolism, and
CHAC1 and SOD for antioxidant defense, leading to the promotion of ferroptosis [119].
Some activated transcription factors (ATFs), such as ATF3 and ATF4, which are activated
in response to ER stress, also play dual roles in ferroptosis. Both ATF3 and ATF4 can
transcriptionally induce SLC7A11 to inhibit ferroptosis [120–124]. It was also reported that
ATF3 represses brucine-induced glioma cell ferroptosis by upregulating NOX4 and SOD1 to
reduce ROS [125] and inhibits IRI-induced cardiomyocyte ferroptosis by transcriptionally
inducing Fanconi anemia complementation group D2 (FANCD2) to affect the expression of
GPX4, SLC7A11, FTH1, and PTGS2 [126]. ATF4 was also found to transcriptionally induce
HSPA5, which in turn binds GPX4 and protects against GPX4 protein degradation, result-
ing in the suppression of ferroptosis [127,128]. On the other hand, both ATF3 and ATF4
can transcriptionally induce CHAC1 to reduce GSH and promote ferroptosis [72,129,130].
ATF3 is transcriptionally regulated by ATF4 to upregulate TFRC expression to promote
ferroptosis [131]. ATF3 was also found to promote IFN-γ-driven ferroptosis by increasing
the transcription of an miRNA miR-21-3p to repress TXNRD1 [132], whereas ATF4 induces
B-cell translocation gene 1 (BTG1) to enhance the ferroptosis of hepatocytes [133].

Taken together, the mechanisms of ferroptosis are very complex. The core mechanisms
of ferroptosis are iron accumulation, lipid peroxidation, and antioxidant defense, which are
further regulated by many transcription factors and other proteins.

3. The Classification and Function of ncRNAs in Ferroptosis

ncRNAs can be divided into two subtypes, basic structural ncRNAs and regulatory
ncRNAs, according to their function [134]. The former are also known as “housekeeping”
ncRNAs, including tRNAs, rRNAs, snRNAs, and snoRNAs, which are constitutively ex-
pressed and function during the translation and splicing process. The regulatory ncRNAs
contain miRNAs, siRNAs, circRNAs, piRNAs, and lncRNAs, which play important roles
in the epigenetic regulation of gene expression. At present, the majority of ncRNAs in-
volved in ferroptosis regulation are the regulatory ncRNAs, especially miRNAs, circRNAs,
and lncRNAs.

3.1. MiRNAs in Ferroptosis

MiRNAs are small single-stranded ncRNAs of from 21 to 23 nucleotides derived
from endogenous short-hairpin transcripts [135,136]. MiRNAs normally bind to com-
plementary sequences within the 3′-UTRs of target mRNAs, leading to the cleavage,
degradation, or translation inhibition of target mRNAs and eventually suppressing their
expression [136,137].

In recent years, many studies have reported that miRNAs can target the ferroptosis-
related genes to regulate ferroptosis. For instance, miRNA-214 (miR-214) targets and
inhibits TFRC to reduce ferroptosis [138]; miR-424-5p and miR-4291 target and inhibit
ACSL4 to suppress ferroptosis [139,140]; miR-30b-5p and miR-124 target and inhibit FPN1
to promote ferroptosis [141,142]; miR-541-3p and miR-324-3p target and inhibit GPX4 to
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enhance ferroptosis [143–145]; and miR-128-3p, miR-375, and miR-27a-3p target and inhibit
SLC7A11 to induce ferroptosis [146–148].

In addition to mRNA, miRNA-binding sequences also exist in some other ncRNAs.
These ncRNAs, including RNAs of pseudogenes, lncRNAs, and circRNAs, can compete
with mRNA for the same miRNA pool, thereby regulating miRNA activity, which adds a
level of regulation to the miRNA network [149,150].

3.2. LncRNAs in Ferroptosis

LncRNAs are a large group of RNAs, generally defined as transcripts of more than
200 nucleotides that are not translated into proteins [151,152]. LncRNAs regulate gene
expression in a variety of ways at the epigenetic, including chromatin remodeling, tran-
scriptional, translational, and post-translational regulations [153].

Some lncRNAs bind to miRNAs in a competitive manner as a miRNA sponge, leading
to the inhibition of miRNAs. Therefore, some of these lncRNAs can regulate ferroptosis
by inhibiting ferroptosis-related miRNAs. LncRNA PVT1 (lncPVT1) was found to inhibit
miR-214 and enhance TFRC and p53 to induce ferroptosis in brain ischemia/reperfusion
(I/R) [138]. LncOIP5-AS1 inhibits miR-128-3p to elevate SLC7A11 expression, eventually
inhibiting ferroptosis in prostate cancer [146].

In addition, lncRNAs were also found to regulate ferroptosis by interacting with pro-
teins to modulate mRNA stability and protein ubiquitination. For example, lncPMAN can
bind to ELAVL1, leading to the stabilization of SLC7A11 mRNA to inhibit ferroptosis [154],
whereas lncHEPFAL can promote SLC7A11 protein ubiquitination and degradation to
promote ferroptosis [155]. Moreover, lncP53RRA can interact with Ras GTPase-activating
protein-binding protein 1 (G3BP1) to sequester p53 in the nucleus, thus promoting ferrop-
tosis [156].

3.3. CircRNAs in Ferroptosis

CircRNAs are a class of single-stranded RNAs that form a closed continuous loop
from the 3′ to 5′ end, which are highly expressed in the eukaryotic transcriptome [157–159].
Unlike linear RNAs, circRNAs have covalently closed circular structures without a 5′ cap
structure and a 3′ polyA tail and are derived from exons via alternative mRNA splicing.
CircRNAs are much more stable than linear RNAs [158,160–162], which have a high degree
of stability and a potential effect on gene regulation [163–165].

