
Citation: Grillberger, K.; Cöllen, E.;

Trivisani, C.I.; Blum, J.; Leist, M.;

Ecker, G.F. Structural Insights into

Neonicotinoids and N-Unsubstituted

Metabolites on Human nAChRs by

Molecular Docking, Dynamics

Simulations, and Calcium Imaging.

Int. J. Mol. Sci. 2023, 24, 13170.

https://doi.org/10.3390/

ijms241713170

Academic Editor: Kuenyuh Wu

Received: 28 July 2023

Revised: 10 August 2023

Accepted: 12 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Structural Insights into Neonicotinoids and N-Unsubstituted
Metabolites on Human nAChRs by Molecular Docking,
Dynamics Simulations, and Calcium Imaging
Karin Grillberger 1, Eike Cöllen 2 , Claudia Immacolata Trivisani 3, Jonathan Blum 2 , Marcel Leist 2

and Gerhard F. Ecker 1,*

1 Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
2 In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
3 Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
* Correspondence: gerhard.f.ecker@univie.ac.at

Abstract: Neonicotinoid pesticides were initially designed in order to achieve species selectivity
on insect nicotinic acetylcholine receptors (nAChRs). However, concerns arose when agonistic
effects were also detected in human cells expressing nAChRs. In the context of next-generation
risk assessments (NGRAs), new approach methods (NAMs) should replace animal testing where
appropriate. Herein, we present a combination of in silico and in vitro methodologies that are used
to investigate the potentially toxic effects of neonicotinoids and nicotinoid metabolites on human
neurons. First, an ensemble docking study was conducted on the nAChR isoforms α7 and α3β4 to
assess potential crucial molecular initiating event (MIE) interactions. Representative docking poses
were further refined using molecular dynamics (MD) simulations and binding energy calculations
using implicit solvent models. Finally, calcium imaging on LUHMES neurons confirmed a key event
(KE) downstream of the MIE. This method was also used to confirm the predicted agonistic effect of
the metabolite descyano-thiacloprid (DCNT).

Keywords: neonicotinoids; pesticides; metabolites; nAChR; docking; molecular dynamics simulations;
calcium imaging

1. Introduction

Complex toxicological endpoints and their adequate assessment are major challenges
in the field of predictive toxicology. Moreover, this field of research is currently facing a
paradigm shift, leading towards alternatives to classical animal testing strategies. Next-
generation risk assessments (NGRAs) are a new way to assess the assurance of the safety
of chemicals and drugs by applying modern, human-centered approaches. This implies
the use of new approach methodologies (NAMs), such as in silico and in vitro tools, where
appropriate. In this context, the implementation of adverse outcome pathways (AOPs) is
very useful, since they link a molecular initiating event (MIE) to several key events (KEs),
which eventually leads to adverse toxicological outcomes. Modern tools, such as QSAR,
machine learning, and artificial intelligence, play an increasing role in (computational)
toxicology and, thus, in NGRAs [1–3].

Evidence from previous studies suggests that exposure to environmental toxicants can
lead to developmental neurotoxicity (DNT), which can manifest in neurodevelopmental
disorders like autism, an increased incidence of attention deficit/hyperactivity disorder
(ADHD), or cognitive deficits [4,5]. Addressing the urgent need for an integrated approach
to testing and assessment (IATA) for DNT [6], an in vitro test battery was established
recently [7]. There is already an AOP framework naming eight MIEs that are linked to
DNT [8]. However, the list of target proteins involved in different cell signaling pathways
is by no means comprehensive [9]. Some of the proteins involved in the MIE of DNT
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comprise neurotransmitter receptors and ion channels. For instance, nicotinic acetylcholine
receptors (nAChRs) could be putative targets. Furthermore, the underlying gene was
mentioned in a general list for developmental and reproductive toxicology (DART) [10].
These ligand-gated ion channels are members of the cys-loop-receptor family, including the
5-HT3, glycine, and GABA receptors, and they are, therefore, composed of five homo- or
heteromeric subunits. The central pore becomes permeable for ions upon agonist binding to
the orthosteric binding site, which is located between two adjacent subunits of the complex.
A group of aromatic tyrosine and tryptophan residues, originating from loops A–C and
D–F in the principal and complementary subunits, respectively, line the binding pocket.
Notably, different conformational states are exhibited, depending on the activation state
and/or the bound ligand [11].

