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Abstract: The rapid advancements in gene therapy have opened up new possibilities for treating
genetic disorders, including Duchenne muscular dystrophy, thalassemia, cystic fibrosis, hemophilia,
and familial hypercholesterolemia. The utilization of the clustered, regularly interspaced short
palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has revolutionized the field of
gene therapy by enabling precise targeting of genes. In recent years, CRISPR/Cas9 has demonstrated
remarkable efficacy in treating cancer and genetic diseases. However, the susceptibility of nucleic
acid drugs to degradation by nucleic acid endonucleases necessitates the development of functional
vectors capable of protecting the nucleic acids from enzymatic degradation while ensuring safety and
effectiveness. This review explores the biomedical potential of non-viral vector-based CRISPR/Cas9
systems for treating genetic diseases. Furthermore, it provides a comprehensive overview of recent
advances in viral and non-viral vector-based gene therapy for genetic disorders, including preclinical
and clinical study insights. Additionally, the review analyzes the current limitations of these delivery
systems and proposes avenues for developing novel nano-delivery platforms.

Keywords: non-viral vectors; gene editing; nano delivery system; CRISPR/Cas9; viral vectors

1. Introduction

The development of gene editing has been accompanied by an increasing number of
gene editing tools, including, but not limited to, zinc finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs), clustered, regularly interspaced short palin-
dromic repeats (CRISPR)-CRISPR-associated protein (Cas) system. CRISPR/Cas system
is a comprehensive, adaptive immune system in bacteria and archaea [1,2]. Researchers
have utilized this system for precise genome editing by inducing double-strand breaks
(DSBs) at specific sites, followed by repair via non-homologous end joining (NHEJ) or
homology-directed repair (HDR) mechanisms, which allowed the insertion of desired
DNA fragments [3]. The most commonly used CRISPR/Cas system is type II, which in-
cludes the DNA endonuclease Cas9, CRISPR RNA (crRNAs), and trans-activating crRNAs
(tracrRNA). CrRNA and tracrRNA are fused to create a single guide RNA (sgRNA) upon
application [4,5]. Although the CRISPR-Cas9 system has been extensively applied for
genome editing in diverse organisms, including humans, animals, plants, and microor-
ganisms, it faces challenges such as limited efficiency of homologous recombination and
the risk of DSB-induced genetic abnormalities, such as chromosome translocations and
rearrangements, which hinder its therapeutic utility for treating disease (Figure 1) [6].

In 2016, David Liu et al. introduced the base editor (BE) system, which advances gene
editing without needing DNA double-strand breaks. This innovation garnered considerable
interest and extensive adoption [7]. nCas9 was combined with the reverse transcriptase
MMLV-RT in 2019, leading to prime editing (PE) development caused by exceptional editing
(PE). PE promotes the efficient conversion of all 12 single nucleotides independent of DNA
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templates using an engineered guide RNA. In addition, it reduces the accurate insertion and
deletion of multiple nucleotides [8]. However, both BE and PE are restricted to modifying
a single base. Therefore, developing tools capable of site-specific integration of foreign
DNA fragments without needing a double-strand break (DSB) remains an important field
of research in genome editing.
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David Liu and his colleagues created a new genome editing system called TwinPE by
adding a site-specific serine integrase enzyme. This is an improvement over the previous
PE system. TwinPE is designed to improve polyethylene (PE) performance and capabilities.
This system employs a prime editing guide RNA (pegRNA) to introduce the integrase
recognition site to the integrase recognition site. This system operates an excellent editing
system for pegRNA. It uses a serine integrase to teach DNA sequences at the desired
location and precisely introduce DNA sequences at the selected location. Notably, TwinPE
enables the insertion of DNA fragments up to 40 kb in length with an approximate efficiency
of 9.6%. It is essential to acknowledge that the TwinPE system necessitates artificially
introducing integral sub-quality [9].

Meanwhile, the Yin Lab developed the GRAND editing system, which uses a pair of
pegRNAs to facilitate efficient gene fragment insertion. Notably, the reverse transcriptase
template within pegRNAs is non-homologous to the target site but complementary, allow-
ing for precise targeting of 20–250 bp gene fragments using DNA reverse transcription.
However, the efficiency of inserting a 400-bp element using this system must be optimized
and enhanced further [10,11].

CRISPR/Cas9, a novel gene-editing technology, has shown enormous potential for
gene therapy. In clinical applications, the secure and efficient delivery of CRISPR/Cas9
remains a significant obstacle [12]. Due to their biocompatibility, safety, and adaptable
design, nanoparticles, including lipid-based, polymeric, gold, and virus-like nanoparticles,
have emerged as potential delivery systems for CRISPR/Cas9-based gene therapy. These
nanoparticles present novel delivery solutions for CRISPR/Cas9-based gene therapies. This
article briefly overviews the application of various gene therapy delivery vehicles [13].

In summary, as the exploration of CRISPR/Cas9 research continues, a key challenge
remains the successful delivery of the system into target cells. Viral vectors: lentiviral (LV),
adeno-associated virus (AAV), adenovirus (AdV); non-viral vectors: virus-like nanopar-
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ticles (VLP), liposome (Lipo) and exosomes, along with certain physical methods, have
been developed for delivery of CRISPR/Cas9 systems (Table 1). While viral vectors have
limitations such as limited cargo capacity, potential genomic integration, and immunogenic-
ity concerns, non-viral vectors have emerged as a solution, effectively overcoming these
obstacles and enabling successful delivery of the CRISPR/Cas9 system into cells, resulting
in impressive gene editing outcomes.