CircRNAs usually also act as competitive RNA or RNA sponges to bind miRNAs,
thus regulating the target proteins of those miRNAs. In this way, many circRNAs regulate
ferroptosis by modulating ferroptosis-related genes by inhibiting the corresponding miR-
NAs. For example, circRNA IL4R (circIL4R) binds to and inhibits miR-541-3p to enhance
GPX4, leading to the inhibition of ferroptosis in hepatocellular carcinoma [143]. CircLMO1
inhibits miR-4291 and elevates ACSL4 levels to induce ferroptosis in cervical cancer [140].

In addition, circRNAs were also found to regulate ferroptosis by directly binding to
proteins. Circ-cIARS (hsa_circ_0008367) was found to bind to and block the RNA-binding
protein ALKBH5, which is a negative regulator of ferritinophagy and ferroptosis [166].
CircEXOC5 can directly bind to RNA-binding protein polypyrimidine tract binding protein
1 (PTBP1) to enhance ACSL4 mRNA stability, leading to ferroptosis in sepsis-induced
acute lung injury [167]. It was reported that circRAPGEF5 interacts with and inhibits the
splicing regulator RNA-binding protein fox-1 homolog 2 (RBFOX2) to confer ferroptosis
resistance by modulating the alternative splicing of TFRC in endometrial cancer cells [168].
A recent study showed that circST6GALNAC6 interacts with small heat shock protein
1 (HSPB1) to inhibit its phosphorylation at the Ser-15 site, a phosphorylation site in the
protective response to ferroptosis stress [169]. It was also found that circLRFN5 binds to
PRRX2 protein and promotes its degradation, leading to the downregulation of GCH1 and
inducing ferroptosis [170]. Moreover, circRNA circ101093 (cir93) was reported to interact
with and increase fatty-acid-binding protein 3 (FABP3), which enhances the absorption and
usage of AA to inhibit lipid peroxidation and ferroptosis [171].
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Currently, circRNAs are reported to regulate ferroptosis in the above-mentioned
manners, although they also show protein-coding and transcriptional regulation abilities.

3.4. PiRNAs in Ferroptosis

PiRNAs are also a type of regulatory ncRNAs. They are small ncRNAs, which are
different from miRNAs in that they are larger, lack sequence conservation, and are more
complex [172]. They can combine with piwi proteins to make up a piRNA/piwi complex,
which can cause gene silencing via interacting with a target transcript [173].

Few studies on piRNAs and ferroptosis have been reported. It was found in breast can-
cer cells that piR-36712 inhibits SEPW1 expression by binding to SEPW1P (a retroprocessed
pseudogene of SEPW1) RNA, blocking its competition with SEPW1 mRNA for miR-7 and
miR-324, and it subsequently suppresses the ubiquitination of p53, enhancing the levels of
p53 and its target p21 [174]. Since both p53 and p21 are regulators of ferroptosis [117], it is
not surprising that piR-36712 may also be involved in the regulation of ferroptosis. Another
study in prostate cancer showed that piR-31470 forms a complex with piwi-like RNA-
mediated gene silencing 4 (PIWIL4) and then recruits DNMT1, DNA methyltransferase 3α,
and methyl-CpG binding domain protein 2 to initiate and maintain the hypermethylation
and inactivation of glutathione S-transferase P1 (GSTP1) [175]. Related studies have indicated
that GSTP1 inactivation inhibits tumor cells from evading ferroptosis, leading to tumor
growth [176], suggesting that piR-31470 may suppress ferroptosis through the inactivation
of GSTP1.

3.5. Structural ncRNAs in Ferroptosis

In addition to regulatory ncRNAs, structural ncRNAs, such as tRNAs and rRNAs, are
also involved in the regulation of ferroptosis.

TRNAs are typically from 76 to 90 nucleotides in length (in eukaryotes) and contribute
to protein synthesis and serve as the physical link between mRNAs and the amino acid
sequence of proteins [177]. TRNAs are required in the synthesis of ferroptosis-associated
proteins; thus, changes in tRNAs may alter the expression of these proteins and then influ-
ence ferroptosis. Interestingly, studies have also found that the mutation of tRNA results in
a decrease in selenoprotein expression, except for GPX4 and GPX1, and weak ferroptosis
alteration [178–180]. Moreover, it was found that a loss of cysteinyl-tRNA synthetase re-
duces GSH synthesis by inhibiting trans-sulfuration and decreasing cysteine levels, leading
to the suppression of erastin-induced ferroptosis [79]. It seems that tRNAs decrease GSH
synthesis and increase ferroptosis without modulating GPX4. On the contrary, it was
also reported that Queuine-modified tRNAs promote antioxidant defenses by activating
catalase, SOD, GPX, and GSH reductase [181], and the deletion of the selenocysteine-tRNA
gene leads to the accumulation of ROS [182], suggesting that tRNAs may inhibit ferroptosis
by enhancing the antioxidant defense system’s abilities.