Amongst the potentially triggering molecules for human nAChRs are a group of
pesticides called neonicotinoids. Despite recent concerns regarding potential human expo-
sure [12–14] and adverse effects [15,16], they are still widely used for urban and agricultural
purposes. Originally, these chemicals were designed in order to achieve selective toxicity
in insect receptors [15], but recent studies suggest that some of them probably also effect
neuronal signaling in human cells [17,18]. In particular, nicotinoid metabolites, such as the
desnitro derivative of imidacloprid, are suggested to display similar agonistic activities to
the prototype neurotoxicant nicotine [17]. In this context, two IATA case studies (numbers
4 and 5), which were published in 2021, showcased novel methodologies that were used for
the evaluations of acetamiprid, imidacloprid, and its desnitro metabolite [19]. Generally,
regulatory authorities emphasize the importance of including metabolites and metabolism
in toxicological risk assessments. This is particularly crucial considering the fact that
there are some cases in which metabolism leads to toxification [20–22]. It is assumed that
other neonicotinoids may also result in more active metabolites, like descyano-thiacloprid
(DCNT) and descyano-thiacloprid-olefin (DCNTO). However, there are few published data
available concerning these metabolized compounds in humans. Therefore, the aim of this
study is to provide an increased understanding of whether and how further nicotinoid
metabolites, DCNT and DCNTO, are also involved in one of the MIEs of DNT, which
would be represented by binding to some of the most abundant isoforms of nAChRs,
namely, α3β4 and α7. This relates to the DNT-associated AOPs 12 and 13 [23,24], since the
underlying pathway starts with receptor binding, which leads to a chain of effects similar
to the hypothesis proposed herein. The tiered approach presented herein combines in vitro
and in silico tools. Molecular docking, molecular dynamics (MD) simulations, and binding
energy calculations serve as computational tools that help to gain detailed insights into
binding to human target proteins. Moreover, a suitable in vitro assay (calcium imaging
on LUHMES cells) demonstrates that a triggering effect can be detected for the descyano
metabolite DCNT at a cellular level, which is similar to the prototype agonist nicotine. This
study aims to contribute to this growing area of research by using NAMs in the context
of hazard identification and risk assessment, by exploring the strengths and limitations of
combining in silico and vitro approaches.

2. Results and Discussion
2.1. Ensemble Docking Analysis

Molecular docking can serve as a structure-based tool to elucidate binding modes and
to prioritize ligands that are more likely to bind to the protein of interest [25]. The docking
algorithm places multiple conformations of the ligand into the previously defined binding
site grid by exhaustively searching for possible locations and orientations. After refining
the initially large number of docking poses, empirical scoring functions are applied. They
account for favorable receptor–ligand interactions, penalize steric clashes or violations of
physical principles, and are reported in kcal/mol [26,27]. Therefore, more negative values
of docking scores indicate energetically more stable binding complexes. Depending on
different (re-)scoring methods, alternative docking poses can be amongst the top-ranked
ones that represent the best-docked version.
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Within this study, 15 compounds (Figure S1) were docked to multiple conformational
ensembles of the nAChR isoforms α3β4 and α7. The representative final docking modes in
each protein structure were selected within the top 5 ranked poses based on the docking
score and visual inspection to further investigate the binding modes. By assessing the
docking performance of the ensemble structures using a Spearman correlation matrix, the
ability to reproduce the experimental ranking is evaluated.

Docking to the α3β4 ensembles results in comparable Spearman rank correlations
using the docking score and experimental IC50 [28,29] as metrics (Table S1). Interestingly,
the antagonist-bound structure including the co-crystallized water molecule in the binding
site (indicated as water set 1, i.e., 6pv8-ws1) had the best performance, reporting a positive
ranking correlation of 0.81 when the docking score was used as a metric (Table 1).

Table 1. Spearman ranking correlation from ensemble docking analysis of docking scores and dG
binding energy of 15 (neo-)nicotinoid compounds (Figure S1) and experimentally derived IC50 values
in nAChR α7 (7kox, 7koq, 7koo) and α3β4 structures (6pv7, 6pv8).

α7 α3β4

PDB-ID-water set 7kox-ws1 7kox-ws2 7koq 7koo 6pv7-ws1 6pv7-ws2 6pv8-ws1 6pv8-ws2
Docking score 0.75 0.7 0.64 0.0089 0.75 0.66 0.81 0.74

dG bind 0.57 0.54 0.6 0.3 0.53 0.38 0.43 0.45

Regarding the α7 isoform, three different conformational states of nAChR were avail-
able. The activated (PDB-ID: 7kox) and desensitized (PDB-ID: 7koq) structures are relatively
similar with respect to the RMSD of the ECD (0.777, calculated using the align tool in Py-
mol [30]). The resting state of the receptor is represented by PDB-ID: 7koo. This structure is
characterized by an open conformation of loop C, which leads to an increased size of the
binding pocket. The result from ensemble docking indicates that the resting conformation
of nAChR α7 has the worst ability to emulate experimentally derived binding affinities.
This is evident from the low Spearman ranking correlation of docking score and delta
G binding energy to experimentally derived IC50 values. A likely explanation for this
lower correlation is that relatively small ligands are accommodated better in the binding
pocket of the activated or desensitized state. In these conformations, the ligands exhibit
a smaller solvent-accessible surface area (which is also considered in scoring functions)
and have increased possibilities to form interactions with residues within the binding site.
Nevertheless, it is important to also consider receptor flexibility, which can essentially not
be examined when a semi-flexible docking protocol is applied. Moreover, studies on ho-
mologous acetylcholine binding proteins (AChBPs) lead to the assumption that, depending
on the affinity of nAChR ligands, different conformational states are stabilized [31]. This
implies that antagonists would rather stabilize the resting (like α-bungarotoxin in 7koo
(α7)) or desensitized (7koq (α7), 6pv8 (α3β4)) state. On the contrary, agonists including
nicotine and endogenous acetylcholine display a higher affinity for the activated (7kox (α7),
6pv7 (α3β4)) and desensitized state. Since the Spearman correlation of the resting state
reported basically no ranking correlation (0.0089) between experimental IC50 and docking
score, a putative hypothesis would be that active neonicotinoids show higher affinity for
the activated and desensitized conformations of nAChR (Table 1). Therefore, due to the low
Spearman correlation of PDB-ID 7koo, this structure was excluded from further refinement
using MD simulations, since this strategy aims for in-depth characterization of the binding
modes of small ligands. Another rationale for this decision was the better comparability
between the two structures per nAChR isoform α7 (7kox, 7koq) and α3β4 (6pv7, 6pv8).

