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Abstract: Heat stress (HS) is becoming an increasingly large problem for food security as global
warming progresses. As sessile species, plants have evolved different mechanisms to cope with the
disruption of cellular homeostasis, which can impede plant growth and development. Here, we
summarize the mechanisms underlying transcriptional regulation mediated by transcription factors,
epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for
adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality
control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging
system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly,
we will discuss perspectives on future studies for improving urban agriculture by increasing crop
resilience to HS.

Keywords: heat stress; transcription factor; epigenetics; histone modification; protein homeostasis;
ROS homeostasis

1. Introduction
1.1. Global Warming and Its Impact on Plants

Climate change describes the gradual shift in average temperature and weather pat-
terns over time, which is occurring worldwide. Such a phenomenon is primarily attributed
to human activities, with burning fossil fuels and deforestation being the top two causal
factors contributing to greenhouse gas emissions. The severity of heat stress due to global
warming is expected to bring about catastrophic disruptions to the world food supply, with
tropical regions experiencing the most significant rise in temperature over time [1]. Climate
change is also predicted to impact agricultural productivity, including staple crops such as
maize and wheat [2]. Climate models forecast that up to ten times the number of crops will
be damaged by the end of the century due to rising global temperatures [3].

Elevated temperature causes heat stress (HS), an abiotic stress to plant growth and
development, thereby influencing crop yield. In addition to perturbation of plant growth
and development, HS impacts biological processes and metabolic pathways, including
enzymatic activity, protein folding, and lipid oxidation. Some consequences include poor
seed germination, stunted growth, inability to set fruits, and plant death [4]. Studies that
focus on crop breeding for high-yielding varieties might compromise their tolerance to
biotic and abiotic stresses. When exposed to HS, crop plants are unable to thrive, thereby
impacting crop production and food security [4].

1.2. Thermotolerance in Plants

Despite the detrimental effects of HS, most plants are capable of adapting to moderate
heat. According to the HS temperature regimes and developmental stages of the plants
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examined, there are various types of thermotolerance in plants that can be attained through
inherent resistance and acquired thermotolerance (AT) [5,6]. There are typically three
categories of organismal thermotolerance in response to various HS events in Arabidopsis,
comprising basal thermotolerance to HS at temperatures ranging from 40 to 45 ◦C, AT
following a short period of nonlethal temperature or priming HS, and thermotolerance to
prolonged exposure to moderately high temperatures between 30 and 38 ◦C [5]. A series
of molecular and cellular responses is triggered upon sensing heat stimulus. Mechanistic
differences as well as overlapping but distinct molecular and cellular responses exist among
these three modes of thermotolerance [5]. Crosstalk among transcription factors (TFs),
such as heat shock factors or heat stress transcription factors (HSFs), regulatory RNAs,
and epigenetic regulators, induces physiological responses during HS [6]. Some of the
responses are reflected in the rate of plant photosynthesis, alteration of thermostability
of the cell membrane, regulation of flowering time, and production of antioxidants for
protection against oxidative stress [6].

Generally, plants adapt to HS via HSF- and heat shock protein (HSP)-mediated heat
stress responses (HSRs). Understanding the underlying mechanisms of plant cell activities
in response to HS, especially transcriptional regulation activity, is essential for safeguarding
crop resilience and the development of heat-tolerant crop varieties. In this paper, the
molecular mechanisms as a result of HS in plants will be reviewed, focusing on TFs.

2. Transcriptional and Epigenetic Regulation for Adaptation to HS
2.1. Plant Heat Stress Transcription Factors: Classes A, B, and C

Transcriptional regulation of genes involved in plant heat stress responses is guarded
by HSFs (Figure 1). Plant HSFs, consisting of Classes A, B and C, share evolutionarily
conserved core transcription regulators. The diversity and functions of HSFs were reviewed
by Koskull-Doring et al. [7]. The functional domains of HSFs consist of a DNA-binding
domain at the N-terminal, followed by several hydrophobic amino acid residues essential
for HSF oligomerization, basic amino acid residues for nuclear localization, the nuclear
export signal (NES) at the C-terminus and short peptide motifs for transcriptional activation
of HSFs. Shuttling of HSFs between the cytoplasm and the nucleus is regulated by the
nuclear localization signal and NES at the C-terminus of class A HSFs. Activation motifs
or aromatic and hydrophobic amino acid residues (AHAs) located proximal to the NES
are crucial for transcriptional activation via interaction with other transcriptional elements.
Transcriptional, posttranscriptional, and protein modifications give rise to the structural
and functional diversification of HSFs [8].