RRNAs are the primary component of ribosomes. They are also a kind of ribozyme
that carries out protein synthesis in ribosomes [183]. Interestingly, a highly conserved 18S
rRNA binding site was identified within the 5′-UTR of human NRF2 mRNA, which is
required for internal translation initiation, suggesting that the 18S rRNA regulates NRF2
expression [184]. This is supported by another finding that mouse hepatoma cells with a
70% decrease in the 16S/18S rRNA ratio caused by long-term ethidium bromide treatment
showed increased NRF2 expression [185]. Considering the important roles of NRF2 in
ferroptosis, 18S rRNA may regulate ferroptosis by regulating NRF2 expression. On the
other hand, nuclear mitotic apparatus protein (NuMA), which is downregulated in response
to ROS, can bind to 18S and 28S rRNAs and localize to rDNA-promoter regions to promote
nascent pre-rRNA synthesis [186]. It was also reported that treatment with iron chelator
deferoxamine inhibited rRNA synthesis in leukemia HL-60 cells [187]. These findings
suggest that rRNA synthesis may be regulated during ferroptosis.

SnRNAs mediate post-transcriptional splicing in gene expression, whereas snoRNAs
mediate modifications to rRNAs, tRNAs, and snRNAs. Both of them are also structural
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ncRNAs. However, there are currently no reports on the relationship between ferroptosis
and snRNAs or snoRNAs.

Taken together, the current research mainly focuses on the regulation of ferroptosis
by regulatory ncRNAs, especially miRNAs, lncRNAs, and circRNAs. Further studies
are needed to explore the functions of piRNAs, tRNA, rRNAs, snoRNAs, and snRNAs
in ferroptosis.

4. ncRNAs Regulating Ferroptosis

MiRNAs, lncRNAs, and circRNAs are the major ncRNAs that have been reported
to regulate ferroptosis. They were found to regulate ferroptosis by directly modulating
enzymes and other proteins involved in iron metabolism, lipid metabolism, and antioxidant
defense, or by modulating other ferroptosis-related genes and proteins (e.g., transcription
factors) indirectly.

4.1. NcRNAs Regulating Ferroptosis through Iron Metabolism

As one of the important mechanisms of ferroptosis, iron metabolism is regulated by
many ncRNAs, which also affect ferroptosis (Figure 2). MiR-545 was reported to bind to
the mRNA of TF and repress its expression to inhibit iron uptake and ferroptosis [188].
MiR-214 and miR-367-3p were found to target and repress TFRC to inhibit iron uptake
and ferroptosis [138,189]. MiR-210-3p, which is enriched in hypoxia-conditioned cardiac
microvascular endothelial cell-derived exosomes, also inhibits TFRC expression and at-
tenuates erastin-induced myocardial cell ferroptosis [190]. LncPVT1, which competes
with miR-214 in mouse brain I/R models, and lncRNA LINC00597, which competes with
miR-367-3p in lung cancer cells, can increase TFRC expression to promote iron uptake
and ferroptosis [138,189]. Moreover, circRAPGEF5 was reported to change the splicing of
TFRC by binding to and inhibiting RBFOX2 and then inhibiting iron uptake to repress the
ferroptosis of endometrial cancer cells [168].

Furthermore, miR-124-3p enriched in HO-1-modified bone marrow mesenchymal-
stem cell-derived exosomes inhibits STEAP3 by directly interacting with its mRNA, sup-
pressing the hypoxia/reoxygenation (H/R)-induced ferroptosis of IAR20 (normal rat hepa-
tocyte cell line) and LO2 (human fetal hepatocyte cell line) by blocking the reduction of Fe3+

to Fe2+ and decreasing free Fe2+ levels [191]. MiR-375-3p targets DMT1 and downregulates
its expression to inhibit ferroptosis by blocking the release of Fe2+ to the free iron pool [192].
MiR-23a-3p, which is carried by the exosome from human umbilical cord blood-derived
mesenchymal stem cells, targets and represses DMT1 expression to inhibit the ferroptosis
of myocardial cells isolated from mouse models for acute myocardial infarction (AMI) and
cardiomyocyte hypoxia injury [193]. CircST6GALNAC6 interacts with HSPB1 to inhibit its
phosphorylation at Serine 15, leading to the promotion of iron uptake and ferroptosis [169].
MiR-7-5p attenuates mitoferrin-1 to block mitochondrial iron accumulation, leading to
ferroptosis suppression and radiation resistance in cancer cell lines [194].

MiR-124, miR-147a, miR-4735-3p, and miR-302a-3p target FPN1 and block iron export
to facilitate ferroptosis in neuronal cells [141], lung cancer cells [195], clear cell renal cell
carcinoma cells [196], and glioblastoma cells [197]; miR-761 reduces hepcidin levels to
suppress FPN1 degradation in the liver, leading to a decrease in iron deposition and ferrop-
tosis [198]; and miR-30b-5p represses Pax3 (a transcription factor) to downregulate FPN1
transcription, thus inducing the ferroptosis of trophoblasts, leading to preeclampsia [142].
LncMAFG-AS1 binds to and stabilizes PCBP2 by the recruitment of deubiquitinase ubiq-
uitin carboxyl-terminal hydrolase isozyme L5 (UCHL5) and then transports iron to FPN1
and suppresses ferroptosis [199]. MiR-129-5p targets and represses PROM2 to inhibit
iron export, eventually promoting ferroptosis in non-small-cell lung cancer [200], whereas
lncRP11-89 inhibits miR-129-5p to increase PROM2 expression, leading to the suppression
of ferroptosis in bladder cancer [200].
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MiR-335, miR-224-5p, and miR-19b-3p directly reduce FTH1 expression by binding to
its mRNA, leading to an increase in free iron and the promotion of ferroptosis in Parkin-
son’s disease [201], heart failure [202], and lung cancer [203]. The inhibition of miR-224-5p
by circSnx12 and the inhibition of miR-19b-3p by lncH19 elevate FTH1 levels to repress
curcumenol-induced ferroptosis in heart failure [202] and lung cancer [203]. LncTUG1
targets MYC-associated zinc finger protein (MAZ) to reduce FTH1 expression and then
enhances DHA-induced ferroptosis in glioma cells [204]. In gestational diabetes melli-
tus (GDM), circHIPK3 blocks miR-1278 to enhance DNMT1 expression and facilitates
ferroptosis by inducing NCOA4-mediated ferritinophagy [30,205]. LncA2M-AS1 directly
interacts with PCBP3, an iron chaperone, to promote ferroptosis in pancreatic cancer [206].
It was also reported that circ-cIARS binds to and blocks RNA-binding protein ALKBH5 to
promote ferritinophagy and ferroptosis [166].