2.2. Ensemble Docking and Representative Binding Poses in nAChRs α7 and α3β4
2.2.1. Imidacloprid (IMI)

Docking IMI to the structures of nAChR α7 and α3β4 revealed two distinct binding
modes that are inverted to each other. One binding orientation is characterized by a similar
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orientation of the chloro-pyridine ring, as also reported by other nicotinoid compounds.
This common binding mode was also co-crystallized (PDB-ID: 2zju [32]) with analogous
AChBPs of the model organism Lymnaea stagnalis (great pond snail). In this binding mode,
the heteroarylic ring is able to undergo a favorable π–π interaction with Trp148 (Trp149
in α3β4), which stabilizes the pyridine ring of nicotine. Additionally, halogen bonds
would be possible in residues of the complementary subunit, namely Leu108, Gln116, and
Leu118 in the α7 isoform. In α3β4, a halogen bond is only detected with the hydrophobic
Leu123. Regarding the electronegative nitro moiety which points towards the tip of loop
C, stabilizing cation–π interactions to the side chains of Trp148 and Tyr187 are predicted
from the docking study of the α7 subtype. When this complex was subjected to a 50ns MD
simulation, a hydrogen bond analysis revealed that an interaction with the sidechain of
Gln56 of loop D would be possible in approximately 26% of the trajectory frames. In the
heteromeric α3β4 isoform, the nitro group is reported to interact with two tyrosine residues
from loop C at positions 190 and 197. Hydrogen bond analysis of the respective 50 ns
trajectory identified interactions with Trp59, Trp149, and Tyr190 from the α3-chain and with
Arg83 from the β4-chain in 7.78%, 16.37%, 5.39%, and 10.58% of the frames, respectively
(Figure S2A,C).

Interestingly, a second binding mode was observed in the docking analysis that is
essentially inverted to the above-described common mode. This inverted binding mode
has previously been reported by photoaffinity labelling experiments, where the pyridine
ring carried a photoactive group and contacted an amino acid in Lymnaea stagnalis [33],
which is equivalent to Tyr167 in human nAChR α7. The docking analysis also suggested a
second, inverted binding mode, where the pyridine ring is stabilized by three π–π stacking
interactions to amino acids Trp54 of loop D, Trp148 of loop B, and Tyr92 of loop A. A
hydrogen bond analysis of the α7-complex after simulating for 50 ns also showed that the
backbone of Leu118 from the complementary subunit interacts in approximately 68% of the
collected trajectories. Concerning the inverted mode of IMI in α3β4, Trp59 and Tyr197 are
predicted to stabilize the pyridine ring via π–π interactions. Analysis of hydrogen bonds
from the subjected trajectory reveals interactions with Tyr197 and Trp149 in 13.77% and
14.37% of the frames, respectively (Figure S2B,D).

2.2.2. Desnitro-Imidacloprid (DNIMI)

DNIMI exclusively showed common nicotine-like binding modes that were character-
ized by a positioning of the pyridine ring analogous to the one of co-crystallized epibatidine.
In a similar way to the common binding mode of the parent compound IMI in α7, the
chlorine substituent is presumed to undergo halogen bonding to Leu108 and Gln116. In
α3β4, only Leu123 could serve as a halogen bonding partner. Regarding the imidazolidine
ring, the protonated nitrogen is predicted to form cation–π interactions with side chains
of Trp54, Trp148, and Tyr194, which is equivalently reported in α3β4 (Trp59, Trp149, and
Tyr197). Moreover, a hydrogen bond is formed with Tyr92 in α7, which could also be
confirmed by a MD trajectory analysis in 74.05% of the frames for tautomer-3 and in 99.85%
for tautomer-2. Analysis from docking to α3β4 revealed also hydrogen bonds with Trp149
and Ser148, which could be maintained for 60.68% and 22.16% of the simulation time,
respectively (Figure S3).

2.2.3. Thiacloprid (THIAC)

THIAC also exhibited two distinct binding modes that are inverse to each other
(Figure 1). The stacking partner for π–π interactions in the common binding mode is
predicted to be Trp148 in the α7-isoform and is hence similar to what has been reported for
nicotine and related structures. In α3β4, no stacking interaction was present in the common
binding orientation, but an additional hydrogen bond with Tyr93 is observed. However,
in the inverted binding mode, the respective stacking partner in α7 and α3β4 changes
to Tyr194 and Tyr197 of loop C, respectively. Notably, Leu118 from the complementary
subunit has been reported to form a hydrogen bond in this binding orientation for 5.1% of
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the simulated α7-trajectory (Figure S4A,B). An equivalent interaction was not seen in the
α3β4-isoform (Figure S4C,D).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 23 
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halogen bonds with Leu108 (also DCNTO) and Gln116 in the homomeric α7 subtype 
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Figure 1. Representative binding modes of thiacloprid (THIAC) in human nAChR α7. (A) The
common binding mode of THIAC (orange carbon atoms) in the nAChR α7 structure (PDB-ID: 7kox) is
similar to a homologous co-crystallized structure in AChBP; the nitrogen of the chloro-pyridine ring
faces towards loop E (and the central pore of the receptor), whereas the electronegative cyano-group
is pointing towards the tip of loop C. (B) Inverted binding mode of THIAC (purple carbon atoms) in
the nAChR α7 structure (PDB-ID: 7koq), where the cyano-group is oriented towards loop E and the
chloro-pyridine ring is directed towards the transmembrane domain. The protein backbone of the
receptor is shown in a ribbon representation with the principal and complementary subunits in blue
and gray, respectively.
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2.2.4. Descyano-Thiacloprid (DCNT) and Descyano-Thiacloprid-Olefin (DCNTO)