At normal temperatures, HSPs expressed at basal levels bind to HSFs to prevent them
from activating the expression of heat-responsive genes and increasing the transcription of
various HSP-encoding genes [9]. When stimulated by heat stress, denatured and misfolded
proteins are sensed by HSPs. Misfolded proteins bind to HSPs, thereby releasing HSFs
for activation of heat stress responses. Transcriptional profiling of HSFs revealed their
critical roles in the upregulation of other stress-inducible genes under various biotic/abiotic
(pathogen, wound, cold, drought, heavy metal, light, pH, oxidative, salinity) stresses and
developmental/physiological (flowering, apoptosis, circadian rhythm) conditions. The
overlapping of different stress response profiles suggests intricate crosstalk in multiple
networks and pathways. In-depth reviews of the structure and function of HSFs have been
conducted [10,11].
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Figure 1. The Heat Stress Response in Arabidopsis. HSFA1s function as central regulators orchestrat-
ing plant responses to heat stress (HS). HSFA1 expression is induced by heat, and HSFA1 activity is
precisely modulated by various factors. Upon heat stress, HSFA1 is released from HSP70 and HSP90,
leading to HSFA1 activation. In addition, the increases of cytoplasmic Ca2+ levels mediated by the
Ca2+ channels, CNGCs, triggered by HS may be important for HSFA1 activation. Post-translational
modifications, such as phosphorylation/SUMOylation/Ubiquitination regulate the activity of HSFA1
and DREB2A. HSFA2 as a target of HSFA1s is an important regulator of the expression of HSR
genes through sustained H3K4 methylation. The miR398 inhibits the expression of ROS scavenger
genes CSD1, CSD2, and CCS1, thereby promoting ROS accumulation, which subsequently activates
HSFA1s. The miR165/166–PHB module regulates thermotolerance through at least two pathways:
one involving direct transcriptional regulation of HSFs, with PHB modulating HSR transcription
in an HSFA1-dependent manner; and another HSFA1-independent pathway, where PHB directly
regulates the transcription of heat-inducible HSFA2. Additionally, PHB physically interacts with
HSFA1s, influencing their transcriptional function. DREB2A is positively regulated by MBF1C and
JUB1 in response to HS, whereas it is negatively regulated by GRF7 under normal conditions. In
addition, DREB2A activity is enhanced by the NF-YA2/NFYB3/DBP3-1 complex. During HS, SIZ1
facilitates the SUMOylation of NF-YC10. The SUMO conjugation on NF-YC10 enhances its associa-
tion with NF-YB3 via a SUMO-SIM interaction and improves the nuclear translocation of NFYB3.
In the nucleus, the NF-YC10–NF-YB3 dimer binds to NF-YA2 to form an NF-YC trimeric complex
to promote the transcription of HS-responsive genes. HS triggers the ER-localized transcription
factors bZIP60 and bZIP28 to translocate into the nucleus and activate HSR expression. The circadian
clock proteins RVE4 and RVE8 also can induce HSR gene expression in an HSFA1-independent way.
Created with BioRender.com; accessed on 31 July 2023.
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The class A members of HSFs mainly function to activate HSRs [12,13]. In pri-
mary HSRs, HSFA1s (including HSFA1a, HSFA1b, HSFA1d, and HSFA1e), HSFA2, and
HSFA3 play pivotal roles as class A members [14]. HSFA1s serve as the most important
transcriptional activators of HSR gene expression [15,16]. HSFA1s function as master
regulators of HS-regulated gene expression in plants because they can further bind to
other TFs [17,18]. For instance, under ambient temperature, HSP70 and HSP90 repress
HSFA1 activity through direct protein interactions. The interaction negatively regulates
HSFA1 activity by repressing transcription activation and nuclear localization [19]. Under
HS, direct protein interactions activate a series of downstream target genes, including
DEHYDRATION-RESPONSIVE ELEMENT BINDING 2A (DREB2A), HSFA2, HSFA7A,
HSFA7B, and MBF1C, releasing these TFs from the cytoplasm to nuclei for transcription ac-
tivation and expression of heat-induced genes [19]. HSFB1, HSFB2A, and HSFB2B can also
be induced by HSFA1. Notably, HSFB1 and HSFB2B function as transcriptional repressors.
Negative regulation of HSFA2 and HSFA7A expression acts as a modulator of the action of
class A HSFs [20]. Interestingly, a recent study reported that by investigating genome-wide
chromatin changes related to the transcriptional reprogramming response to HS in tomato,
HSFA1a-mediated chromatin reorganization likely drives the expression of HS-responsive
genes [21]. Heat stress induces rapid changes in chromatin architecture, leading to the tran-
sient formation of promoter enhancer contacts, thereby inducing HSRs [21]. In addition, the
activity of HSFA1 is tightly controlled by protein modification. This explains why the im-
pact of the overexpression of HSFA1 on the upregulation of HS-inducible genes is relatively
limited [19,22] compared with the overexpression of other HS-inducible HSFAs, such as
HSFA2 and HSFA3 [14,19,23,24]. Posttranslational regulation, such as phosphorylation and
SUMOylation, plays a major role in the regulation of HSFA1 activity. For example, it has
been reported that two protein kinases, CYCLIN-DEPENDENT KINASE A1 (CDKA1) and
CALMODULIN-BINDING PROTEIN KINASE 3 (CBK3), can facilitate the DNA-binding
ability of HSFA1 by interacting with HSFA1 in Arabidopsis [25,26]. Another phosphatase,
PROTEIN PHOSPHATASE 7 (PP7), is also known to associate with HSFA1, although how
it functions to mediate HSFA1 activity is unclear [27]. Other regulators have been nicely
reviewed by Ohama et al. [28].