Additionally, miR-19a negatively regulates IRP2 to inhibit ferroptosis by modulat-
ing iron metabolism in colorectal cancer [207]. N6-methyladenosine-modified circSAV1
forms a complex with YTHDF1 and IRP2, which in turn facilitates IRP2 translation and
accelerates cigarette-smoke-extract-induced ferroptosis in chronic obstructive pulmonary
disease [208]. CircBCAR3 inhibits miR-27a-3p by the competitive RNA mechanism to
upregulate transportin-1 (TNPO1) and then interacts with and inhibits carbonic anhydrase
9 to increase free iron accumulation by the upregulation of TFRC and the downregulation
FTL and FTH1, eventually promoting ferroptosis [209,210].

4.2. NcRNAs Regulating Ferroptosis through Lipid Metabolism

Many ncRNAs were found to affect ferroptosis by regulating lipid metabolism
(Figure 3). As an important marker and driver of ferroptosis, ACSL4 was reported to be
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targeted by a group of ncRNAs to regulate ferroptosis. MiR-34a-5p and miR-204-5p in
prostate cancer [211,212], miR-424-5p in ovarian cancer [139], miR-670-3p in glioblas-
toma [213], miR-23a-3p in hepatocellular carcinoma [214], miR-4291 in cervical can-
cer [140], miR-1290 in non-small-cell lung cancer [215], miR-3098-3p in neuronal
cells [216], miR-20a-5p in an acute kidney injury mice model and patients with de-
layed graft function [217], miR-29a-3p in hippocampal neurons after intracerebral hem-
orrhage [218], and miR-204 in HIV-1 Tat protein-exposed mouse primary microglial
cells [219] directly target and limit ACSL4 expression to inhibit ferroptosis. It was also
reported that miR-3173-5p carried by exosomes derived from cancer-associated fibrob-
lasts represses ACSL4 to inhibit ferroptosis in GEM-resistant pancreatic cancer [220].
Moreover, lncNEAT1 competing with miR-34a-5p and miR-204-5p, circLMO1 competing
with miR-4291, circSCN8A competing with miR-1290, and circCarm1 competing with
miR-670-3p elevate ASCL4 levels and promote ferroptosis in prostate cancer [211,212],
cervical cancer [140], non-small-cell lung cancer [215], and neuronal cells [216]. MiR-
17-92 increases ACSL4 expression by directly targeting the zinc lipoprotein A20 to
protect endothelial HUVEC cells from erastin-induced ferroptosis [221]. LncTUG1 car-
ried by urine-derived stem-cell-derived exosomes reduces ACSL4 levels by blocking
serine/arginine splicing factor 1 (SRSF1) and inhibiting the H/R-induced ferroptosis
of human proximal tubular epithelial cells in IRI-induced acute kidney injury [222].
CircEXOC5 binds to PTBP1 to promote ACSL4 mRNA stability, leading to ferroptosis
in sepsis-induced acute lung injury [167]. LncCBSLR decreased CBS levels to promote
ACSL4 ubiquitination and degradation, thus protecting gastric cancer cells from ferrop-
tosis [223].
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In addition to targeting ACSL4, miR-7-5p targets and blocks ALOX12 to inhibit lipid
peroxidation and ferroptosis, leading to radio-resistance of cancer cells [224]. MiR-522 in
exosomes secreted by cancer-associated fibroblasts reduces ALOX15 expression by directly
interacting with its mRNA, leading to the inhibition of lipid peroxidation and ferroptosis in
gastric cancer [225]. MiR-18a directly binds to ALOXE3 mRNA and represses its expression
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to inhibit ferroptosis in glioblastoma cells [226]. MiR-212-5p and miR-194-5p bind to the
mRNA of PTGS2 to repress its expression, thus inhibiting ferroptosis in neuronal death
after traumatic brain injury [48] and protecting against temporal lobe epilepsy in young
rats [227]. MiR-26a-5p carried by endothelial progenitor cell-derived exosomes also inhibits
ferroptosis by targeting PTGS2 mRNA to improve airway remodeling in chronic obstructive
pulmonary disease [228].

Moreover, miR-423-5p targets and reduces SCD1 expression to promote the ferroptosis
of colon cancer cells, which is inhibited by lncRNA LINC01606 [229]. CircZBTB46 also
acts as an miRNA sponge to upregulate SCD1 and enhance RSL3-induced ferroptosis in
acute myeloid leukemia (AML) cells [230]. In addition, exosomal lncFERO derived from
gastric cancer cells was found to promote SCD1 expression by directly interacting with
SCD1 mRNA and recruiting heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1),
which resulted in the suppression of ferroptosis in gastric cancer stem cells [231]. Exosomal
cir93 from lung adenocarcinoma patients increases FABP3 to inhibit lipid peroxidation and
ferroptosis [171]. In prostate cancer cells, miR-7 targets mTOR to suppress SREBP1, leading
to the promotion of icariin- and curcumol-induced ferroptosis [232].