Table 1. Past Limitations of CRISPR and research updates.

Delivery
Strategies

Delivery
Approach Limitations Advantages Applications References

LV CRISPR/Cas9
and sgRNA

LV vectors are at risk of
off-target mutations and have
a limited loading capacity of

10 kb bases.

It can deliver CRISPR land
to cells in a single

transfection and has a
high cloning capacity.

Low immunogenicity and
inexpensive expansion

In vitro [14,15]

AAV CRISPR/Cas9
Includes a 4.7 kb fragment

that readily integrates into the
host’s genome.

AAV capsids are
structurally flexible,

serotype-diverse, and
easily adaptable to

suppress the
immune response.

In vitro and
in vivo [16–18]

AdV CRISPR/Cas9

Packaging restricted to 8 kb
fragments, prone to adverse

immune reactions, more
challenging to prepare

Lower risk of off-target
effects and insertion

mutagenesis, together
with better

clinical outcomes

In vivo [19,20]

VLP RNA
Limited clinical translation,
instability, and insufficient

support for widespread use

Excellent biosecurity, low
immune response,

and flexibility
In vivo [21,22]

Lipo CRISPR/
Cas9 DNA

High storage and transport
requirements, limited DNA

concentration at delivery

High load efficiency,
editing security, efficiency,

and specificity
In vivo [23,24]

Exosome CRISPR/
Cas9 DNA

Complex preparation,
extreme storage and transport
conditions, and susceptibility

to degradation

Natural targeting ability,
reduced immune response,
and excellent biosecurity

In vivo [25,26]

Polymer-based CRISPR/
Cas9 sgRNA

Possible to aggregate,
destabilize, and be eliminated

from the organism.

Small size, controlled
release, biodegradable,
lower immunogenicity

In vivo [27]

Inorganic
nanoparticles CRISPR/Cas9

Slow degradation in vivo,
simple hepatic accumulation,
and specific toxicity in vivo

Small size, sizeable small
size, high effectiveness,

delayed controlled release,
targeted action, and the

ability to escape an
organelle called

In vivo [28,29]

Even after addressing challenges related to CRISPR delivery, the efficiency of in vivo gene
editing still falls short of expectations. Researchers and scholars contend that a substantial
challenge for the future of gene editing lies in enhancing the accuracy and precision of the
process. Confronting the challenge, scientists have continuously refined and advanced gene
editing tools, resulting in a variety of editing tools characterized by heightened efficiency,
precision, and reduced off-target effects(Table 2). The utilization of these sophisticated tools
can increase the concentration of CRISPR delivered into the body, thus improving editing
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efficiency. It is anticipated that the following tools will find application in clinical contexts
in the future, ushering in a promising era for gene therapy.

Table 2. Challenges and improvements in CRISPR and editing tools.

Gene Editing Tools Off-Target Risk Improvement Gene Type Clinical Application Reference

ZFN High

Optimization of DNA
structural and catalytic

domains using the
modular structure

of ZFNs

DNA

Hemophilia B and
β-Thalassemia proceeded

to clinical stages I and
II, respectively.

[30–32]

TALEN High

High-throughput
solid-phase assembly,

connection-independent
cloning, and “Golden

Gate” molecular cloning
are just a few examples.

DNA
Clinical Phase I in

HPV-related cervical
intraepithelial neoplasia

[33,34]

CRISPR/Cas9 Moderate

Improved targeting to the
interior of the nucleus
and increased mRNA

stability

DNA β-Thalassemia clinical
Phase II [35]

CRISPR/Cas13 Low

Figuring out whether an
RNA substrate binding

site exists at the catalytic
site of the Cas13 protein

single-stranded RNA Proceed to
preclinical studies [36,37]

BE Moderate

Enhancing their sequence
preferences and coming

up with methods to
efficiently assess

off-targeting

DNA
Numerous studies have
laid the groundwork for

conducting clinical
[38]

PE low

It enhanced PE in various
cells and organisms to

evaluate off-target effects
across the genome.

pegRNA No clinical studies have
been conducted at this time [8]

TwinPE Low

The effectiveness of gene
editing is significantly
boosted by adding two
pegRNAs on top of PE.

Paired pegRNA No clinical studies have
been conducted at this time [39]

2. CRISPR-Associated Transposase

Transposons, also known as transposable elements, are widespread in prokaryotic
and eukaryotic genomes. These genetic elements can relocate within the chromosome,
leading to an increase in their copy number through a process known as transposition [40].
Various diseases caused by gene mutations or deletions can be treated using transposon-
based targeted insertion systems. These systems enable precise integration and deletion of
genetic material within the genome, independent of the repair mechanism of the host cell.
This method dramatically expands the scope of genome editing in various cell types [41].
In addition, transposon-based strategies offer inherent advantages in terms of safety and
efficacy compared to current methods for editing based on homologous recombination [42].