To date, the understanding of class C HSFs remains unclear. The highly conserved
DNA-binding domains of class C HSFs imply strong evolutionary pressure for functional
conservation. In contrast, variabilities in the OD and AHA domains encourage functional
divergence of HSFs. For instance, the expanded HSFC family observed in monocots is
hypothesized to carry out regulatory activities in response to stressors, developmental
processes, and fine-tuning of gene expression [29].

2.2. Other Transcriptional Regulators

Other TF families that also play roles in the HS response include the DREB2A,
DREB2C, MULTIPROTEIN BRIDGING FACTOR 1C (MBF1C), NAM/ATAF1/2/CUC2
(NAC), WRKY, basic REGION/LEUCINE ZIPPER (bZIP), and MYB families (Figure 1).
Increasing amounts of data are indicating that the AP2/ERF family DREB2A is another
important regulator under HS [30]. As part of HSFA1 activation, the expression of DREB2A
is stimulated [14]. Then, DREB2A directly activates HSFA3 expression which functions as a
heat-induced gene in acquiring thermotolerance and/or heat stress resistance. Moreover,
VASCULAR PLANT ONE-ZINC-FINGER PROTEIN (VOZ1) from the NAC family inhibits
the activity of DREB2C, thereby abolishing the downstream activities of HSFA3 [31]. In-
terestingly, DREB2A functions in the crosstalk between heat and drought stress signaling,
indicating its specific roles in abiotic stress. DREB2A can be induced by JUNGBRUNNEN
1 (JUB1) and MBF1C in addition to HSFA1s under heat stress [32–34]. In contrast, the
expression of DREB2A is repressed by GROWTH-REGULATING FACTOR 7 (GRF7) under
nonstress conditions [35]. Posttranslational regulation processes, such as phosphorylation
and SUMOylation, also play important roles in the regulation of DREB2A activity [28].
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NUCLEAR FACTOR-Y (NF-Y) family members are central regulators of HS-responsive
transcription in plant cells as well [36]. A recent study showed that the SUMO E3 ligase
SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with NF-YC10 and
enhances its SUMOylation during HS. The SUMOylation of NF-YC10 facilitates its inter-
action with, and the nuclear translocation of, NF-YB3. After translocation to the nucleus,
the NF-YC10/NF-YB3 dimer binds to NF-YA2 to form an NF-YC trimeric complex to
promote the transcription of HS-responsive genes, thereby improving heat tolerance in
plants [36]. Moreover, a previous study reported that NF-YB3 translocates to the nucleus
and couples with DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1) to form a trimer with
NF-YA2, thereby promoting DREB2A activity under heat stress [37,38].

NAC transcription factors influence several pathways, including ROS, HSFBS, HSFA1s,
and DREB2A. Mechanistically, they bind to promoters of HSFs, thereby increasing the
expression of heat-induced genes and mounting the response against heat stress [39].
The influences of WRKY, MYB, and bZIP on the HS regulatory pathways are minimal
relative to NAC. TFs of the WRKY family positively regulate HS regulatory pathways.
MYB30 regulates the HS response through ANNEXIN (ANNs) [40]. Binding of MYB30 to
ANNs represses their expression, thereby modulating cytosolic calcium ion concentrations.
In times of HS, the activity of MYB30 is inhibited, enabling the downstream responses
of ANNs, which lead to an influx of cytosolic calcium concentration, eliciting the HS
response [40]. bZIP28 and bZIP60 positively regulate the expression of heat-induced genes.
IRE1 HS-dependently splices bZIP60 RNA, leading to the production of bZIP60 protein
lacking the transmembrane domain and translocates it into the nucleus for heat-induced
gene expression [41]. On the other hand, binding between BINDING PROTEIN (BiP) and
bZIP28 inactivates actions by bZIP28 under nonstress conditions [42].

