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Abstract: Fruit softening is a crucial factor that controls shelf life and commercial value. Pectate lyase
(PL) has a major role in strawberry fruit softening. However, the PL gene family in strawberry has
not been comprehensively analyzed. In this study, 65 FaPL genes were identified in the octoploid
strawberry genome. Subcellular localization prediction indicated that FaPLs are mostly localized to
the extracellular and cytoplasmic spaces. Duplication event analysis suggested that FaPL gene family
expansion is mainly driven by whole genome or segmental duplication. The FaPL family members
were classified into six groups according to the phylogenetic analysis. Among them, FaPL1, 3, 5, 20,
25, 42, and 57 had gradually increased expressions during strawberry fruit development and ripening
and higher expression levels in the fruits with less firmness than that in firmer fruit. This result
suggested that these members are involved in strawberry softening. Furthermore, overexpression
of FaPL1 significantly reduced the fruit firmness, ascorbic acid (AsA), and malondialdehyde (MDA)
content but obviously increased the anthocyanins, soluble proteins, and titratable acidity (TA), while
it had no apparent effects on flavonoids, phenolics, and soluble sugar content. These findings provide
basic information on the FaPL gene family for further functional research and indicate that FaPL1
plays a vital role in strawberry fruit softening.

Keywords: pectate lyase; strawberry; fruit softening; fruit firmness

1. Introduction

Due to its rich nutrients (such as vitamin C, vitamin A, anthocyanins, etc.), unique
flavor, sweetness, and bright color, the strawberry (Fragaria × ananassa Duch.) is cultivated
and consumed worldwide. However, the extreme soft texture of strawberry brings a very
short shelf life and poor fruit quality, thus leading to enormous marketing and economic
losses. Therefore, the mechanisms underlying fruit softening and its manipulation are of
great interest for both consumers and breeders.

Softening, a typical characteristic of ripening in most fleshy fruits, is a crucial factor
that controls shelf life and commercial value. In certain species and cultivar, some degree
of softening is desirable to consumers. However, during fruit ripening, excessive softening
often leads to postharvest damage or infection decay that results in diminished fruit quality
and significant economic losses. Although softening has been shown to be regulated by
endogenous phytohormones (e.g., ethylene and abscisic acid) [1,2] and degradation of
starch [3], it is mainly caused by modification or remodeling of the cell wall (CW) [4].
The plant CW comprises the primary CW, secondary CW, and middle lamella (ML). The
primary CW consists of of cellulose, hemicellulose, and pectin; however, the weakening and
disassembly of the CW are predominantly due to the solubilization and depolymerization
of hemicellulose and pectin.

Pectin is the most complex polysaccharide and is also an important component of plant
primary CW and ML. It plays an important role in intercellular adhesion, maintaining the
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stability, strength, and integrity of the CW. Accompanied with pectin degradation, the CW
dissociates, and the fruit softens. The degradation of pectin is the result of the joint action
of several metabolic enzymes, including pectin methylesterase (PME), polygalacturonase
(PG), and pectate lyase (PL). PG is one of the most studied enzymes, which can hydrolyze
homogalacturonan (HG), leading to the degradation of pectin. However, silencing of the
ripening-related PG genes has a relatively small effect on slowing down the rate of fruit
softening, and PG enzyme activity is relatively low in strawberries [5]. Hence, it is generally
believed that the role of PG genes in strawberry fruit softening is relatively small. Recent
studies have shown that there are a total of 82 PG genes in the strawberry genome of
which FaPG1 and FaPG2 are highly expressed in the fruit. Silencing FaPG1 and FaPG2
significantly increases the firmness of strawberry fruit [6–8], indicating that these two
genes play an important role in strawberry fruit softening. Similarly, PME has also been
screened and identified in strawberry. In total, 54 PME genes have been identified in the
strawberry genome of which FvPME38 and FvPME39 are involved in fruit softening and
are regulated by MYB transcription factors [9,10]. However, the screening of the PL gene
family in strawberry and the identification of its members related to fruit softening have
not been reported yet.