Several research groups have investigated improving transposon systems’ specificity
by combining DNA-binding proteins with transposases. Cas9 has gotten much more
attention than DNA-binding zinc finger or transcriptional activator-like effector proteins
because it binds to its targets very strongly and stays there for a long time. Bhatt et al. used
dCas9, a form of Cas9 that doesn’t have catalytic activity, to target the mariner transposon
Hsmar1 for DNA integration [43]. While this model system was highly influential in vitro,
it displayed an unusually high rate of random integration in E. coli. Similarly, when the
Himar1 transposase was fused with the dCas9 nuclease, the engineered Himar1-dCas9
system achieved up to 80% site-specific plasmid insertion in E. coli.

Strecker et al. have devised a cyanobacterial CRISPR-associated transposase (CAST)
system that permits targeted DNA insertion. The CAST system uses Cas12k and success-
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fully targets the supplementary region of the 24 bp-spaced adjacent motifs (PAM), but it
lacks cutting activity. TnsB and TnsC recognize and cleave specific sequences within the
transposase-related donor DNA components, while TniQ is responsible for steering DNA
insertion. CAST-mediated DNA insertion exhibits a directional preference; however, DNA
fragment size and target site influence transposition efficiency. The off-target insertion rate,
approximately 50%, must be considered. In contrast, Klompe et al. have developed the
INTEGRATE system for targeted transposon insertion using gRNA [44]. The INTEGRATE
system is better than the CAST system for inserting the same DNA fragment into multiple
genome targets. Most of this system’s deposition occurs 80–82 bp downstream of the
5′-CC PAM, and the off-target insertion rate is lower (5%). Notably, DNA insertion in the
INTEGRATE system is non-directional, and the transposition efficiency for 3–10 kb DNA
fragments is lower than that of the CAST system.

The CRISPR-Cas systems, related to transposons, allow for efficient and substantial
insertion of donor DNA at specific loci. This keeps the host cell’s repair mechanisms from
being limited. However, it is necessary to address the particular values of these systems.
At first, the transposon end sequences put into the genome along with the inserted DNA
could make it hard to edit genes or insert DNA without leaving a scar. Even though
these systems have shown that they can insert DNA into a few prokaryotic genomes,
they still need to be improved to insert DNA into mammalian cells or model organisms.
To be genuinely pertinent to disease treatment, they require further development.

Studies have revealed that PiggyBac (PB) and Sleeping Beauty (SB) transposons exhibit
robust transposition activity in mammalian cells [45]. PB transposon excisions do not leave
a CAG footprint and prefer local hopping, which limits their application. However, they
have higher transposition activity and do not leave footprints after excision, which provides
new gene-editing applications [46,47]. During transposition, the inverted terminal repeat
sequences (ITRs) at both ends of the transposon vector are recognized by the PB transposase
(PBase). Moving the target gene from its original location to the TTAA chromosomal site
makes it more accessible. PB is a highly desirable instrument due to its high efficiency,
safety, stability, security, and peace.

Marc Guell et al. devised a gene delivery tool named FiCAT by integrating the tar-
geting capability of CRISPR-Cas9 with the cutting and transferring functions of PB [48].
By disrupting the transposase recognition site during insertion, FiCAT makes translation
irreversible. This innovative method permits the precise and targeted insertion of large
DNA fragments between 2.5 and 9.5 kb. In humanHEK293 and mouse C2C12 cells, experi-
mental results demonstrated that the FiCAT system attained a targeted insertion efficiency
of approximately 25%. However, targeted insertion efficiency was diminished to 4% in the
mouse liver and germ cells.

3. Disease Modeling and Gene Therapy
3.1. Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder char-
acterized by dystrophin (Dys) gene mutations in the dystrophin (Dys) gene that elimi-
nate dystrophin protein expression and destabilize muscle membrane structure [49,50].
Approximately 1 in 3000 to 1 in 5000 male young children are born with this fatal genetic
disorder [51]. China has the highest prevalence of DMD, with about 400 to 500 cases
reported annually and 70,000 to 80,000 infected individuals [52]. The 14 kb Dys gene sits
between XP21.1 and XP21.2 and encodes the 427 kDa dystrophin protein [53]. There are
about 7000 known mutations in the DMD gene. 70% of deletions and duplications occur
in the central hot region encompassing exons 44 to 51, and the remaining 30% occur in
the 5′ end deletion hot region containing exons 2 to 20 [54]. Point mutations are casually
dispersed without an identifiable pattern throughout the gene [55].

Currently, there is no definitive treatment for DMD. Although steroid hormone ther-
apy can delay the loss of ambulation and enhance the quality of life in patients with DMD,
it is associated with adverse effects such as obesity, growth retardation, and osteoporosis
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and does not offer a cure. Due to how quickly genetic technology changes, using the
CRISPR/Cas system to insert the Dys gene in a specific place has gotten much attention
as a possible way to treat DMD [56]. In a preclinical canine model of DMD, Niclas E.
Bengtsson et al. recently conducted a comparative study of two gene therapy approaches:
gene editing and gene replacement. The results demonstrated that the gene replacement
strategy led to more pronounced protein expression and greater improvements in muscle
pathology compared to the gene editing approach. Furthermore, the therapeutic efficacy
at the time of intervention was found to be correlated with the muscle pathology status.
The study also highlighted the significance of age in the treatment of DMD. It was discov-
ered that treatment efficacy varied with age, and the muscle pathology status at the time of
intervention played a critical role in determining the treatment outcomes [57].