4.3. NcRNAs Regulating Ferroptosis through Antioxidant Defense

Approximately half of the current reported ferroptosis-regulating ncRNAs influence
ferroptosis through antioxidant defense (Figure 4). SLC7A11 and GPX4, two important
ferroptosis suppressors and markers, are targets not only for small molecules as ferroptosis
inducers but also for a large group of ncRNAs regulating ferroptosis. MiR-409-3p, miR-
515-5p, miR-375, miR-1261, miR-489-3p, miR-128-3p, miR-545-3p, miR-5096, miR-520d-5p,
miR-125b-5p, miR-34c-3p, miR-143-3p, miR-26a-5p, miR-27b-3p, miR-587, miR-194-5p,
miR-27a-3p, miR-520a-5p, miR-1184, miR-6077, miR-485-5p, miR-25-3p, miR-513a-3p, miR-
206, and miR-431 have been reported to target and repress SLC7A11 to promote ferroptosis
in cervical cancer [233], gastric cancer [148,234,235], liver cancer [236], prostate cancer [146],
thyroid cancer [237], breast cancer [238], oral squamous cell carcinoma [239–241], kidney
cancer [242,243], ovarian cancer [244,245], lung cancer [147,246–249], prostate cancer [250],
esophageal squamous cell carcinoma [251], osteosarcoma [252], and colorectal cancer [253].
MiR-378a-3p, miR-27a, miR-144-3p, and exosomal miR-26b-5p from patients with acute
myocardial infarction target and reduce SLC7A11 expression to induce ferroptosis in the IRI
of the kidney [254], brain [255], and heart [256,257]. MiR-30b-5p directly binds to SLC7A11
mRNA and represses its levels to induce the ferroptosis of trophoblasts under hypoxic con-
ditions, leading to preeclampsia [142]. MiR-129-3p reduces the expression of SLC7A11 to
induce ferroptosis under Se deficiency conditions, leading to liver damage [258]. MiR-16-5p
inhibits SLC7A11 to promote ferroptosis in adriamycin-induced cardiomyocyte injury [259].
Exosomal miR-23a-3p derived from cardiac fibroblasts inhibits SLC7A11 expression to
promote ferroptosis in atrial fibrillation [260]. It was also reported that miR-30b-5p reduces
Pax3 levels to transcriptionally repress the expression of SLC7A11 to promote the hypoxia-
induced ferroptosis of trophoblasts during preeclampsia [142]. MiR-367-3p carried by bone
marrow mesenchymal stem cells (BMSCs)-derived exosomes targets an enhancer of zeste
homolog 2 (EZH2) and restrains EZH2 expression, thus elevating SLC7A11 levels indi-
rectly, and thus inhibiting the erastin-induced ferroptosis of microglia [261]. Functioning as
competitive RNA, lncOIP5-AS1 inhibits miR-128-3p, lncSLC16A1-AS1 inhibits miR-143-3p,
lncSNHG6 inhibits miR-26a-5p, lncCASC19/lncCYTOR/lncPVT1/lncRNA-LINC00997
inhibits miR-27b-3p, lncADAMT inhibits miRNA-587, lncBBOX1-AS1 inhibits miR-513a-3p,
lncSNHG14 inhibits miR-206, circSnx12 inhibits miR-194-5p, circEPSTI1 inhibits miR-
375/miR-409-3p/miR-515-5p, circRNA circ0097009 inhibits miR-1261, circRNA circ0067934
inhibits miR-545-3p, circFNDC3B inhibits miR-520d-5p, circFOXP1 inhibits miR-520a-5p,
circP4H inhibits miR-1184, circRNA circ0070440 inhibits miR-485-5p, circRPPH1 inhibits
miR-375, and circSTIL inhibits miR-431 to increase SCL7A11 levels, resulting in the inhi-
bition of ferroptosis and the progression of prostate cancer [146], kidney cancer [242,243],
ovarian cancer [244,245], esophageal squamous cell carcinoma [251], osteosarcoma [252],
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cervical cancer [233], liver cancer [236], thyroid cancer [237], oral squamous cell carci-
noma [239], lung cancer [246,248,249], gastric cancer [234], and colorectal cancer [253].
Moreover, lncHEPFAL reduces SLC7A11 by promoting its ubiquitination and degradation,
eventually enhancing erastin-induced ferroptosis in hepatocellular carcinoma [155]. On the
other hand, lncRNA LINC00578 also inhibits SLC7A11 ubiquitination by binding to UBE2K
to inhibit ferroptosis in pancreatic cancer [262]. CircBGN directly binds to OTUB1 and
SLC7A11, enhancing OTUB1-mediated SLC7A11 deubiquitination to inhibit ferroptosis
in breast cancer [263]. Furthermore, lncAGAP2-AS1 stabilizes SLC7A11 mRNA via the
IGF2BP2 pathway to suppress ferroptosis in melanoma cells [264]. LncPMAN stabilizes
SLC7A11 mRNA by recruiting ELAVL1 to the cytoplasm to inhibit the ferroptosis of gastric
cancer cells [154]. LncSLC7A11-AS1 inhibits SLC7A11 expression to induce ferroptosis
in ovarian cancer [265]. Additionally, lncRNA LINC00618 attenuates the expression of
lymphoid-specific helicase (LSH), which can bind to the promoter regions of SLC7A11 to
promote its transcription. Therefore, lncRNA LINC00618 represses SLC7A11 expression to
accelerate ferroptosis in human leukemia [266].
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Similarly, GPX4 was reported to be targeted to induce ferroptosis by miR-541-3p
and miR-214-3p in liver cancer [143,267], miR-324-3p in breast cancer [144] and kidney
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cancer [145], miR-1231 in thyroid cancer [268], miR-1287-5p/miR-744-5p/miR-615-3p in
lung cancer [269,270], miR-1287-5p in osteosarcoma [271], miR-15a in prostate cancer [272],
miR-193a-5p in cervical cancer [273], miR-3202 in cholangiocarcinoma [274], as well as
by miR-182-5p, miR-1224, miR-15a-5p, miR-135b-3p in the IRI of kidney injury [254]
and heart [275–277], miR-23a-3p in intracerebral hemorrhage [278], miR-188 in diabetic
nephropathy [279], miR-761 in liver dysfunction of patients with polycystic ovary syn-
drome [198], exosomal miR-208a/b secreted from hypoxia-induced cardiomyocytes in
cardiomyocytes and cardiac fibroblasts [280], and exosomal miR-700-5p from hypoxia-
pretreated adipose-derived stem cells in UV-light-induced skin injury [281]. The inhibition
of miR-214-3p by lncPVT1 [267] and the inhibition of miR-541-3p by circIL4R [143] in liver
cancer, the inhibition of miR-3202 by lncRNA LINC00976 in cholangiocarcinoma [274], the
inhibition of miR-1231 by circKIF4A in thyroid cancer [268], the inhibition of miR-1287-5p
by circDTL in lung cancer [270], the inhibition of miR-193a-5p by circACAP2 in cervical
cancer [273], and the inhibition of miR-188 by circRNA circ0000309 in diabetic nephropa-
thy [279] elevate GPX4 levels to suppress ferroptosis. Moreover, circIDE inhibits miR-19b-3p
as a sponge to elevate the expression of RBMS1, which in turn reduces the stability of GPX4
mRNA to facilitate ferroptosis in hepatocellular carcinoma [282]. LncRNA LINC01134
recruits NRF2 to the promoter region of GPX4 to enhance GPX4 transcription, leading
to the suppression of ferroptosis in hepatocellular carcinoma [283]. MiR-4715-3p targets
and represses Aurora kinase A (AURKA) to reduce GPX4 protein levels in an unknown
mechanism and then induces ferroptosis in upper gastrointestinal adenocarcinoma [284].