Pectate lyase (PL) belongs to polysaccharide lyase family 1 (PL1), can randomly breaks
the β-1,4 glycosidic bond, producing unsaturated C4-C5 bond oligomeric galactose uronic
acid, thereby degrading pectin. PL exists in many plant species and has been identified in
tomato [11], Arabidopsis [12], peach [13], and grape [14]. Its important role in fruit softening
has also been confirmed in several species, such as banana [15], tomato [16], mango [17],
and grape [18]. Previous studies have shown that silencing of the PL gene in tomatoes
reduces the content of water-soluble pectin, which significantly improves fruit firmness
and prolongs the storage period of the fruit [19]. In strawberry, it has been previously
reported that the expression levels of three members of the PL family (FaPLa, FaPLb,
and FaPLc) increased along with fruit maturation, indicating these genes are associated
with fruit ripening and softening [20,21]. Meanwhile, by antisense inhibition of FaPLc
gene expression, the fruit firmness was significantly increased [22,23], confirming the
involvement of the PL gene in strawberry fruit softening.

Although a few softening-related PL genes in strawberry have been reported, the
genome-wide systematic examination is still missing. In this study, we identified all the
PL family members in strawberry; the basic information and expression profiles were
obtained during fruit ripening. In addition, transient overexpression was used to clarify
the function of FaPL1 in strawberry fruit softening. The findings provide a foundation for
further investigation of the function of PL family members in strawberry fruit softening,
aimed to better reveal the molecular mechanism underlying strawberry fruit softening.

2. Results
2.1. Identification of PL Genes in Strawberry

A total of 65 FaPL genes were identified by searching and confirming the conserved PL
domains (PF00544) in the genome of cultivated strawberry. According to their distribution
order on chromosomes, all the 65 FaPL genes were renamed as FaPL1 to FaPL65 (Figure 1).
The sixty-five FaPL genes were unevenly distributed across the twenty-eight chromosomes
in the four subgenomes of cultivated strawberry, with an apparent concentration on the
chromosome 6. A maximum of seven FaPL genes were located on chromosome 6 from
the first, second, and third subgenomes (Fvb6-1, Fvb6-2, Fvb6-3), while the minimum
number was 1 on chromosomes Fvb3-1, Fvb2-2, Fvb3-2, Fvb2-4, and Fvb7-4. However,
there were no FaPL genes on chromosomes 1 and 2 from the first subgenome (Fvb1-1,
Fvb2-1), chromosome 2 from the second subgenome (Fvb2-2), chromosomes 1, 2, and 3
from the third genome (Fvb1-3, Fvb2-3 and Fvb3-3), and chromosomes 1 and 3 from the
fourth subgenome (Fvb1-4 and Fvb3-4), which is not shown.
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Figure 1. Chromosomal distribution and location of FaPLs in strawberry. Different colors indicate the
chromosomes from different subgenomes of cultivated strawberry.

The characteristics and physicochemical properties of the deduced 65 FaPL proteins is
shown in Supplementary Table S1. The number of amino acids varied from 91 to 500 aa,
most of them (46) were concentrated from 400 to 500 aa. There were only two FaPL
proteins comprising amino acids below 100 aa. The molecular weights (MW) were from
10.282 to 53.933 KDa. Only 21 FaPL proteins had isoelectric points (pI) below 7, while
the others were all above or equal to 7 and three of which had pI above 10. Furthermore,
based on the subcellular localization prediction results (Supplementary Table S1), most
FaPL proteins were predicted to be located in the extracellular space (21), suggesting
they might be secreted proteins. Several FaPL proteins were located in the cytoplasm
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(13), plasma membrane (9), and vacuolar (8); some FaPLs were localized in mitochondria,
chloroplast, and peroxisome. Interestingly, a few FaPLs were predicted to be dual-localized,
as examples, FaPL24 was located in both chloroplast and nuclear, while FaPL25 and FaPL57
were located in chloroplast or vacuolar (Supplementary Table S1). Subsequently, the origins
of duplication events of FaPLs in strawberry were detected using MCScanX package. As a
result, three types of duplication events were found, including whole genome duplication
or segmental (WGD/segmental), dispersed, and proximal (Supplementary Table S1). Most
FaPLs were duplicated by WGD/segmental, only seven and two FaPLs were duplicated
from dispersed and proximal duplication events separately.