In a recent study conducted by Tatiana V. Egorova and her colleagues, a new dual-
cleavage strategy using the CRISPR/Cas9 system was employed to remove exons 6 and 7
of the Dys gene and correct the reading frame of the myotonic dystrophy protein in a DMD
mouse model. Sanger sequencing was able to correct mRNA expression by 30% to 50%,
providing a novel method for diagnosing DMD [58]. Several approaches, such as antisense
oligonucleotides (ASOs), gene therapies, and stop codon read-through drugs, have been
either approved or are currently under investigation for treating DMD disease [59]. Despite
some observed therapeutic effects, the transient nature of these approaches limits their clin-
ical application. In contrast, the utility and accuracy of CRISPR/Cas9 make it a promising
intervention with potential long-term benefits.

3.2. Hemophilia

Hemophilia is an inherited bleeding disorder characterized by the deficiency of clotting
factor VIII (hemophilia A) or clotting factor IX (hemophilia B). This deficiency impairs the
normal clotting process, leading to prolonged bleeding following injury. The severity of
hemophilia varies based on the level of clotting factor in the blood. Severe hemophilia
is associated with frequent spontaneous bleeding, whereas mild hemophilia typically
manifests as bleeding following trauma or surgery.

Matsui, H. et al. demonstrated the efficacy of a non-viral vector gene delivery system
involving the piggyBac DNA transposon in treating hemophilia A. The PB vector efficiently
transfected HEK293T and iPS cells through in vitro electroporation, resulting in stable and
sustained expression of FVIII for up to 300 days in vivo when administered via tail vein
injection in mouse models. The treated group had significantly less mean hemorrhage
time (6 min and 13 s) than the control group (18 min and 24 s). The PB vector proved to
be an efficient tool for mediating the efficient and durable expression of the full-length
FVIII gene, thereby enhancing the hemostatic profile of hemophilia A rodents [60].

Verma et al. conducted a study where they treated hemophilia B mice lacking Factor IX
(FIX) using the LUNAR platform, a safe and reliable liposomal nanoparticle (LNPs) mRNA
delivery system. This approach resulted in the rapid correction of coagulation abnormalities
and exhibited therapeutic effects that lasted for 4–6 days. Notably, when delivering the
fixed variant R338A mRNA, LUNAR LNPs demonstrated an impressive 8~10-fold increase
in therapeutic efficacy and coagulation activity compared to adenoviral vectors. These
findings underscore the immense potential of LUNAR as a platform for protein replacement
therapy in diseases like hemophilia, offering enhanced therapeutic benefits [61].

Some academics and researchers have proposed innovative strategies for hemophilia
gene therapy based on previous scientific research that highlighted the limitations of viral
vectors in delivering CRISPR/Cas systems [62]. One such approach, undertaken by Jeong
Hyeon Lee et al., introduced the human Factor 9 (hF9) gene into the antithrombin gene using
a combination of non-viral vector LNP and adenoviral vectors. The study demonstrated the
successful reduction of antithrombin levels and the production of hFIX protein, leading to
the restoration of coagulation function. Importantly, the intervention of LNP substantially
amplified the knock-on effect of the gene in vivo and contributed to the reduction of AAVs
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used in the therapy. These findings lay a solid foundation for the development of genetic
disease treatments involving gene editing and protein deficiency [63].

Qiyu Tang et al. investigated the pathophysiology of Hemophilia B (HB) and elu-
cidated that the underlying cause of HB is a deficiency of functional coagulation FIX.
However, a research model still needs to be developed. To achieve this, they conducted
in vitro CRISPR/Cas9 integration of active FIX variants into human induced pluripotent
stem cells (hiPSCs). The successful integration of the FIX variants was carefully screened
and confirmed. Subsequently, FIX activity in the cell supernatant was quantified, revealing
a remarkable increase of 4.2-fold compared to normal cells and a substantial enhancement
of 63.64% above the average level. These findings offer valuable insights into the therapeu-
tic mechanism of HB gene therapy and provide a new idea for investigating gene therapy
for HB treatment [64].

3.3. Cystic Fibrosis

Cystic fibrosis (CF) is an autosomal recessive monogenic disorder that impacts an estimated
population of 70,000 in the United States and Europe [65]. The mutation of the Transmem-
brane Conductance Regulator (CFTR) gene is the underlying cause of cystic fibrosis, which
causes dysfunctional chloride ion transport. Given the genetic basis of the disease, genome
therapies can target and correct specific alterations, thereby offering the possibility of
long-term treatments for cystic fibrosis. The emergence of CRISPR/Cas9 as a gene editing
instrument, coupled with advances in nuclease technology, has created new opportunities
for precise genome correction and holds tremendous promise for treating cystic fibrosis
and other genetic disorders [66,67].

Anna Cereseto et al. utilized a CRISPR-based adenine base editing (ABE) strategy
to correct mutations without inducing DNA double-strand breaks (DSBs). Their research
revealed a cellular modification efficacy of up to 70% [68]. CF gene therapy has been
used in several animal models [69]. In an individual study, Katarina et al. attempted to
improve Cas9-RNP delivery efficiency. They created a strategy based on the non-covalent
attachment of ABE to the amphiphilic S10 shuttle peptide. In addition, they developed S315
as a penetrating peptide to facilitate the formation of ABE8e-Cas9 RNP and S315 vectors
for efficient delivery in rhesus airway epithelia. This method achieved up to 5.3% gene
editing efficacy [70].