In addition to SLC7A11 and GPX4, ncRNAs regulate other members of the GPX4-GSH
system to affect ferroptosis. MiR-6852 targets and represses CBS to reduce cysteine and
GSH synthesis, leading to the promotion of ferroptosis, whereas lncRNA LINC00336 acts as
a sponge to block miR-6852 and inhibit ferroptosis in lung cancer [285]. MiR-145-5p directly
binds to the mRNA of GCLM (a subunit of GCL) and represses its expression, resulting
in a decrease in GSH levels and the induction of ferroptosis in prolactinomas, whereas
circOMA1 inhibits miR-145-5p in a competitive manner to suppress ferroptosis [286]. It
was also found that exosomal miR-760-3p from adipose-derived mesenchymal stem cells
targets and represses CHAC1 to reduce GSH and attenuate ferroptosis in neurons [287].

NcRNAs also modulate ferroptosis by regulating glutaminolysis in two ways. MiR-
338-3p targeting SLC1A5 in retinal pigment epithelium cells [87] and miR-299-3p targeting
SLC38A1 in lung cancer cells [85] reduce glutamine absorption and GSH levels to promote
ferroptosis, whereas lncOGFRP1 attenuates ferroptosis by blocking miR-299-3p in lung
cancer cells [85]. MiR-9 and miR-2115-3p bind to the mRNA of GOT1 to repress its expres-
sion, leading to suppression of ferroptosis probably by the elevation of glutamate and GSH
levels in melanoma cells and a preeclampsia model, respectively [288,289]. On the contrary,
miR-137 targeting SLC1A5 in melanoma cells [89], miR-150-5p targeting SLC38A1 during
pulmonary fibrosis [92], and miR-15b-5p and miR-190a-5p targeting GLS2 in pancreatic
β-cells and rat cardiomyocyte cells [93,95] inhibit ferroptosis by blocking glutaminolysis
and lipid synthesis, whereas lncZFAS1 acts as a competitive endogenous RNA to block
miR-150-5p to facilitate ferroptosis during pulmonary fibrosis [92]. Moreover, lncATXN8OS
stabilizes GLS2 mRNA to facilitate ferroptosis in glioma [94]. LncSnhg7 interacts with
T-box transcription factor 5 (Tbx5) to transcriptionally induce GLS2 expression, resulting in
the promotion of cardiomyocyte ferroptosis in cardiac hypertrophy [96].