2.2. Phylogenetic and Gene Structure Analysis for FaPL Genes

According to the result (Figure 2), all the sixty-five FaPL genes were classified into
six clusters. Among them, group I is the largest group containing 16 members, followed by
groups II and III, which had 14 and 12 members of FaPL genes, respectively. Both groups
IV and V had ten FaPL members, whereas there were only two FaPLs included in group VI.
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Figure 2. Phylogenetic tree of FaPLs from strawberry and Arabidopsis. Different branch colors
represent the different groups. PL family members from strawberry identified in this study are
marked with blue stars. The red dots indicate the previously reported FaPLs.

To better elucidate the structural characteristics of the FaPL genes, their intron/exon
distributions were analyzed and visualized (Figure 3). Overall, six FaPLs, including in
Group II, had no intron, and other members displayed discontinuous sequences due to
the distribution of different number of introns. The exons numbers ranged from 1 to 7.
Specifically, all members belonging to group V had four exons. It was noted that six FaPLs
members (FaPL1, 20, 3, 25, 57, and 42) in Group II contained the most exons, while the other
eight members of FaPLs only had one or two exons. The exons ranged from three to five
of FaPLs divided into other groups. Meanwhile, the conserved motifs of FaPL proteins
were analyzed using MEME Suite online software (version 5.5.3). The motifs number
and distribution order were similar in FaPL members, most of which contained 10 motifs.
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However, FaPL15, 31, and 39 only contained two conserved motifs, FaPL50 had five motifs,
and most members classed into group IV had six motifs (Figure 3). As shown (Figure 3),
all the FaPL proteins contained the core motifs 1, 2, 6, or 10, which were annotated as PL
domains. Motif 3 encoded a zinc finger domain, while the others were unknown.
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2.3. Collinearity Analysis

The collinearity analysis among Arabidopsis, woodland strawberry (Fragaria vesca), and
cultivated strawberry (Fragaria × ananassa) was carried out to explore the evolutionary
relationship of FaPLs. According to the result, 57 FaPLs, 18 AtPLs, and 16 FvPLs were
involved to form 129 collinear pairs (Supplementary Table S2). In particular, 52 pairs
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between Arabidopsis and cultivated strawberry and 57 between woodland strawberry and
cultivated strawberry are highlighted in Figure 4.
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2.4. Expression Profiles of FaPLs during Fruit Development and Ripening

To identify the FaPLs related to strawberry fruit ripening, their expression patterns dur-
ing fruit development were examined based on transcriptome data. As shown in Figure 5A,
52 out of 65 FaPLs distinctly expressed during the fruit development. Interestingly, most
FaPL genes were highly expressed in the large green (LG) stage, while barely expressed
in the partial red (PR) and full red (FR) stages. On the contrary, there were seven FaPLs
(FaPL1, FaPL3, FaPL5, FaPL20, FaPL25, FaPL42, FaPL57) that exhibited lower expressions
in the LG stage and gradually increased as the fruit ripened, indicating that they may be
associated with strawberry fruit ripening. Subsequently, the expressions of these seven
FaPLs were further assessed in fruit in comparison with firmness. As a result (Figure 5B),
all of them had much higher expression levels in fruit with weak firmness than that in
fruit with strong firmness, confirming their potential role in strawberry fruit softening. The
transcriptome FPKM values are listed in Supplementary Table S3.

2.5. Functional Analysis of FaPL1 in Strawberry Fruit Softening

Among all the seven potential softening related FaPLs, FaPL3, FaPL25, FaPL42, and
FaPL57 were close to the previously reported FaPLa, FaPL20 was close to the previously
reported FaPLb (Figure 2), while FaPL5 had the lowest expression (Figure 5B and Table S3).
Therefore, the FaPL1 was selected for further expression and functional analysis. The
temporal and spatial expression analysis result (Figure 6A) revealed that FaPL1 expressed
in various tissues, with the lowest level in functional leaves (the fully expanded leaf) and
the highest level in fruit. In addition, the expression of FaPL1 gradually increased along
with fruit development and ripening, which showed a complete negative correlation with
fruit firmness (Figure 6B). These findings suggested that the FaPL1 may play a vital role in
strawberry fruit softening. Furthermore, FaPL1 was transiently overexpressed in strawberry
fruit to validate its function in softening. The phenotypic result showed that overexpression
of FaPL1 did not apparently affect the fruit skin color (Figure 6C). qRT-PCR analysis of FaPL1
expression indicated a seven times higher level in the overexpressed sample compared
to the control (Figure 6D), suggesting FaPL1 was successfully overexpressed. Moreover,
the fruit firmness was significantly decreased by overexpression of FaPL1 (Figure 6E),
confirming the important role of FaPL1 in strawberry softening.
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 6. qRT-PCR based expression analysis and overexpression of FaPL1 in strawberry. (A) The 
expression patterns of FaPL1 in different tissues and during fruit development and ripening. (B) The 
change of fruit firmness of strawberry. (C) The phenotype of strawberry injected with empty 
(control) and FaPL1-overexpressing recombinant plasmid. (D) The relative expression of FaPL1 in 
the full red FaPL1-overexpressed fruit and control fruit. (E) The firmness of full red FaPL1-
overexpressed fruit and control fruit. OE, overexpressing. Triple asterisk indicated statistical 
difference at p ≤ 0.001 level. 