In an analogous way to DNIMI, the chlorine substituent of DCNT is expected to
form halogen bonds with Leu108 (also DCNTO) and Gln116 in the homomeric α7 subtype
(Figures S5 and S6). The protonated nitrogen in the thiazolidine ring is predicted to
interact with Trp148 and Tyr194 via cation–π interactions for both descyano-metabolites
DCNT and DCNTO. Additionally, DCNTO could form a cation–π contact with Tyr187.
Concerning DCNTO, the side chain of Trp148 could also serve as a stacking partner for
a π–π interaction with the thiazole ring. In the DCNT-α7 complex, hydrogen bonds are
possible with Tyr92 and Trp148, which are stable for 49.90%/34.33% and 63.87%/51.30% of
the MD simulation time (7koq/7kox). DCNTO forms hydrogen bonds with the backbone
of Trp148 for 70.66% and of Tyr92 for 34.33%/5.39% of the simulation time (7koq/7kox).
From docking to the α3β4 isoform, DCNTO shows π–π interactions with Trp59 and Trp149
from the principal subunit (Figure 2). Cation–π interactions are predicted for both DCNTO
and DCNT with aromatic residues Trp59, Trp149, and Tyr197. Analyzing the respective
trajectory for hydrogen bonds confirmed interactions with Trp149 for 54.49/63.67% of the
frames in the case of DCNTO and for 55.09/73.05% in the DCNT complex (6pv7/6pv8).
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Figure 2. Docked pose of DCNTO (pale green carbon atoms) superimposed with co-crystallized
nicotine (pink carbon atoms) in nAChR isoform α3β4 (PDB-ID: 6pv7). The position of the chloro-
pyridine ring is in alignment with the heteroarylic ring of nicotine and the positively ionizable
nitrogen substructure of the thiazol ring is stabilized via favorable interactions with residues from
the aromatic box (Tyr93, Trp149, Tyr190, Tyr197, and Trp59 from the principal (blue ribbon) and
complementary (gray ribbon) subunit, respectively).

To summarize, nicotinoid metabolites DNIMI, DCNT, and DCNTO are predicted to
have more cation–π interactions with the residues of the aromatic cage, which is similar to
the prototype developmental neurotoxicant nicotine [34]. Additionally, the thiazolyl ring of
DCNTO provides properties that would enable π–π stacking interactions with these amino
acids. Subsequent hydrogen bond analysis from the MD trajectories showed a similar
pattern for both nAChR isoforms α7 and α3β4; contacts with Trp148, Tyr92, Trp149, and
Tyr93 are predicted to be stable for a minimum of 50% of the simulation time. Contrary
to this, the parent compounds IMI and THIAC showed less consistent contacts with these
residues. However, the inverted binding mode from these two neonicotinoids in α7 exhib-
ited contacts between their electronegative nitro or cyano group and the nonpolar Leu118.
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2.3. Molecular Dynamics (MD) Simulation Analysis

In order to investigate the stability of the docked complexes of neonicotinoids (IMI
and THIAC) and nicotinoid metabolites (DNIMI, DCNT, and DCNTO), the representa-
tive docking poses were further refined using MD simulations. Moreover, we aimed to
investigate the proposed subtype selectivity for α3β4 over α7. The benefit of MD is that it
simulates physiological conditions, including solvent and ions. This helps to assess protein–
ligand complex stability and to confirm the binding hypotheses and main interactions.
Finally, binding free energy calculations using an implicit solvent model are conducted as
indicators for binding affinities [35,36].

RMSD Calculations

Analysis of RMSD (root mean square deviation) as a distance metric for the carte-
sian coordinates of structural models can be performed for different sets of reference
selections. In the context of stability assessments of protein–ligand complexes, the mean
RMSD of the molecule in the simulated trajectory of the complex can be considered as an
insightful metric.

From the mean RMSD analysis (Table 2), it is evident that the nicotinoid metabolites
(DNIMI, DCNT, and DCNTO) have an overall lower mean RMSD in comparison to the
parent compounds (IMI and TIHAC). This pattern applies for both nAChR models; in α7
ranging from 1.29 to 2.34 versus 2.14 to 3.87 and in α3β4 ranging from 1.37 to 2.46 versus
2.53 to 4.82, respectively. Moreover, the mean RMSDs of the inverted binding modes of the
neonicotinoids have lower values in both nAChR isoforms, indicating that this orientation
tends to be more stable in the binding site when compared to the common binding mode.
Additionally, RMSD plots of the two different starting conformations per nAChR isoform
are shown in Figures S7–S9.

Table 2. RMSD calculations from MD analysis. Protein structures of the starting conformation of
the ligands are indicated with PDB-ID. If a water molecule was present in the initial protein–ligand
complex obtained from docking studies, it is indicated as PDB-ID-ws1, whereas PDB-ID-ws2 indicates
that the co-crystallized water molecule was removed. PDB-ID alone indicates that there was no
co-crystallized water molecule.