It is interesting to note that the circadian clock proteins REVEILLE 4 (RVE4) and
RVE8 have been found to positively impact thermotolerance by activating HSR gene
expression [43].

2.3. Epigenetic Regulation in the HSRs

Multilayered regulatory systems under HS include epigenetic regulation [28]. Epi-
genetic regulation—involving DNA methylation, histone modification, and chromatin
remodeling—is stimulated upon HS. The molecular mechanisms underlying AT have been
studied and are mainly related to epigenetic regulation, especially histone modification,
which modulates transcriptional activity through either “open” or “closed” chromatin
configurations [44]. Furthermore, histone modifications function in AT by exploiting the
involvement of TFs.

Multiple studies have indicated that HSFA2 is a master regulator of AT [45,46]
(Figure 2). The maintenance of HSP gene expression by HSFA2 prolongs AT. One re-
cent study showed that HSFA2 recruits histone methyltransferases to memory loci and
leads to deposition of di- and trimethylation of histone H3 lysine 4 (H3K4me2/3). This
kind of histone modification induces sustained expression of various types of heat memory
genes, which are specifically required for AT in Arabidopsis [47]. After a nonlethal priming
HS, H3K4me2/3 hallmarks the memory loci as recently transcribed loci, enabling these
memory loci to be rapidly or more strongly re-induced (i.e., refer to a kind of transcriptional
memory) by subsequent lethal HS [47]. Furthermore, it has been reported that HSFA2
can assemble into a heteromeric HSF complex alongside HSFA3/FORGETTER3 (FGT3),
which subsequently triggers the expression of memory genes, thereby orchestrating AT [46].
However, it is unclear what distinguishes memory from nonmemory genes. A recent study
identified the global target genes of these two key memory HSFs, HSFA2 and HSFA3,
using time course Chromatin Immunoprecipitation-sequencing (ChIP-seq), and HSFA2
and HSFA3 showed nearly identical binding patterns [47]. In vitro and in vivo binding
strength is highly correlated, indicating the importance of DNA sequence elements. In
particular, genes with transcriptional memory are strongly enriched for a tripartite heat
shock element (HSE) and are hallmarked by three features: low expression levels under
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normal conditions, accessible chromatin environment, and heat stress-induced enrichment
of H3K4 trimethylation [48].
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Figure 2. Schematic representation of regulators involved in Acquired thermotolerance (AT) in
Arabidopsis. A mild heat stress (HS) can act as a priming cue and trigger enhanced tolerance to HS
in the primed state. This primed state is maintained over time in a memory phase so that primed
plants that encounter a second severe stress event are able to survive in contrast to nonprimed plants.
Priming HS activates the expression of HSFA2 through HSFA1s, which are released from the HSP
chaperone under priming HS and enter the nucleus. HSFA2 forms a heteromeric transcription factor
complex with HSFA3, which activates the expression of HS memory genes or heat stress response
(HSR) genes. Histone modifications play a critical role to regulate HS memory genes, including
H3K27 demethylation by REF6, ELF6, JMJ30, and JMJ32; H3K4 trimethylation by COMPASS-like;
and nucleosome positioning by the ATP-dependent chromatin remodeler complex consisting of
FGT1, BRM, and ISWI. In addition, the FGT2/phosphatase-PLDa2/phospholipase complex and the
miR156-SPL module are involved in the regulation of thermomemory genes in Arabidopsis. Created
with BioRender.com; accessed on 31 July 2023.

Furthermore, apart from FGT3, other FGTs also function in AT from various phys-
iological aspects. FGT2 encodes a protein phosphatase of type 2C (PP2C) and interacts
with phospholipase Dα2 (PLDα2) [18]. The absence of functional FGT2 or PLDα2 results
in an impairment of AT, suggesting that alterations in the composition of phospholipids
in the plasma membrane may play a critical role in AT [18]. The deposition of activation
marks might be mediated by the COMPASS-like complex through stress-specific TFs such
as HSFA2 and HSF3 to memory genes.