2.6. The Effects of FaPL1 Overexpression on Fruit-Ripening-Related Traits 
According to the result, the content of total anthocyanins, titratable acidity (TA), and 

soluble protein was remarkable higher in FaPL1-overexpressed fruit than that in the 
control fruit (Figure 7A,C,E). By contrast, AsA and malondialdeehyde (MDA) contents 
exhibited significantly lower levels in the FaPL1-overexpressed fruit compared to the 
control fruit (Figure 7D,H). However, the contents of soluble sugar, total flavonoid, and 
phenolic were similar in FaPL1-overexpressed fruit and the control fruit, which showed 
no obvious differences (Figure 7B,F,G). 

Figure 6. qRT-PCR based expression analysis and overexpression of FaPL1 in strawberry. (A) The
expression patterns of FaPL1 in different tissues and during fruit development and ripening. (B) The
change of fruit firmness of strawberry. (C) The phenotype of strawberry injected with empty (control)
and FaPL1-overexpressing recombinant plasmid. (D) The relative expression of FaPL1 in the full red
FaPL1-overexpressed fruit and control fruit. (E) The firmness of full red FaPL1-overexpressed fruit
and control fruit. OE, overexpressing. Triple asterisk indicated statistical difference at p ≤ 0.001 level.

2.6. The Effects of FaPL1 Overexpression on Fruit-Ripening-Related Traits

According to the result, the content of total anthocyanins, titratable acidity (TA), and
soluble protein was remarkable higher in FaPL1-overexpressed fruit than that in the control
fruit (Figure 7A,C,E). By contrast, AsA and malondialdeehyde (MDA) contents exhibited
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significantly lower levels in the FaPL1-overexpressed fruit compared to the control fruit
(Figure 7D,H). However, the contents of soluble sugar, total flavonoid, and phenolic were
similar in FaPL1-overexpressed fruit and the control fruit, which showed no obvious
differences (Figure 7B,F,G).
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Figure 7. The effects of FaPL1 overexpressing on the ripening-related traits. (A–H) indicate total
anthocyanins content, soluble sugar, titratable acidity, AsA, soluble protein, total flavonoid, phenolic,
and MDA content, respectively. Single, double, and triple asterisks indicate statistical differences at
p ≤ 0.05, 0.01, and 0.001 levels. ns, no significant difference was found.

3. Discussion

Due to their important roles in a broad range of physiological processes associated
with pectin degradation, such as plant growth, development, fruit softening and ripening,
PL genes have been identified in various plant species. It has been reported that a total of
26, 20, 12, 46, 22, and 16 PL family members were identified in Arabidopsis [24], peach [13],
rice [25], Brassica rapa [26], tomato [19], and grape [14], respectively. In strawberry, several
FaPL genes were obtained from multiple varieties, including FaPLa, FaPLb, and FaPLc,
from ‘Chandler’, FaSCPL from ‘Sweet Charlie’, FaTPL from ‘Toyonoka’, and five subtype
sequences from ‘Elsanta’ [20,21,27]. However, to our knowledge, the genome-wide analysis
of this family remains limited. In this study, 65 FaPL genes were identified in strawberry
based on a genome-wide investigation, which is more than the numbers in the above-
mentioned species. It is possibly because the cultivated strawberry has undergone a whole
genome duplication during the evolutionary process [28]. Segmental and tandem are two
main duplication events driving the expansion of gene families [29]. For example, PpePL5,
6, 7, and 8 have been regarded as arising from tandem repeats [13], while the GhPELs in
cotton seemed likely to be driven by segmental duplication [30]. Here, we have found that
most (55 out of 65) FaPL genes were duplicated from segmental events (Table S1), which
may contribute to the gene family expansion and their diverse structures and functions.
These results indicated different expansion mechanisms of the PL gene family among
different species. Moreover, the unrooted tree separated the FaPL genes into six different
groups (Figure 3), which is different from the five groups from peach [13], tomato, [19] and
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cotton [30]. This may be caused by the larger number of PL genes in strawberry. Except for
Group II, the FaPL genes involved in the same group have similar exon–intron structures.
Whereas, in Group II, a multiplicity of exon numbers was found (Figure 3), suggesting their
probable functional differentiation.