Compound PDB-ID Mean RMSD Average Mean RMSD

α7

IMI
7kox-ws2 3.78

2.967koq 2.14

DNIMI
7kox-ws1 2.34

2.037koq 1.73

THIAC
7kox-ws1 3.87

3.157koq 2.43

DCNT
7kox-ws1 1.91

1.607koq 1.29

DCNTO
7kox-ws1 1.73

1.787koq 1.83

NIC
7kox-ws2 1.86

1.827koq 1.78

α3β4

IMI
6pv7-ws2 3.47

4.156pv8-ws2 4.82

DNIMI
6pv7-ws2 1.87

2.176pv8-ws1 2.46

THIAC
6pv7-ws1 2.53

2.786pv8-ws2 3.03

DCNT
6pv7-ws2 1.73

1.826pv8-ws1 1.91

DCNTO
6pv7-ws2 1.37

1.386pv8-ws1 1.38

NIC
6pv7-ws2 1.43

1.616pv8-ws2 1.78
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Generally, pairwise RMSD calculations provide additional information about related
conformational states which are sampled during MD simulations. This is performed by
calculating the RMSD as a distance metric of the molecule to each frame of the same or
different trajectory. In this way, 2D (pairwise) RMSD plots add information regarding
conformational convergence. Off-diagonal peaks of higher RMSDs (green) indicate that
previous states are not re-visited during the simulation. From the pairwise RMSD of the
trajectory of IMI in nAChR α7 (7kox-ws1), which exhibits a common starting orientation, it
is evident that two major conformational states are sampled in the 50 ns simulation time,
with one major transition occurring at around 300 frames (after 30 ns) (Figure 3A,C).
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Figure 3. RMSD plots of imidacloprid (IMI) in structures of human nAChR α7 (7kox, 7koq). (A) Plot
of the pairwise RMSD of the 50ns MD trajectory (500 frames) of the common binding mode of IMI in
nAChR α7 (PDB-ID:7kox) against itself. After 280 frames, which is equivalent to 28ns simulation time,
the only major conformational transition occurs. (B) Plot of the pairwise RMSD of the trajectories
of the common binding mode of IMI (IMI_common; 7kox) which was compared to the trajectory
of IMI in an inverted binding mode (IMI_inverted; 7koq). IMI_common converges towards the
conformational space of IMI_inverted during the last 310 simulation frames. (C) One-dimensional
RMSD plot of IMI equivalent to (A); a major conformational transition of the common binding mode
of IMI (orange curve) occurs after 280 frames. The inverted binding mode of IMI (purple curve)
shows one transition occurring at 180 simulation frames and reports an overall lower mean RMSD
than the common binding mode (see also Table 2).
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When the pairwise RMSD of two different trajectories is calculated, the similarity of
two conformational ensembles can be evaluated. These plots do not necessarily result
in a zero along the diagonal; however, blocks of low RMSD (blue) indicate that similar
conformational states are sampled. This method is applied in order to assess whether the
common and inverted binding modes are converging during the MD simulation. In the
case of α7, two blocks of low RMSD are evident. The blue spot in the top left corner of
Figure 3B would imply that, for the first 280 frames (28ns simulation time of the production
run), the common mode is in a similar conformational space to the docked starting position
of the inverted mode. Hence, the second blue block can be interpreted by the inverted
mode of IMI being, for most of the simulation time, in a similar conformational space to the
last 310 frames of the trajectory of the respective common binding mode. Therefore, two
major conformational states are sampled, while the common mode is converging towards
the inverted one at end of the simulated time.

2.4. nAChR Subtype Selectivity

Considering the fact that radioligand binding assays [29], as well as oocyte recordings
of the nAChR subtypes α3β4 and α7 in Xenopus laevis [17], suggested increased subtype
selectivity for the heteromeric isoform, we were interested in observing a similar effect
in MD simulations. However, there was no clear pattern detected when using the post-
processed binding energies as a metric. In the case of DNIMI, an average delta G (of the two
different starting conformations) of −40.84 versus −36.31 kcal/mol was reported, which is
in agreement with the suspected α3β4-subtype selectivity, but this was not the case for all
six ligands.

When the binding sites of these two isoforms are aligned, a major difference arises
from the change from polar Gln116 in α7 to nonpolar Leu121 in α3β4. When the structural
surface of the agonist-bound structures is superimposed, Gln116 seems to lead to a more
occluded binding site. Analysis of the MD trajectory of the inverted binding mode of
THIAC and IMI highlighted an interaction with this residue, which might hint subtype
selectivity. A previous study suggested an explanation for the inter-subtype selectivity of
an antagonist towards α3β4 over α4β2 of nAChRs by a less compact binding site leading
to better accommodation of the larger ligand, but also by weakening of hydrophobic van
der Waals interactions of agonistic nicotine-like structures with aromatic box residues [37].
Regarding the suspected inferior affinity of homomeric α7, a reason might be the absence
of an inter-subunit hydrogen bond between loops B and C, which was previously proposed
by Grutter et al. in 2003 [38]. Additionally, nAChR α7 is known for rapid desensitiza-
tion [11], which could also be a reason for the subtype selectivity which is observed in
in vitro assays [28,29]. Combining the structural information, i.e., the absence of an inter-
subunit hydrogen bond, with the fact that homodimeric receptors are known for rapid
desensitization [11] might point towards the underlying mechanism for subtype selectivity.