Unlike H3K4me activation marks, PRC2-catalyzed H3K27me3 histone marking of
target genes usually transcriptionally represses gene expression, which is mediated by
conserved JUMONJI (JMJ)-domain-containing histone demethylases [49,50]. Four JMJ
H3K27 demethylases have been reported to mediate the removal of H3K27me3 histone
marks in the heat memory gene locus during heat memory, comprising JMJ30, JMJ32,
EARLY FLOWERING 6 (ELF6), and RELATIVE OF EARLY FLOWERING 6 (REF6) in Ara-
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bidopsis [50]. These four demethylases catalyze sustained removal of H3K27me3 histone
marks at two memory loci, HSP22 and HSP17.6C, and thus facilitate enhanced reinduction
of these genes in response to subsequent HS [50]. In addition to H3K4 methylation and
H3K27 demethylation, histone acetylation is associated with active gene expression. The
evolutionarily conserved histone chaperone ANTISILENCING FUNCTION 1 (ASF1) is
associated with the removal of histone H3 lysine-56 acetylation (H3K56ac) through the
deposition of unmodified histone H3 [51].

AT is typically somatic and lasts for a short time (several days in Arabidopsis seedlings) [52,53],
but long-term transgenerational AT occurs (though rarely). A regulatory loop of HSFA2-REF6 has
been reported to mediate transgenerational AT at some loci in Arabidopsis [54]. During prolonged
HS exposure, HSFA2 directly activates the expression of REF6 and the SWI/SNF family chromatin
remodeler BRAHMA (BRM). REF6 in turn removes H3K27me3 at HSFA2 and recruits BRM to
further upregulate HSFA2 expression, leading to the induction of a set of HSRs [55]. The positive
feedback loop of HSFA2-REF6/BRM is maintained after heat exposure and further transmitted
maternally to the immediate progeny, which may promote transgenerational adaptation to HS [54].
Moreover, a retrotransposon called ONSEN is also a target of HSFA2 in addition to HSFA1 during
HS, indicating that it plays an important role not only in HSR but also in AT. Previous research
has reported that HSFA2 stimulates ONSEN, which is associated with H3K4me methylation and
H3K27me3 demethylation, thus forming a feedback loop with REF6. As a result, these histone
modifications confer an HS response and transgenerational heat memory in plants [28].

Nucleosome dynamics through chromatin remodeling are also related to AT. The
helicase FGT1 associates with the ATP-dependent chromatin remodelers SWI/SNF (BRM)
and Imitation Switch (ISWI) (CHROMATIN-REMODELING PROTEIN 11 (CHR11) and
CHR17) to reduce nucleosome abundance at memory loci in the phase of memory after
priming HS [55]. The removal of nucleosomes facilitates the sustained activation of memory
genes and thus confers AT in Arabidopsis [55].

In summary, the chromatin-based histone modification for AT regulation primarily en-
compasses HSFA2-mediated H3K4 hyper-trimethylation, JMJ demethylase-dependent H3K27
demethylation, ASF1-mediated H3K56ac, and FGT1-BRM/CHR11/CHR17-dependent nucle-
osome positioning, and these mechanisms collectively contribute to the modulation of AT in
land plants [49]. The effect of AT is usually erased in several days. The precise mechanism
underlying the deposition and removal of these histone-modifying proteins in the process of AT
remains to be understood.

2.4. Regulatory RNA (microRNA, siRNA, lncRNA, and circRNA)

Much involvement of regulatory RNA has been documented when plants have been
subjected to heat stimulus (Figure 1). The regulatory activities of TFs or genes are at-
tributed to noncoding RNAs, including microRNAs, small interfering RNAs (siRNAs),
long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). MicroRNAs are small
noncoding RNAs that regulate target messenger RNA (mRNA) through degradation or
translational repression of mRNA. Gene expression is negatively regulated, thereby inhibit-
ing translation. miR398 acts downstream of HSFA7b and HSFA1s during HS [56]. When
faced with oxidative stress, the activity of miR398 is repressed, leading to the accumulation
of the COPPER/ZINC SUPEROXIDE DISMUTASE 1 (CSD1) and CSD2 genes. Encoded
closely related Cu/Zn superoxide dismutases detoxify superoxide radicals, contributing
to oxidative stress tolerance [56]. miR156 is one of the targets of noncoding RNAs when
induced by heat stress. Its regulatory activity in the heat stress response is exerted via the
repression of SQUAMOSA-PROMOTER BINDING-LIKE (SPL) TFs, including SPL2, SPL9,
SPL11, and SPLs, which act as upstream repressors of HSFA2 [57]. When faced with heat
stimulus, actions by miR156 leave sustained expression of HSFA2 even after recovery from
HS, adding AT to plants’ defenses for combating future encounters with HS. Additionally,
miR159 and miR396 were reported to target MYB and WRKY, respectively, in conferring
plant thermotolerance [58].
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A recent study revealed that miR165/166 and its target transcript, PHABULOSA
(PHB), can form a module to regulate HSFA1 at the transcriptional and translational levels
in response to HS [59]. On the one hand, under normal conditions, PHB directly represses
HSFA1 transcription and globally regulates the expression of HS-responsive genes. During
HS, the accumulation of miR165/166 is triggered, leading to the downregulation of PHB,
thereby releasing HSFA1 from the HSFA1/PHB complex to induce the expression of HS-
responsive genes. On the other hand, the lack of PHB induces the transcription of HSFA1s
and HSFA2 in response to HS [59].