Fruit ripening is a complex process that involves substantive alterations in gene ex-
pression resulting in changes in flavor, aroma, and texture. Being one of the important cell
wall modification genes, the PL expression has been found to be related to fruit ripening
in various species. For instance, the PL gene is mainly expressed in ripe fruit but not the
unripe fruit of banana [31], the expression of five peach PpePL genes, and three strawberry
FaPL genes accumulated during fruit ripening [13,20,22]. Consistent with the previous
studies, we found that there were seven FaPL genes (FaPL1, 3, 5, 20, 25, 42, and 57) that have
gradually increased expression patterns during fruit development and ripening (Figure 5).
The predominant and high expression of FaPL1 in fruit during ripening was also confirmed
by a qRT-PCR experiment (Figure 6A), revealing these genes are associated with strawberry
ripening. Additionally, it has been well documented that PL genes play a central role in
fruit softening [13,14,19]. FaPLa, FaPLb, and FaPLc have been suggested to participate in
strawberry softening. Silencing FaPLc resulted in 30% firmer fruit than the control [22].
Here, according to the phylogenetic tree (Figure 2), it was found that among the seven
ripening related FaPLs, FaPL3, 25, 42, and 57 were classified into the same clade with FaPLa,
FaPL20 was clustered with FaPLb, and FaPL1 was close to FaPLc. This result demonstrated
these genes may have similar functions in strawberry softening. Furthermore, we found
that all of the seven ripening related FaPL genes apparently had higher expression levels in
the fruit with weak firmness, compared to the fruit with strong firmness (Figure 5B). Tran-
sient overexpression of FaPL1 significantly decreased the strawberry firmness (Figure 6E),
confirming its key role in strawberry softening. Notably, FaPL5 was clustered with AtPLL19
in Group I, which is different from the other six ripening related FaPLs (Figure 2). AtPLL19
was identified by its xylem-specific expression in Arabidopsis [32]. Combined with the fact
that FaPL5 had the lowest expression among the seven ripening related FaPLs (Figure 5B),
it can be speculated that FaPL5 may mainly function in xylem vascular development rather
than fruit softening, which needs further research.

Developing methods without influencing the edible and appealing aspects of fruit,
including color, aroma, or nutritional value, has currently become the major goal for con-
trolling softening [4]. It has been suggested that the antisense expression of the FaPLc gene
in strawberry did not affect the fruit color [22]; while overexpression of VvPL15 in tomato
accelerated the fruit ripening and coloring [14]. In the present study, we found that overex-
pression of FaPL1 significantly increased anthocyanin content (Figure 7A). The possible
explanation is that FaPL1 may have a similar function with VvPL15 in promoting fruit
ripening and coloring. This may also explain the decrease of AsA in FaPL1-overexpressed
fruit (Figure 7D). Because it has been suggested that the AsA decreased during strawberry
storage and senescence [33], the facilitation of ripening by overexpression of FaPL1 may
lead to fruit senescence faster than the control and thus contained a lower AsA content.
In addition, we have also found that FaPL1 overexpression increased that soluble protein
content in strawberry (Figure 7E). This is probably because the overexpression of FaPL1
caused the degradation of the cell wall, resulting in the release of proteins. Moreover, it has
been reported that acidic pH can cause cell wall loosening by inducing PL expression [34];
however, how the overexpression of the PL gene increases the content of titratable acidity
(Figure 7C) is still to be studied in the future.