The establishment of a rodent model for CF is crucial for investigating the underlying
mechanisms of the disease and exploring potential therapeutic approaches. In this regard,
Alexandra McCarron and her colleagues successfully developed a viable rodent model of
cystic fibrosis, which offers promising opportunities for longitudinal assessments of CF
pathophysiology and therapeutic interventions [71].

The straightforward CF model has proven to be valuable in gene editing experiments.
In this context, researchers utilized the CF model to edit the EGFP and CFTR genes in ferret
airway basal cells through the use of the rAAV vector. Notably, green fluorescence sorting
of CFTR gene-edited cells revealed a successful editing rate of 70.4% among the cells, while
the CFTR gene correction rate was 3%, and the EGFP gene correction rate was 18.2%. These
findings strongly indicate that the co-editing of two genes can enhance the efficiency of
gene editing through homology-directed repair [72].

3.4. Thalassemia

β-thalassemia is a genetic disorder that mainly impacts children, resulting in delays
in growth and complications, including chronic hepatitis, cirrhosis, and osteoporosis.
Historically, the prognosis for β-thalassemia patients has been dismal, with high mortality
rates caused primarily by cardiac disease [73]. However, with the advent of gene therapy,
there is renewed optimism for a potential genetic solution for transfusion-dependent
β-thalassemia (TDT). TDT and sickle cell disease (SCD) are the most prevalent monogenic
disorders worldwide, with approximately 60,000 new cases of TDT and 300,000 new cases
of SCD each year [74]. These diseases are characterized by mutations in the hemoglobin
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beta subunit gene (HBB), which encodes adult hemoglobin, the primary oxygen-carrying
protein in red blood cells [75]. Hemoglobin comprises α-globin and β-globin chains [76],
with alterations in hemoglobin synthesis leading to thalassemia disorders [77].

Currently, the only approved and effective treatment for β-thalassemia is allogeneic
transplantation of hematopoietic stem cell (HSC), but there are issues, such as potentially
inadequate donor histocompatibility [78]. Clinical trials have attempted to introduce
the functional hemoglobin HBB gene into HSC, but concerns regarding biosafety have
arisen due to ex vivo viral transfection, hindering clinical translation [79]. To address
this, Qian Ban et al. proposed an alternative approach by utilizing the CRISPR/Cas9
system delivered through a supramolecular nanoparticle (SMNP) vector to activate the
HBB gene. The vector was directly introduced into the bone marrow of rodents, leading to
the successful integration of the HBB gene into the genomic DNA locus of hematopoietic
stem and progenitor cells (HSPC). This innovative strategy offers a promising avenue for
treating β-thalassemia [80].

Single-gene mutations in HSC subpopulations are a significant contributor to tha-
lassemia. Shuqian Xu et al. proposed a therapeutic strategy aimed at effectively repairing
HSC to combat the disease. By utilizing Cas9 RNP, they successfully modified the genes of
primary hematopoietic stem cells obtained from thalassemia patients. This gene editing
approach rectified the issue of abnormal splicing and restored the expression of globin,
addressing the fundamental defect in thalassemia. The success of this corrective strat-
egy offers a promising research foundation for the development of innovative treatments
for thalassemia [81].

BCL11A is a transcription factor essential in modulating the expression of globin
and fetal hemoglobin in erythroid cells. The BCL11A erythroid-specific enhancer has
been targeted with CRISPR-Cas9 technology, effectively modifying approximately 80%
of the alleles at this specific genomic locus. Notably, no off-target editing events were
observed, showing the high specificity of the CRISPR-Cas9 strategy [82]. In a study by
Bin Fu et al., autologous hematopoietic stem and progenitor cells with edited BCL11A
enhancers were introduced into the body. This strategy yielded extraordinary results, with
patients attaining independence from transfusions for more than 18 months. Moreover,
the edited cells displayed high levels of gene editing efficiency, with 85.46 and 89.48% of
cells exhibiting the desired modifications, respectively. Notably, no adverse effects were
observed, emphasizing the safety and efficacy of this gene editing strategy [83].

3.5. Familial Hypercholesterolemia

Beginning at birth, familial hypercholesterolemia (FH) is a genetic disorder char-
acterized by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood.
This condition carries a substantial risk of developing cardiovascular disease (CVD) over
time [84]. FH is a common inherited hyperlipidemia in children. It is one of the most severe
lipid disorders linked to cardiovascular complications and a significant coronary artery
disease risk factor [85]. Previous studies have estimated the frequency of heterozygous FH
to be approximately 1:500, although recent data suggest that the prevalence may range from
1:200 to 1:300 [86,87]. In 2003, the role of the PCSK9 protein in lipid metabolism was discov-
ered [88]. PCSK9 binds to the LDL receptor on the surface of hepatocytes. This stops the
receptor from recycling and keeps it from coming back to the cell surface [89]. LDL particles
are typically removed from the circulation by adhering to hepatocyte LDL receptors [90].

FH is a group of genetic disorders of lipoprotein metabolism characterized by severe
hypercholesterolemia and LDL receptor (LDLR) deficiency [91]. Existing drugs for the
treatment of FH, such as statins and PCSK9 inhibitors, have shown limited efficacy, partic-
ularly in cases of HoFH. On the other hand, viral-mediated LDLR gene transfer therapy
has demonstrated insufficient durability. As a result, there is a critical need to explore
alternative treatments that can effectively restore LDLR function. Hirofumi Okada et al.
used induced pluripotent stem cells (iPSC)-differentiated hepatocyte-like cells (HLCs) as
a model of FH. They utilized CRISPR/Cas9 gene editing to achieve long-term and efficient
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correction of the LDLR [92,93]. Additionally, the method’s immunogenicity was thor-
oughly investigated, including its impact on the patient’s peripheral blood mononuclear
cells (PBMCs). This comprehensive research provides a solid foundation for the potential
clinical application of gene therapy as a promising treatment approach for FH [94].