As mentioned above, ONSEN responds to HS as a target of HSFA1. Moreover, a
siRNA-mediated pathway regulates ONSEN activity. Inhibitory action by siRNA on ON-
SEN yields upregulation of heat-induced gene expression. Apart from interaction with
ONSEN, HSFA1s induce thermotolerance by binding at promoters, triggering transcrip-
tional activation of the HEAT-INDUCED TAS1 TARGET 1 (HTT1) and HTT2 genes. In
addition to the influence of HSFA1s, the expression of HTT1 and HTT2 genes is also gar-
nered by trans-acting siRNA (TAS1). The natural antisense transcript siRNA (nat-siRNA)
contributes to heat resistance by negatively regulating HTT1 and HTT2. CircRNAs are
single-stranded RNAs that join head-to-tail in a circular form. They are reported to play
a role in the regulation of the plant HS response, synergistic with plant hormone signal
transduction [60].

3. Other Cell Activities for Adaptation to HS

Exposure of plant cells to high temperatures results in cellular damage and can even
lead to cell death. The damage can be ascribed to the action of misfolded proteins and
reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress.
To protect cells, protein homeostasis and ROS homeostasis are essential. Thus, we briefly
review the recent study below about how plants maintain protein homeostasis and ROS
homeostasis to cope with HS downstream of transcriptional regulation (Figure 3).

3.1. Protein Homeostasis

HS can induce the production of unfolded proteins in plant cells, which can be cyto-
toxic. To survive HS, plants must undertake mechanisms to either renature or degrade these
unfolded proteins. HSPs (or chaperones) assume vital functions in preserving protein qual-
ity by facilitating the renaturation of denatured proteins during HS [61]. These chaperones
actively participate in diverse cellular processes, encompassing the folding of nascent pro-
teins on ribosomes and facilitating transport across membranes, besides preventing cellular
damage from encountering various stressful conditions [62]. The coordinated interaction
between chaperones and proteases is commonly referred to as ‘protein quality control’ [62].
In Arabidopsis, the main families of plant chaperones are HSP60, HSP70, HSP90, HSP100,
and small HSPs (sHSPs), all of which have been reported to confer thermotolerance [61].
For example, HSP100 enhances heat tolerance by resolubilizing protein aggregates in Ara-
bidopsis [63]. Moreover, OsHSP101 is a positive regulator of thermotolerance and heat
memory in rice [64]. In addition to HSPs, the 26S proteasome α2 subunit protein THERMO-
TOLERANCE (OsTT1) removes heat-induced cytotoxic denatured proteins, thus enhancing
thermotolerance in rice [65].