4. Materials and Methods
4.1. Identification and Comprehensive Analysis of FaPL Genes

The genome of cultivated strawberry was downloaded from the GDR (Genome
Database for Rosaceae) (https://www.rosaceae.org, accessed on 23 August 2023) [35].
The specific Hidden Markov Model (HMM) file for the PL conserved domain (PF00544)
was downloaded from the Pfam database (https://www.ebi.ac.uk/interpro/, accessed on

https://www.rosaceae.org
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23 August 2023) [36] and used as a query to search the candidate FaPL genes by the HMM-
search program. The e value was set to 10−5, and the other parameters were set as default.
The sequences with complete PL domain were further confirmed by searching the NCBI
conserved domain database [37]. The deduced amino acid number, molecular weight (MW),
and isoelectric point (pI) of putative proteins were obtained using a perl script. The chro-
mosome locations of FaPLs were retrieved from the genome annotation file; the conserved
motifs were analyzed using the MEME suite online program (version 5.5.3) and visualized
together with the gene structure using TBtoos software (version 2.001). The subcellular lo-
calization prediction was performed by WOLF PSORT program (https://wolfpsort.hgc.jp,
accessed on 23 August 2023).

4.2. Phylogenetic and Evolutionary Analysis of FaPL Genes in Strawberry

Based on the multiple alignment of FaPL proteins obtained by the MUSCLE program, a
phylogenetic tree was constructed by MEGA X software (version 10.1.8) using the maximum
likelihood method [38]. The beautification of the tree was subsequently carried out using the
iTol online tool (https://itol.embl.de/about.cgi, accessed on 23 August 2023) [39]. Duplication
events and the collinear gene pairs were determined using MCScanX software (http://chibba.
pgml.uga.edu/mcscan2/, accessed on 23 August 2023). All the analysis was conducted using
the default parameters of specific software according to the user instructions.

4.3. Expression Analysis

The RNAseq-based expression profiles of FaPLs in different fruit developmental stages
and in strawberry fruits with contrasting firmness were retrieved from the previously
published transcriptome data PRJNA838938 (https://www.ncbi.nlm.nih.gov/sra/?term=
PRJNA838938, accessed on 23 August 2023) and PRJNA662854 (https://www.ncbi.nlm.nih.
gov/sra/?term=PRJNA662854, accessed on 23 August 2023), respectively. The expression
level was represented by the FPKM values. The heatmap was created using “pheatmap”
package of R software (version 4.2.2) with a normalization in row.

RT-qPCR-based expression analysis were carried out using SYBR Green Premix Ex
TaqTM (Takara, Tokyo, Japan) on a CFX96 RT-qPCR system (Bio-Rad, Hercules, CA, USA).
The total RNA was extracted from the plant sample using the improved cetyltrimethy-
lammonium bromide (CTAB) method. The strawberry tissues and fruit at different de-
velopmental stages were collected in the previous study [40]. The first strand cDNA was
synthesized following the operating manual of PrimeScriptTM RT reagent Kit with gDNA
Eraser (Takara, Tokyo, Japan). The relative expression was calculated using the 2−∆∆Ct

method [41]. The 26-18S interspacer RNA sequence [42] was used as the internal reference.
Expression data was reflected by mean± standard deviation (SD) of three independent
biological replicates. Specific primers used for RT-qPCR were designed using the NCBI
online tools. All the primer sequences are listed in Supplementary Table S4.

4.4. Transient Overexpression of FaPL1 Gene

The full length of FaPL1 CDS was amplified using the primers PL1-TF and PL1-TR
(Supplementary Table S4) according to the sequence retrieved from the strawberry genome
and was substantially homologous recombined into a modified overexpression vector
pCAMBIA1301 [42]. The recombinant plasmid was transformed into the strawberry cv.
‘Benihoppe’ fruit at the white stage using the previous agrobacterium-mediated transforma-
tion method [42]. The agrobacterium GV3101 strain was cultured at 28 ◦C until the OD600
reached 0.8. Each fruit was injected with 500 µL of bacterial solution and placed into a
cultivation incubator. The fruit injected with empty vector was used as the control. At least
20 fruits were injected for overexpression and the control group separately. The injection
fruit side was samples after 7 days for further measurement.