Lentiviruses outperformed adenovirus (AAV), which has been recognized as an ef-
fective vector for treating the FH mouse model. Nevertheless, preclinical research in large
animal models is necessary. In the WHHL rabbit model, Elisa Hytönen et al. showed that
lentiviral vector-mediated LDLR gene transfer significantly reduced cholesterol levels [95].
Surprisingly, AAV vectors in the WHHL rabbit model provide a valuable foundation for
the clinical development of efficient and secure delivery vectors [96].

Julius L. Katzmann and his colleagues used a CRISPR method based on an aden-
oviral vector to target the PCSK9 gene. They aimed to disrupt certain regions and lower
the amount of PSCK9 protein. Their study showed a 9% editing efficiency, indicating
the potential for FH gene therapy [16]. FJ Real et al. thought that Evinacumab, an anti-
ANGPTL3 monoclonal antibody, could treat people with homozygous FH. Numerous
studies have demonstrated that Evinacumab can significantly lower LDL cholesterol in
people with the illness by 47.1% [97]. Vanhoyo et al. investigated familial hyperlipopro-
teinemia (FHBL), which results from an early stop codon in the APOB gene. They were
able to make APOB knockout (KO) knock-in Huh9 cells and APOB knockout (KO) knock-
in Huh9 cells. They then used ELISA and PCR to measure the amount of APOB in the
cells. While APOB expression was 70% lower in heterozygous APOB-KO cells, it was
almost nonexistent in homozygous APOB-KO cells. This work highlights CRISPR/Cas9’s
capability to treat FHBL [98].

3.6. Diabetic Retinopathy

The number of people affected by diabetic retinopathy (DR) and related visual im-
pairment is expected to rise due to the projected sharp rise in diabetes worldwide [99].
DR is a microvascular condition that significantly worsens overall vision [100]. Although
significant research has been done on its etiology, treatment options for DR are still lim-
ited despite substantial research on its etiology, with up to 50% of patients responding
insufficiently to current medications [101].

Abnormal angiogenesis is an essential aspect of PDR disease, and the phosphoinositide
3-kinase (PI3K) signaling pathway plays a vital role in this process. Research has shown that
the vascular membrane of a PDR mouse model exhibits high levels of the catalytic subunit
of PI3Ks, p110 [102,103]. Wu et al. targeted this pathway and developed a dual AAV system
for CRISPR/Cas9 delivery. One set of AAVs was designed to knock down the p110 gene,
while the other set targeted the intercellular adhesion molecule 2 (pICAM2) promoter. The
final results demonstrated a significant decrease in pathological retinal angiogenesis and
an effective reduction in p110 expression. This novel strategy effectively modifies PI3Ks,
offering a promising approach to address aberrant angiogenesis in the retina [104].

In a mouse model of DR damage, Axl, a receptor tyrosine kinase, has been identified
as a key factor in preventing retinal angiogenesis. Wu et al. conducted experiments to in-
vestigate the role of Axl in human retinal microvascular endothelial cells (HRECs) exposed
to PDR vitreous. By using gene editing techniques to limit Axl expression, they successfully
inhibited the activation of Akt in HRECs. Additionally, Axl was found to indirectly initiate
the intracellular process that leads to the production of vascular endothelial growth factor
(VEGF-A), further indicating its significance in the development of PDR [105].

Ao et al. used the CRISPR/Cas9 strategy to knock down the thioredoxin-interacting
protein (TXNIP) gene to study the role of autophagy and apoptosis in the therapy of DR.
Their research shed light on the etiology of DR by showing the positive regulatory function
of TXNIP in autophagy in rat Müller cells under hyperglycemic conditions [106]. Li showed
that upregulating VE-calmodulin and lowering NADPH oxidase 4 (NOX4) levels resulted
from downregulating CCN1 using siRNA and CRISPR/Cas9 technology. By activating
NOX4, it has been found that elevated CCN1 expression promotes oxidative stress and af-
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fects the integrity of tight junctions in endothelial cells. A potential therapeutic approach for
treating DR entails concentrating on the CCN1/NOX4 gene pathway to reduce endothelial
cell damage [107].