Autophagy is another homeostasis pathway that instrumentally regulates plant adap-
tations to HS by removing nonfunctional proteins and damaged cellular components [66].
Neighbor of BRCA1 (NBR1)-mediated selective autophagy can either target ubiquitinated
protein aggregates to enhance basal heat tolerance or contribute to the selective degradation
of HSPs after HS to reduce AT [67–69]. In canonical autophagy, several core autophagy-
related (ATG) proteins are recruited hierarchically to form double-membrane organelles
termed autophagosomes [70]. When autophagy is impaired in Arabidopsis and tomato
plants, aggregated proteins tend to accumulate, resulting in reduced heat stress toler-
ance [68,71]. ATG8 homologs in mammals have also been shown to target single-membrane
compartments such as phagosomes and endosomes. A recent study in plants reported a non-
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canonical function of ATG8 in regulating the restoration of the Golgi apparatus damaged
by HS. Short-term acute HS causes vacuolation of the Golgi apparatus and translocation of
ATG8 to the dilated Golgi membrane. The inactivation of the ATG conjugation system, but
not of the upstream autophagic initiators, abolishes the targeting of ATG8 to the swollen
Golgi, causing a delay in Golgi recovery after HS. Using TurboID-based proximity labeling,
CLATHRIN LIGHT CHAIN 2 (CLC2) was identified as an interacting partner of ATG8
via the ATG8-interacting motif (AIM) – LIR/AIM docking site (LDS) interface. CLC2 is
recruited to the cisternal membrane by ATG8 to facilitate Golgi reassembly [66].
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Figure 3. Cell activities for keeping ROS and protein homeostasis. Upon heat stress, nuclear redox
oxidation is sensed by HSFs. HSFs activate HSR genes, which are important for ROS scavenging and
protein homeostasis. In addition, autophagy-related (ATG) protein ATG8 is rapidly translocated to
the sites of swelling Golgi bodies. It recruits the clathrin component CLC2 to mediate the vesicle
budding, which fuses with the vacuole. It facilitates the reassembly of the Golgi apparatus, thereby
increasing thermotolerance. Created with BioRender.com; accessed on 31 July 2023.

3.2. ROS Homeostasis

Exposure to high temperatures also quickly enhances the production of ROS molecules
such as hydrogen peroxide (H2O2), superoxide (O2

•−), singlet oxygen (1O2), and hydroxyl
radical (•OH), which act as signaling molecules for plants to adapt to stress conditions [72].
The function of ROS in peroxisomes is vital in promoting plant survival through the
initiation of plant reproduction. However, the accumulation of ROS causes oxidative
damage to lipids and DNA, which triggers calcium influx leading to apoptosis. Under
heat stress, PM-localized NADPH oxidases (known as RESPIRATORY BURST OXIDASE
HOMOLOG [RBOH] in plants and NADPH oxidase [NOX] in animals) appear to be the
primary source of ROS production, as ROS accumulation has been successfully blocked
by an NADPH oxidase inhibitor [73]. Arabidopsis atrbohB and atrbohD mutants exhibit
reduced thermotolerance [74], indicating that plants need to maintain ROS homeostasis to
attain thermotolerance. Moreover, H2O2 also functions partly as a signaling molecule as a
consequence of the secondary stress response, where the accumulation of H2O2 triggers
upregulation of HSFs.

BioRender.com
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To reduce the effects of oxidative damage, plants produce antioxidants to combat the
accumulation of ROS to prevent oxidative damage [75]. Ascorbate peroxidases (APXs)
and catalases (CATs) are two types of ROS-scavenging enzymes that have been reported
to detoxify ROS [76]. In wheat, it was found that melatonin improves the activity of the
antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD),
which enhances the heat tolerance of the plant.

The activation of ROS signaling through HSFs has been supported by evidence, which
includes findings on the interaction between HSFs and genes involved in ROS scavenging.
Notably, the expression of APX1 has been shown to be regulated by HSFA2; overexpres-
sion of HSFA2 led to elevated APX1 expression, whereas AtHSFA2 knock-out mutants
exhibited reduced APX1 expression [77]. Accordingly, AtHSFA2 overexpression lines
showed increased heat and oxidative stress tolerance [77]. Expressing a dominant-negative
construct for AtHSFA4a in Arabidopsis has been shown to impede the accumulation of
APX1 transcripts [78,79]. Notably, the AtHSFA4a dominant-negative construct not only
hampers the accumulation of APX1 transcripts but also inhibits the accumulation of the
H2O2-responsive zinc-finger protein ZINC FINGER OF ARABIDOPSIS THALIANA12
(ZAT12), which is essential for APX1 expression under oxidative stress conditions. The
ZAT12 promoter contains HSE binding sites [80]. Therefore, HSFA4a might directly as-
sociate with the ZAT12 promoter [79]. However, the presence of HSEs in the promoter
region of the APX1 gene itself suggests the possibility of direct activation via heat shock
factors (HSFs) [81,82]. In addition, previous studies have shown that expression of heat-
responsive genes is increased upon application of the ROS H2O2. For example, AtHSP17.6
and AtHSP18.6 exhibit similar expression levels following H2O2 application at normal
conditions as they do following HS [83].

In conclusion, heat directly induces HSF activity but also indirectly induces HSF
activity via ROS signaling. HSFs, in turn, affect the expression of HSP/ROS scavenger
genes. According to multiple studies, these contrasting effects allow for boosting HSRs at
the very onset of stress while preventing subsequent oxidative damage [84].