2.5. MM-GBSA Binding Free Energy Calculations
2.5.1. Postprocessing of Ensemble Docking Approach

Molecular-mechanics-based endpoint binding free energy calculations that apply an
implicit solvent model can add additional value to a docking study. This approach can
rescore generated docking poses and thus help to prioritize ligands with an increased
binding affinity. As it is an empirical approach that is highly dependent on the force field
that is used, cautious evaluation of the results is required.

Schrödinger software has regularly updated available force fields, so in order to inves-
tigate substantial differences, the oldest (OPLS_2005 [39]) and the latest (OPLS4 [40]) were
applied individually. The benefit of the former is a better comparability with previously
published screening results, since it has been the standard method for many years, whereas
the latter has improved treatment for molecular ions (i.e., a protonated nitrogen like in
nicotine) as well as for sulfur interactions. Since the main ligands of interest (THIAC,
DCNT, and DCNTO) all possess a sulfuric substructure, we assumed that the choice of the
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force field might have a substantial influence on the rescoring results and in consequence
also on the understanding of the binding mechanisms.

When comparing the ranking correlations from the ensemble docking approach of
the 15 ligands based on the delta G values, an inferior accuracy compared to the docking
score was observed. Notably, here, the binding pose selection per ligand was based on the
best glide_emodel score per ligand. By also incorporating a visual inspection and selecting
from the top five scored poses, an improved ranking accuracy according to the delta G
binding energy was achieved. Applying the OPLS4 and OPLS_2005 force field lead to
Spearman correlations with experimental values of 1 and 0.9, respectively. Therefore, in the
α7-isoform, the best Spearman correlation to the pIC50 values from a radioligand binding
assay [28,29] was achieved when the OPLS4 force field was applied. This means ranking
the (neo-)nicotinoid ligands from highest to lowest affinity (most negative to most positive
dG binding energy) results in DCNTO > DCNT > DNIMI > THIAC > IMI. Interestingly, a
very similar ranking order is predicted for the α3β4-subtype, where DCNT was slightly
better scored than its olefin derivative.

From postprocessing using the MM-GBSA method [41] implemented in Schrödinger
Software Suite version 21-1, it is also evident that the nicotinoid metabolites are predicted to
have an overall higher binding affinity in terms of the delta G binding energy and docking
score (Tables S1 and S2). This pattern is in agreement with the hypothesis that the loss of
the nitro or cyano group of neonicotinoids through metabolism causes increased activity in
human cells.

2.5.2. Postprocessing of MD Simulations

Subjecting trajectories of MD simulations to MM-GB(PB)SA to analyze different ener-
getic contributions of the ligand upon binding to the protein is a common practice in the
field of computational drug design [35].

In this study, endpoint binding free energy calculations using the molecular mechanics
generalized Born surface area (MM-GBSA) approach had better concordance with experi-
mentally derived values than the Poisson–Boltzmann surface area (MM-PBSA) method.
This is contrary to the results of predictions of the effects of mutations on ligand binding,
where MM-PBSA had a better accuracy [42]. However, prediction of mutational effects has
a greater focus on the properties of the protein, whereas the direction of research herein is
concentrated more on the distinct binding modes of ligands. Nevertheless, it is important
to assess both methods for a specific study in order to find the method that suits best.

We were able to observe a consistent pattern of nicotinoids (DNIMI, DCNT, and DC-
NTO) and prototype agonist nicotine (NIC) exhibiting a higher (in terms of more negative
values) contribution from electrostatic energy (GBSA eel) in both subtypes of nAChR (Ta-
ble 3). Conversely, neonicotinoid parent compounds (IMI and THIAC) on average showed
less negative binding energy values. A potential explanation for this observation probably
lies in the structure of both protein and ligands, because the protonated nitrogen subgroup
can be stabilized via cation–π interactions with aromatic residues that are nestling the
nicotinoid compounds. Also, the endogenous ligand, acetylcholine, possesses such a moi-
ety, which is an additional rationale for the observed effect. Furthermore, when entropy
calculations using a quasi-harmonic approximation [43] were incorporated into the estima-
tion of the binding energy (total delta S entropy), nicotinoids reported less negative values
in this term (Table 3). This indicates an additional positive entropic effect contributing to
an increased binding affinity.
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Table 3. MM-GBSA binding energy calculations of the MD trajectories, executed by MMPBSA.py.
Protein structures of the starting conformation of the ligands are indicated with PDB-ID, whether a
water molecule was present in the initial structure or not is indicated as ws1 or ws2, respectively.

Ligand PDB-ID dG Binding
Energy vdW Energy Eel Energy dG + Entropy Total Delta S

Entropy

α7

IMI
7kox-ws2 −27.08 −35.13 −10.15 8.43 −35.51

7koq −36.44 −42.91 −10.04 −1.13 −35.31

DNIMI
7kox-ws1 −36.31 −35.66 −163.17 −3.34 −32.96

7koq −36.31 −36.10 −169.96 −3.61 −32.70

THIAC
7kox-ws1 −33.77 −42.55 −1.12 −0.83 −32.94

7koq −33.50 −39.74 −12.52 0.12 −33.63

DCNT
7kox-ws1 −39.72 −39.44 −163.88 −7.15 −32.57

7koq −37.62 −37.05 −156.58 −4.81 −32.81

DCNTO
7kox-ws1 −35.33 −35.57 −155.57 −4.77 −30.56

7koq −36.77 −36.91 −153.18 −5.14 −31.63

NIC
7kox-ws2 −33.72 −31.41 −143.67 −3.29 −30.42

7koq −35.79 −31.13 −165.53 −6.32 −29.47

α3β4

IMI
6pv7-ws2 −25.34 −36.44 −11.51 11.86 −37.20
6pv8-ws2 −24.24 −35.16 −13.67 13.11 −37.35