Additionally, ncRNAs regulate ferroptosis via antioxidant systems other than the
GPX4-GSH system. MiR-1228, miR-5627-5p, and miR-672-3p target and suppress FSP1
to promote ferroptosis in breast cancer cells [290], in neuronal cells [291], and in rats
with contusive spinal cord injury [292], whereas circGFRA and lncGm36569 carried by
mesenchymal-stem-cell-derived exosomes promote ferroptosis by directly targeting miR-
1228 and miR-5627-5p, respectively [290,291]. It was also reported that exosomal miR-4443
from cisplatin-resistant lung cancer tissue inhibits ferroptosis by directly targeting METLL3,
which regulates the m6A modification of FSP1 mRNA [293]. Moreover, LncTMEM161B-
AS1 directly blocks miR-27a-3p to increase the expression of its target GCH1, leading to the
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suppression of ferroptosis in esophageal cancer [293]. CircLRFN5 interacts with PRRX2
and promotes its ubiquitination and proteasomal degradation, transcriptionally reducing
PRRX2-mediated GCH1 expression, resulting in the induction of ferroptosis in glioma [170].
LncGABPB1-AS1 downregulates PRDX5 by blocking GABPB1 translation to promote the
erastin-induced ferroptosis of hepatocellular carcinoma cells [106]. LncNEAT1 competi-
tively binds to miR-362-3p to increase the expression of myo-inositol oxygenase (MIOX), a
non-heme-iron enzyme, to promote ROS production and the ferroptosis of hepatocellular
carcinoma cells [294]. MiR-214-3p targets malic enzyme 2 (ME2) to suppress the cellular
antioxidant capacity and promote ferroptosis in neonatal rat cardiomyocytes [295]. Cancer-
associated fibroblast-derived exosomal lncDACT3-AS1 inhibits miR-181a-5p to elevate the
levels of its target sirtuin 1 (SIRT1), leading to an increase in antioxidant capacity to inhibit
ferroptosis in gastric cancer [296].

4.4. NcRNAs Regulating Ferroptosis through Other Ferroptosis Regulators

There are also some ncRNAs that regulate ferroptosis through other ferroptosis reg-
ulators, e.g., transcription factors. MiR-365a-3p directly targets and suppresses NRF2 to
promote ferroptosis in non-small-cell lung cancer [297]. LncMT1DP facilitates erastin-
induced ferroptosis by stabilizing miR-365a-3p [297]. MiR-6077 and exosomal miR-125b-5p
from adipose-derived stem cells directly repress KEAP1, a negative regulator of NRF
that regulates its ubiquitination and degradation, to increase the expression and nucleus
translocation of NRF2, leading to the alleviation of ferroptosis in lung adenocarcinoma
cells [247] and pulmonary microvascular endothelial cells [298]. LncGMDS-AS1 and
lncRNA LINC01128 promote ferroptosis by competitively blocking miR-6077 [247]. More-
over, lncRNA LINC00239 interacts with the NRF2 binding site of KEAP1 to increase NRF2
levels by ubiquitination inhibition and then inhibits ferroptosis in colorectal cancer [299].
Additionally, miR-130b-3p targets and represses Dickkopf1 to activate NRF2, leading to
ferroptosis suppression in melanoma [300].

In addition to NRF2, miR-214 and let-7b-5p target and repress p53 to inhibit ferrop-
tosis in brain I/R and acute myeloid leukemia, which are directly blocked by lncPVT1
and circKDM4C, respectively [138,301]. LncMeg3 directly interacts with p53 and enhances
its stability and transcriptional activity, mediating ferroptosis induced by oxygen and
glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial
cells [302–304]. LncP53RRA can interact with Ras GTPase-activating protein-binding pro-
tein 1 (G3BP1) to sequester p53 in the nucleus, thus promoting ferroptosis [156]. LncPELA-
TON forms a complex with p53 and the RNA-binding protein EIF4A3 to inhibit ferroptosis
in glioblastoma [305].

Moreover, miR-221-3p was reported to target ATF3 to transcriptionally induce the
expression of GPX4 and HRD1 and then promote the ubiquitination and degradation
of ACSL4 by HRD1, resulting in ferroptosis suppression in gastric cancer cells [306].
LncDLEU1 binds to ZFP36 and facilitates the degradation of ATF3 mRNA by ZFP36,
thus upregulating the expression of SLC7A11 to attenuate erastin-induced ferroptosis in
glioblastoma [307]. MiR-214 and miR-3200-5p directly repress ATF4 expression to enhance
ferroptosis in hepatocellular carcinoma cells [308,309], whereas LncHULC increases ATF4
levels by competing with miR-3200-5p and inhibits ferroptosis [308]. CircRHOT1 directly
inhibits miR-106a-5p to increase its target STAT3, resulting in ferroptosis inhibition in breast
cancer cells [310]. It was also reported that miR-125b-5p targets and represses STAT3 to
induce ferroptosis in gastric cancer [311]. CircRNA circ0008035 increases the expression
of E2F transcription factor 7 (E2F7) by blocking miR-302a, inhibiting dexmedetomidine-
induced ferroptosis in gastric cancer cells [312]. CircASAP2 blocks miR-770-5p to enhance
the expression of SRY-Box transcription factor 2 (SOX2) and then induces SLC7A11 expres-
sion to suppress ferroptosis in diabetic nephropathy [313]. Moreover, miR-7-5p upregulates
HIF-1α expression by an unknown mechanism to inhibit ferroptosis in radioresistant HeLa
(cervical carcinoma) and SAS (human tongue carcinoma) cell lines [224].
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NcRNAs also regulate ferroptosis by other signaling pathways. CircTTBK2 inhibits
miR-761 to modulate its target ITGB8, a subunit of integrin beta, to reduce ferroptosis in
glioma [314]. CircRNA circ0007142 was found to block the effect of miR-874-3p on its target
GDPD5, leading to ferroptosis suppression in colorectal cancer [315]. LncMEG8 inhibits
miR-497-5p to increase NOTCH2, leading to the inhibition of ferroptosis by elevating
SLC7A11 and GPX4 levels [316]. CircRNA circ0000745 competitively inhibits miR-494-3p to
upregulate neuroepithelial cell transforming 1 (NET1), a guanine nucleotide exchange factor
of RhoA, to suppress ferroptosis in acute lymphoblastic leukemia cells [317]. CircPVT1
competes with miR-30a-5p to elevate the levels of its target Frizzled3, activating Wnt/β-
Catenin signaling to inhibit ferroptosis [318]. LncA2M-AS1 forms a complex with PCBP3
to facilitate p38 activation and inhibit the AKT-mTOR signaling pathway, contributing to
the promotion of ferroptosis [206]. In addition, circABCB10 acts as a sponge for miR-326
to elevate CCL5 levels and attenuate the ferroptosis of rectal cancer cells [319]. LncRNA
LINC00460 blocks miR-320a to enhance the expression of myelin and lymphocyte protein 2
(MAL2), inhibiting ferroptosis in breast cancer [320].