4. Application of Heat Stress-Related Transcription Factors
4.1. TF Modulation to Improve Plant Resilience

To date, although most research on elucidating the mechanisms of HSFs has been
performed in the eudicot Arabidopsis, it is reported that there are 25 HSFs in maize, rice,
and sorghum, and that they are evolutionarily conserved in seed plants [85]. Translational
research on crops is needed to demonstrate the role of TF in modulating crop performance
in times of HS. This is particularly critical as the world faces the harsh reality of climate
change, and food demand rises to feed an estimated 9 billion population in 2050 [3].

With increasing developments in gene discovery, genetic modification has been em-
ployed for crop improvement. Previous studies have reported that introducing HSF
and HSP enhances thermotolerance in crops; for example, overexpression of tomato
SlHsp21 or soybean GmHsfA1d promotes tolerance to HS in tomatoes and soybeans,
respectively [86,87]. However, the overproduction of active proteins often gives rise to
growth retardation under nonstress conditions [88]. A new strategy for crop improvement
utilized an inducible promoter to prevent the negative effects on growth under nonstress
conditions [88]. Optimized and more sensitive promoters from HS-inducible genes can reg-
ulate the expression levels of such active factors. In addition, the discovery that plants have
‘cognitive abilities’ to acquire memories based on epigenetic regulation provides another
strategy to enable an intelligent design for crop improvement. Recently, Oberkofler and
Baürle reported an inducible system for epigenome editing in Arabidopsis thaliana using a
heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase
domain to a locus of interest [89]. This system is widely applicable to the modification of
histone modification levels in basic research questions and applied settings for scientists
and plant breeders [89].
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Since there is currently low acceptance of genetically modified (GM) crops by con-
sumers, future research may direct the engineering of crop resilience via non-GM ap-
proaches. Given the crosstalk of TFs involved in multiple pathways, genome-wide associ-
ation studies (GWAS) and quantitative trait loci may provide hints to candidate TFs for
modulatory work. Some TFs have broader roles, for instance, HSFs. Genetic engineering
via modulation of TFs must consider intricate networks and potential implications for
other plant functions. Chemical screening using a key HSF reporter line would be another
alternative strategy to identify compounds for the enhancement of crop resilience against
prolonged HS, and thus crop productivity is one of the vital characteristics of food for the
future [28,90].

4.2. Tell-Tale Signs of Abiotic Stress Using Plant Sensors

Having identified and elucidated the mechanisms of some TFs in response to HS, one
potential area of translational research could be the deployment of wearable plant sensors
for the detection and/or quantification of TFs/related molecules. Sensors such as these
are designed to allow for early detection of any signs of abiotic stresses, including HS,
facilitating necessary actions within the plant stress threshold. Miller and Mittler evaluated
the feasibility of HSFs as sensors in plants based on past research works [91].

Understanding plant heat stress responses may be applied to crop resilience strategies.
Hence, unraveling the crosstalk among stress sensing and early signaling pathways is
necessary for the development of stress-resilient crops in the face of climate change [92].

5. Conclusions and Perspectives

There is an escalating threat of yield reductions in agricultural crops due to HS caused
by global warming, and it is crucial to demonstrate how plants respond to HS [28]. The
molecular mechanisms underlying plant responses and adaptations to HS (referred to as
basal thermotolerance) and recurring HS (referred to as acquired thermotolerance (AT))
have been elucidated (Figure 4). Nonetheless, many gaps remain in our understanding
of plant responses to temperature stress, especially pertaining to early signaling events
and fluctuating temperatures at multiple levels [93,94]. For example, how do HS sensors
transduce signals into Ca+, ROS, or other signaling pathways, and what exact factors are
involved in these signaling cascades? Another remaining issue is how HSFA1 and DREB2A
are posttranslationally activated under HS conditions or repressed under nonstress condi-
tions, including the timing and related sites involved [28]. Although there have been a few
studies performed under natural environments in the temperature stress research field [50],
the majority of the studies, conducted thus far, have been performed under controlled
laboratory conditions, which may not completely reflect the complexities and dynamics
of the natural environment found in the field. Addressing these questions is important
to successfully adapt to environmental temperature fluctuations caused by global climate
change. Additionally, many studies currently focus on the mechanisms of stress tolerance
at the vegetative stage of plant development. However, reproductive development and
fertilization are also sensitive to stress conditions, often leading to more serious losses of
crop yield [95–98]. Therefore, we need to expand our knowledge on plant stress responses
to the reproductive stages of development as the related mechanisms have been recently
reported [99].
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