DNIMI
6pv7-ws2 −44.21 −38.20 −147.71 −13.18 −31.03
6pv8-ws1 −37.48 −36.30 −127.50 −4.52 −32.96

THIAC
6pv7-ws1 −28.50 −34.97 −22.51 4.73 −33.23
6pv8-ws2 −32.74 −38.60 −22.39 −0.47 −32.27

DCNT
6pv7-ws2 −35.63 −36.20 −129.06 −3.15 −32.47
6pv8-ws1 −36.38 −35.38 −124.08 −3.84 −32.54

DCNTO
6pv7-ws2 −37.23 −37.45 −119.56 −7.83 −29.40
6pv8-ws1 −37.74 −36.85 −135.41 −6.96 −30.78

NIC
6pv7-ws2 −36.62 −31.06 −120.78 −6.58 −30.04
6pv8-ws2 −33.42 −28.69 −120.71 −4.42 −30.00

2.5.3. Quantification of Uncertainty for Binding Energy Predictions

In order to assess the uncertainty of the predicted binding energy approximates for
NIC, DCNT, DCNTO, DNIMI, IMI, and THIAC for both studied nAChR subtypes α7 and
α3β4, we calculated the mean value of MM-GBSA dG, the 95% confidence interval, and the
standard uncertainty (s(x)/

√
n). This statistical analysis of the so-called observable, MM-

GBSA dG, which was derived from four independent simulations (n = 4), aims to express
the uncertainty of the calculations (Table 4). This analysis is amongst the best practices for
the quantification of uncertainty of molecular simulations [44]. Furthermore, it facilitates
interpretation and is especially needed in the context of toxicological risk assessments,
where regulatory authorities need to make a final decision for each compound. Therefore,
Table 4 provides an overview of the statistical uncertainty of the derived MM-GBSA
delta G binding energies. The predictions of the desyano-metabolites of THIAC, DCNT,
and DCNTO have the lowest standard uncertainty among the nicotinoid metabolites, as
their binding energies are in the narrowest range. This strengthens the reliability of their
prediction for increased binding affinity with human nAChR compared to the parent
compound, which therefore represents a similar pattern to IMI and DNIMI that has been
observed in a previous study [17]. Moreover, all nicotinoid metabolites, DCNT, DCNTO,
and DNIMI, report even more negative mean MM-GBSA dG binding energies when
compared to the reference compound nicotine. This indicates that nicotinoid derivatives
are predicted to be more active than nicotine itself with respect to nAChR binding, which is
contrary to the predictions for the neonicotinoid parent compounds.
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Table 4. Statistical uncertainty of observable (MM-GBSA delta G (dG) binding energy).

Ligand Mean MM-GBSA dG 95% Confidence Interval Standard Uncertainty

NIC −34.89 −37.39 −32.38 0.55
DCNT −37.34 −40.18 −34.49 1.110

DCNTO −36.77 −38.41 −35.12 1.198
DNIMI −38.58 −37.80 −35.86 1.374

IMI −28.27 −37.13 −19.42 1.953
THIAC −32.13 −35.04 −29.22 1.243

2.6. Single Cell Calcium Measurements

LUHMES cells are a suitable in vitro system for the quantification of neonicotinoid
signaling through nAChRs. In our previous study, we showed that parent neonicotinoids
are less potent than nicotine (NIC) itself by a factor of ten [18]. Docking studies, molec-
ular dynamics simulations, and binding energy calculations propose that the metabolite
descyano-thiacloprid (DCNT) shows a potency similar to NIC. Therefore, we investigated
if DCNT exhibits a similar response in our Ca2+ imaging assay to NIC or the parent com-
pound thiacloprid (THIAC). In Figure 4, the results are depicted as % reactive cells ± SEM.
NIC, at its highest tested concentration of 100 µM, evoked a response from approximately
~42% of reactive cells. NIC caused an increase in reactive cells starting from 0.1 µM, with
approximately ~9% reactive cells in comparison to the untreated control (differentiation
medium) with approximately ~1% reactive cells. In comparison, the neonicotinoid THIAC,
at its highest tested concentration of 100 µM, evoked a response from approximately ~15%
of reactive cells. The parent compound caused an increase in reactive cells at 1 µM with ap-
proximately ~2% reactive cells compared to the untreated control. The descyano-metabolite
DCNT, at its highest tested concentration of 100 µM, evoked a response from approximately
~40% of reactive cells. DCNT caused an increase in reactive cells starting from 0.1 µM, with
approximately ~7% reactive cells compared to the untreated control (Figure 4). This leads
to the conclusion that DCNT shows a comparable potency and concentration response to
nicotine and is more potent than its parent compound THIAC.
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at a density of 60,000 cells/well and differentiated until DoD9. A total of 75 µL of the differentiation
medium was exchanged with 25 µL of Cal520-AM (5 µM) Ca2+ indicator solution 1h before measure-
ment. The number of cells responding to the respective stimulus is shown in the mean percentage
of reactive cells ± SEM. Cells were recorded as reactive when their response exceeded the mean of
the control plus three times the standard deviation of the untreated control. Concentration–response
curves for the treatment with NIC, THIAC, and DCNT at concentrations ranging from 0.001 µM
to 100 µM. The curves shown are NIC in pink squares, THIAC in orange triangles, DCNT in black
circles. Number of biological replicates N = 3.