4. Delivery of Biomacromolecules
4.1. Duchenne Muscular Dystrophy
4.1.1. Adeno-Associated Virus (AAV)

Adeno-associated virus (AAV) has shown specific targeting capability for muscle cells,
making it a potential carrier for the Dys gene. However, the limited packaging capacity
of AAV vectors (up to 4.7 kb) restricts the delivery of full-length Dys genes, and only
truncated micro-Dys that can produce partial proteins for gene replacement therapy can
be accommodated [108]. While micro-Dys has demonstrated improved muscle function
in mouse models of Duchenne muscular dystrophy (MDX mice) and Golden Retriever
Muscular Dystrophy (GRMD), it is vital to consider the differences in muscle mass and
atrophy severity between animal models and human patients. Consequently, micro-Dys’
efficacy in improving muscle function in humans remains uncertain. Challenges such as
potential cellular toxicity, immunogenicity, and long-term expression of viral vectors hinder
their clinical application [109]. AAV vectors integrate the carried genes into the host DNA,
often close to genes involved in cell growth regulation. This raises concerns about potential
genomic alterations that could contribute to liver cancer and pose a risk for oncogenesis
(Figure 2).
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Since DMD gene mutations are varied, several CRISPR/Cas9 gene editing strategies
are required to treat all DMD patients completely. Therefore, it is crucial to investigate more
accurate and effective endonuclease techniques to improve the safety and effectiveness of
gene editing and hasten the development of full-scale treatments for DMD patients. AAV
capsids with a 7-mer RGD motif have been identified by Tabebordbar et al. as belonging
to the Myo AAV group. Following intravenous treatment in mouse and non-human
primate studies, these capsids showed muscle-specific gene transport through integrin
heterodimers following intravenous treatment in mouse and non-human primate studies.
Furthermore, Weinman et al. reported finding mouse muscle-tropic capsid variants with
RGD motifs [110].
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4.1.2. Lentiviral Vector (LV Vector)

LV vectors contain viruses with two single-stranded genomic RNAs of around 9 kb
each. They have an approximate diameter range of 80 to 120 nm. Reverse transcription
of these RNAs releases double-stranded DNA, which integrates into the host chromo-
somes [111]. LV vectors can handle gene segments of up to 8 kb better than AAV vectors
because a cellular lipid bilayer surrounds them rather than a viral capsid. Due to this prop-
erty, they are less immunogenic than AAV vectors [112]. The integration of LV vectors into
the host genome and their continued gene expression slow the delivery of CRISPR-Cas9.
This is because viral DNA’s random integration could turn oncogenes on and increase the
risk of Cas9 mutagenesis in the wrong place [113].

Researchers have looked into ways to improve their safety profile to address the
genotoxicity that LV vectors cause. A specific strategy delivers gene editing using integrase-
deficient lentiviral vectors (IDLV) [114]. Uchida et al. successfully corrected mutations
linked to sickle cell disease in the globin gene by delivering CRISPR-Cas9 components
into human cord blood-derived erythroid progenitor cells (HUDEP-2) using IDLV vec-
tors. However, it was recognized that using IDLV vectors still carries the danger of viral
DNA integration [115].

4.2. Non-Viral Delivery of Genome-Editing Systems
4.2.1. Exosomes

Exosomes are tiny, lipid membrane-bound nanovesicles with a diameter of between 30
and 150 nm that cells secrete [116]. They can be extracted from various extracellular fluids
from cell cultures, such as blood, saliva, amniotic fluid, urine, and supernatants from cell
cultures. Exosomes play an essential role in intercellular communication and have attracted
considerable interest in clinical diagnostics and therapeutics [117]. Exosomes have emerged
as promising vehicles for targeted drug delivery in recent years. However, their efficiency in
encapsulating sizable nucleic acid fragments is relatively low [118]. Hybrid nanoparticles of
exosomes and liposomes are better at enclosing larger plasmids, such as CRISPR/Cas systems
linked to transposons [119]. Consequently, hybrid exosomes and liposome nanoparticles
have tremendous potential for gene editing applications in vivo (Figure 3A).
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4.2.2. Lipid Nanoparticles

Numerous non-viral delivery mechanisms for efficient in vitro delivery of CRISPR/Cas9
have been developed recently. Among these methods, lipid nanoparticles (LNPs) have
attracted significant interest as efficient carriers for transporting massive nucleic acid and
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protein payloads [120]. LNPs can enclose different ways to edit the genome, such as Cas9
mRNA, Cas9 protein, CRISPR/Cas9 RNPs, and base editors, which makes it possible to
edit genes in cells in a targeted way [121]. These LNPs offer many advantages, including
biodegradability, biocompatibility, and protection of genome-editing systems [122]. In
addition, LNPs are easily modifiable to improve delivery efficiency and accomplish cell- or
tissue-specific targeting (Figure 3B).

4.2.3. Virus-like Particle

In the context of lentivirus-based delivery systems for gene-editing therapies, re-
searchers have recognized the associated risks and have developed Virus-like particles
(VLPs) as an alternative approach (Figure 3C). VLPs are self-assembled structures com-
posed of structural proteins, resembling natural viruses but lacking a viral genome, thereby
preventing replication within host cells [123]. Recently, VLPs have garnered significant
attention, particularly in vaccine development [124]. Liu Qi et al., for instance, devised
a virus-like vector for co-delivering the CRISPR-Cas9 system and small-molecule med-
ications for the curative use of malignant tumors. Their VLP construct demonstrated
structural stability in the circulation, and western blot analysis revealed a 45.1% gene
editing efficiency, providing valuable insights for using VLPs to deliver CRISPR systems
for the treatment of disease [125].

4.2.4. Gold Nanoparticles

Since they do not react with chemicals and are safe for the immune system, gold
nanoparticles (AuNPs) with diameters between 1 and 100 nm have gotten much attention
as delivery vehicles for gene editing systems (Figure 3D) [126]. Their low toxicity and
high efficacy make them a promising alternative for safely delivering genes [127]. The
size and intracellular retention time of AuNPs influence their effectiveness as in vivo
therapeutic delivery vehicles [128,129]. Shahbaz et al. created colloidal AuNPs to deliver
the CRISPR/Cas9 plasmid DNA system, demonstrating low toxicity and high editing
efficiency in hematopoietic stem cells [130].