5. Conclusions and Perspectives

Ferroptosis is a novel type of regulated cell death that was first proposed in 2012 [3].
Ferroptosis has been found in diverse species, including humans, other mammals and
vertebrates, invertebrates, plants, yeast, and bacteria [321–324]. Substantial studies have
focused on exploring the mechanisms of ferroptosis and understanding how it is regulated
in different cells, especially in humans and other mammals. Collectively, these studies have
demonstrated that ferroptosis results from lipid peroxidation caused by the dysregulation
of iron metabolism, lipid metabolism, and antioxidant defense, which is controlled by
regulating enzymes and other proteins involved in these processes at the transcriptional,
post-transcriptional, translational, and post-translational levels. NcRNAs have been proven
to regulate gene expression in various manners. In recent years, numerous ncRNAs,
including miRNAs, lncRNAs, and circRNAs, have been reported to regulate ferroptosis,
which have been summarized in this review. These ncRNAs can directly target ferroptosis-
related enzymes or proteins involved in iron metabolism, lipid metabolism, and antioxidant
defense, or they can indirectly target other regulators of ferroptosis, such as transcription
factors. Some ncRNAs also act as molecular sponges or form complexes with other ncRNAs
to exert their functions, which adds another level of regulation on ferroptosis. Moreover,
because of the differential expression of ncRNAs in different cells, these ncRNAs may affect
the regulation of ferroptosis in a cell-type-dependent or tissue-type-dependent manner.
Therefore, although great progress has been made in studying the molecular mechanism
of ncRNA regulation of ferroptosis, a deeper understanding of the mechanisms of how
ncRNAs regulate ferroptosis in cell- or tissue-specific manners is still required. Moreover,
ferroptosis is also reported in fish, invertebrates, plants, yeast, and bacteria [321–324],
which often contain different ncRNAs in their genomes. Few studies have reported the
regulation of ferroptosis by ncRNAs in these species, which may be different from our
current knowledge in humans and other mammals.

Ferroptosis functions are intricately involved in numerous physiological processes
and various diseases, such as cancer, neurodegeneration disease, cardiovascular diseases,
and the IRI of different organs such as the heart, brain, kidney, and liver [9–14]. Therefore,
some ncRNAs regulating ferroptosis, including miRNAs, lncRNAs, and circRNAs, have
the potential to be novel therapeutic methods and diagnostic biomarkers for these diseases,
especially for cancer. On the one hand, more and more studies suggest that ncRNAs can
be used as a biomarker to predict tumor progression and clinical prognosis. However, the
most important ncRNAs associated with specific types of tumors are still not identified,
which limits the application of ncRNAs as diagnostic biomarkers. On the other hand,
according to studies on ncRNA-regulated ferroptosis, the ferroptosis process can be altered
via targeting ncRNAs, thus affecting the ferroptosis-related pathological process, e.g., cell
proliferation and chemoresistance for cancer cells. Current inducers and inhibitors of
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ferroptosis mainly target the proteins involved in the core mechanism of ferroptosis, which
may induce metabolic dysregulation in normal cells and cause unexpected side effects in
addition to regulating ferroptosis. Due to their cell- or tissue-specific manners of regulating
ferroptosis, ncRNAs may be better targets for therapeutic methods. Furthermore, because of
the heterogeneity of gene expression on a per individual basis, ncRNA-associated therapy
and biomarkers can be applied to support the personalized treatment of ferroptosis-related
disease. Additionally, ncRNAs are also promising therapeutic agents for ferroptosis-related
diseases. Indeed, ncRNAs have already shown their effect of regulating ferroptosis in vitro.
Their low in vivo bioavailability has limited their clinical application. In general, three
strategies have been proposed for ncRNA-based therapies, including nanoparticles, ncRNA
modification, and oncolytic adenovirus strategy [325]. Although no project has entered
the clinical trial stage, progress has been achieved in the clinical application of ncRNA to
regulate ferroptosis. Moreover, since the regulation of ferroptosis by ncRNAs derived from
exosomes has been reported in many studies, exosomes can be used as excellent ncRNA
transporters to induce or inhibit ferroptosis in cells. With more extensive research, loading
selected ncRNAs into exosomes to induce ferroptosis may create novel opportunities for
ncRNA-based therapies.

Taken together, ncRNAs form a complex network to regulate ferroptosis via proteins
or genes involved in the core mechanism of ferroptosis or its regulators. This review has
summarized the regulatory roles of several types of ncRNAs in ferroptosis, which are
beneficial for understanding the pathogenesis of ferroptosis-related diseases. And these
ferroptosis-related ncRNAs have great potential to act as therapeutic targets or agents for
novel therapeutic methods, as well as diagnostic biomarkers, for these diseases, especially
for cancers.
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