https://wolfpsort.hgc.jp
https://itol.embl.de/about.cgi
http://chibba.pgml.uga.edu/mcscan2/
http://chibba.pgml.uga.edu/mcscan2/
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA838938
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA838938
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA662854
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA662854
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4.5. Determination of Fruit Firmness, Soluble Sugar and TA

Fruit firmness was determined two times on each injection part side of the fruit by a
Texture Analyzer TA XT2i (Stable Micro systems, Godalming, Surrey, UK) with a 5 mm
diameter cylinder needle and a penetration depth of 10 mm. Firmness was expressed as
newton (N). Soluble sugar content was measured by the previously described colorimetric
method [43]. Around 0.1 g of frozen stored fruit was completely extracted in 1 mL distilled
water. After that, the 250 µL of the extract was diluted into 750 µL distilled water and
250 µL 2% (w/v) anthrone-ethyl acetate. The mixed solution was subsequently added to
2.5 mL concentrated sulfuric acid and put in a boiled water bath for 1 min. After cooling
it down to room temperature, the absorbance of the extraction solution was recorded
at 620 nm using a spectrophotometer, and the soluble sugars content was quantified by
comparison to an external standard. The TA content was estimated by titrating the fruit
extract against 0.1 N sodium hydroxide (NaOH) to the end point of pH 8.2 (faint pink) and
represented as citric acid percentage.

4.6. MDA and Soluble Proteins

The MDA was assayed according to the formerly described procedure with slight
modification [43]. Briefly, 0.5 g of frozen fruit sample was completely homogenized with
10% trichloroacetic acid. After a 10 min centrifugation at 4 ◦C, the clear solution was mixed
with 0.67% 2-thiobarbituric acid. The mixture was then placed into a water bath at 100 ◦C
for 10 min and immediately cooled on ice. The absorption values at 450 nm, 523 nm, and
600 nm were read separately. The results were represented as µmol per g FW.

The soluble protein content was measured according to the previous study. In brief,
0.5 g of fruit sample was homogenized in 5 mL of distilled water. The upper phase was
collected and added with CBBG. After centrifugation, the absorbance of the mixture was
tested at 595 nm. The content of soluble protein was quantified by a standard curve
constructed using bovine serum albumin (BSA) protein.

4.7. Total Flavonoid, Phenolic, Anthocyanin, and AsA Content

Based on the previously described procedure [44], approximately 3 g of fruit were
extracted in 5 mL of 80% acetone for 1 h at room temperature. After centrifugation
for 10 min at 4500 rpm, the supernatant was collected for total flavonoids and phenolic
content measurement. The photographic densities of 415 nm and 650 nm were read for the
calculations of total flavonoids and phenolic content, respectively. The quercetin and gallic
acid were used as external standards to construct the calibration curves separately. The
total flavonoid content was presented as mg quercetin per kg of FW, and the total phenolic
content was expressed as g gallic acid per kg of FW.

The determination of total anthocyanins was performed by pH differential method [45].
As previously demonstrated, the fruit sample was extracted in an acetic acid: water: acetone:
methanol (1:2:4:4) solution. The mixture was incubated at room temperature for 30 min and
then placed into a 40 ◦C water bath for 4 h. The clear extract was added with KCl (0.025 M,
pH 1.0) and sodium acetate and then detected by recording the absorption values of 496
and 700 nm. The content of total anthocyanins was expressed as g pelargonidin 3-glucoside
(Pg3G) per kg of FW.

AsA content was detected following the procedure described by Jiang et al. [43]. The
content of AsA was calculated using the photographic density of the fruit extract at 534 nm
and expressed as g AsA per kg of FW.

4.8. Statistical Analysis

All experiments were carried out in three independent biological replicates. Experi-
mental data were expressed as mean values ± SD. The statistical differences were analyzed
using Prism 9 software. The differences between the overexpression and control groups
were determined using t-test. The results with p value below 0.05 were considered as
statistically significantly different.
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5. Conclusions

To summarize, 65 FaPLs gene family members were identified in strawberry and
characterized. Among those, FaPL1, 3, 5, 20, 25, 42, and 57 are likely to function in
strawberry softening due to their increasing expression during fruit development and
ripening and higher expression in weak firmness fruit. Transient overexpression of FaPL1
significantly reduced the fruit firmness, confirming its role in strawberry softening. This
work provides a basis for better understanding the function of the FaPL gene family in fruit
ripening and softening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241713217/s1.
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