Wang Peng et al. reported a strategy for using a multifunctional vector to deliver the
Cas9-sgPIk-1 plasmid (CP) for tumor therapy. Electrostatic interactions have been used to
assemble CP onto TAT peptide-modified AuNPs to produce a LACP complex. The TAT
peptide was used for nuclear targeting to reduce tumor gene expression. This strategy
effectively lowered the melanoma target gene PIK-1, resulting in a 65% decrease in protein
expression, and demonstrated significant tumor suppression in animal models [131].

4.2.5. Polymeric Nanoparticles

As drug delivery vehicles, polymeric nanoparticles have several advantages, such as
their small size, controlled drug release, ability to break down in the body, and lessening
immunogenicity (Figure 3E) [27]. CRISPR/Cas9 systems encased in polymeric nanoparti-
cles can work better by changing their functions [132,133]. PEI is a hydrophilic, cationic
polymer that electrostatically binds to negatively charged DNA, facilitating endosomal
escape [134]. Ryu et al. used PEI to get CRISPR/Cas9 into Neuro2a cells. They had over
70% transfection efficiency and around 20% insertional deletion efficiency. However, the
high cationic charge of PEI can lead to increased toxicity, limiting its application in vivo and
in clinical settings [135]. Abbasi et al. also made poly (ethylene glycol) polymer micelles
that enclose Cas9 mRNA and sgRNA for efficient delivery to cells and protect sgRNA
from being broken down by enzymes. They demonstrated in vivo gene editing using these
multimeric micelles in animal models [136].

5. Current Status of Genome-Editing Clinical Trials

The CRISPR system has emerged as a prominent gene-editing tool in clinical research,
demonstrating its potential in various applications, including vital gene screening, cancer
immunotherapy, and the treatment of genetic diseases [137]. CRISPR/Cas technology has
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been widely used for genome editing in bacteria, plants, animals, and humans, allowing
for the rapid generation of disease models and therapeutic strategies for human genetic
disorders [138,139]. Animal models, like mice, rats, piglets, and non-human primates,
have been used to study gene editing with sgRNA, Cas9, or mRNA both in vivo and
in vitro [140]. However, the susceptibility of free sgRNA to nucleases limits its therapeutic
effectiveness [141]. Researchers have focused on making new sgRNA delivery vectors, in-
cluding viral and non-viral vectors, to improve the efficacy of gene delivery for both in vivo
and in vitro applications [142,143]. This has made gene editing a more promising therapy.

In recent years, gene therapy for Leber’s congenital amaurosis (LCA), a rare inherited
retinal disease, has made significant progress. The FDA approved Luxturna’s marketing
approval in December 2017 [144]. Notably, in 2020, an 8-year-old child with LCA treated
with Luxturna demonstrated significant improvement in vision [145]. For treating LCA10,
a clinical trial employing CRISPR gene editing technology is currently underway, and
preliminary results were recently published. In addition, over 40 genetic medicines are
currently in clinical trials for treating ocular genetic diseases in vivo [146].

In the clinical management of thalassemia, the two most prevalent gene editing
strategies are the induction of fetal hemoglobin (HbF) expression and the precise repair
of mutations in the HBB gene [147]. In August 2022, Wu Yuxuan’s East China Normal
University team conducted a Phase I/II clinical trial with two children who achieved
independence from blood transfusions for up to 16 months after transplantation. Notably,
there were no significant adverse effects observed [148]. Ongoing research is enhancing
the adaptability of the CRISPR system and investigating gene editing tools for treating
other diseases, including liver diseases [149], are also underway. Although gene editing
clinical trials for inherited diseases are still in their infancy, the unique pathogenesis of
these conditions makes CRISPR/Cas9 a promising and soon-to-be-available strategy for
treating inherited diseases.

6. Conclusions and Future Directions

The advent of CRISPR/Cas gene editing technology has significantly accelerated the
development of gene editing therapies. Extensive preclinical studies have shown that
CRISPR/Cas9 and its offshoots, such as single-base and bootstrap editors, can accurately
remove or fix mutations in individual genes that cause disease. In addition, these tech-
nologies can be used to modify disease-associated genes, which may have therapeutic
applications. Numerous clinical trials employing CRISPR/Cas-based genome editing to
treat various genetic diseases and cancer have been approved, with in vivo applications
making limited progress. However, ongoing research bears promise for the potential cure
of certain genetic disorders within the next 5–10 years using gene editing therapies.

Developing engineered nucleases, such as ZFN/TALENs and CRISPR/Cas9, has
paved the way for translating gene editing concepts into clinical practice. In the future,
CRISPR systems are anticipated to find more extensive applications in treating diverse dis-
eases, particularly cancer. In addition, gene editing technologies have facilitated advances
in cellular anti-aging, genetic diagnostics, and the creation of therapeutic medications. Al-
though off-target effects are still a concern in gene editing, advancements in gene delivery
vectors have increased delivery efficiency and decreased toxicity, bringing gene editing
closer to clinical application. Genome editing has the potential to reveal the underlying
biological mechanisms underlying disease development and progression through sus-
tained research and international scientific collaboration, thereby offering novel therapeutic
approaches and advancing the field of life sciences.
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