3. Materials and Methods
3.1. Molecular Docking Studies

The crystal structures of nAChR isoforms α7 (PDB-ID: 7kox, 7koq, 7koo [11]) and
α3β4 (PDB-ID: 6pv7, 6pv8 [37]) were downloaded from the Protein Data Bank [45]. For
the protein structures of nAChR isoforms α7 and α3β4, which contain a co-crystallized
water molecule in the binding site, two versions were generated, and the presence or
absence of a water molecule is indicated as ws1 and ws2, respectively. This results in eight
protein structures overall, namely 7kox-ws1, 7kox-ws2, 7koq, 7koo, 6pv7-ws1, 6pv7-ws2,
6pv8-ws1, and 6pv8-ws2 [11,37]. For each complex, only two essential chains, A and B,
that form the binding site at their extracellular interface, were retained. Both proteins and
ligands (Figure S1) were prepared at pH 7.4 ± 0.5 using Protein Preparation Wizard and
Ligprep [46,47], keeping the remaining settings at their default values.

For the complexes co-crystallized with a small ligand (PDB ID: 7kox, 7koq [11] and
6pv8, 6pv7 [37]), the grid box center was defined by its respective coordinates. For the
resting state conformation of nAChR alpha7 (PDB-ID: 7koo [11]) that binds the alpha-
bungarotoxin peptide in the orthosteric site, the center of the binding site was defined
by the following residues: Tyr92, Asn93, Ser147, Trp148, Ser149, Tyr150, Tyr187, Glu188,
Cys189, Cys190, Lys191, Tyr194, Pro195 and Ile53, Trp54, Asn106, Val107, Leu108, Gln116,
Tyr117, and Leu118 from the principal (chain A) and complementary subunit (chain B),
respectively. The docking protocol uses the Glide XP (extra precision) scoring function [26]
within the virtual screening workflow of Maestro (Schrödinger Release 2021-1: Maestro,
Schrödinger, LLC, New York, NY, USA).

The suitability of the docking algorithm was assessed through a redocking procedure
of the co-crystallized ligand and validated through the RMSD calculation. If the docking
pose lay within 2 Angstroms (Å) of the crystallized pose, the docking protocol was consid-
ered as validated. This procedure was followed by an ensemble docking approach, where
multiple conformations of the protein were used [48].

The representative final docking modes in each protein structure were selected from
the top 5 ranked poses based on the docking score and a visual inspection. The resulting
docking poses were visualized with Maestro (Schrödinger, LLC, New York, NY, USA) and
Pymol (version 2.5) [30].

Considering the fact that docking studies have the tendency to under-sample the
conformational space of ligands in a target binding site, we aimed to enhance conforma-
tional sampling via molecular dynamics simulations. To enhance the scoring accuracy, the
binding energies of both docked and MD-simulated structures were calculated.

3.2. Binding Free Energy Calculations of Docking Results

Post-docking MM-GBSA (molecular mechanics-generalized Born Surface Area model)
minimization was performed using Prime-MMGBSA [41]. The latest OPLS4 force field [40]
was applied to 6 Å steps of the selected binding poses using the VSGB solvation model [49]
to yield insights concerning different energetic contributions to ligand binding.

3.3. Molecular Dynamics (MD) Simulation

The representative complexes obtained from the ensemble docking method of IMI,
THIAC, DNIMI, DCNT, DCNTO, and nicotine in the nAChR isoforms α3β4 and α7 were
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evaluated through MD simulations. Since the orthosteric binding site of interest is located
approximately 20 Å away from the membrane domain, the protein was cut just before the
TMD, so that only the ECD part was used for the simulation. The MD engine of choice
was NAMD software version 2.14 (University of Illinois at Urbana-Champaign, Urbana, IL,
USA), [50], freely available for academic use.

Preparation and parametrization of the protein–ligand complexes were performed
by applying the Amber force field (ff14SB for protein description [51]), which was imple-
mented in the AmberTools22 package [52] [53]. Contrary to the neonicotinoids, nicotinoid
metabolites were assumed to be protonated at physiological pH [29]; hence, they were
assigned a positive net charge using the am1-bcc method [54] of the antechamber module.

GAFF (generalized Amber force field [55]) was used to assign atom types, and the
complexes were solvated in a cubic TIP3P [56] water box of 10 Å. An appropriate number of
sodium and chloride atoms was added to achieve a neutralized system. After 10,000 steps
of initial system minimization, the system was heated up to 300 K with constant volume for
250 ps by applying the Langevin method and thermostat [57]. Particle mesh Ewald (PME)
was used for electrostatics [58,59], Periodic Boundary Conditions (PBC) were applied to
approximate an infinite system, and the SHAKE algorithm [60] was used for hydrogen
bond constraints. This was followed by a 250 ps equilibration run for achieving a 1atm
target pressure using Nosé–Hoover Langevin piston method control [61,62]. Finally, each
complex was simulated for 50 ns, using a 2 fs integration timestep, resulting in a total
simulation time of over 1 µs (6 ligands × 2 isoforms × 2 starting conformations × 50 ns).
The resulting trajectory from the production run contains 500 frames, where 10 frames
are equivalent to 1 ns simulation time because an integration time step of 2 fs was used,
and the frequency for saving the trajectory was every 10,000 steps. Van der Waals (vdW)
interactions were treated using the Lennard-Jones potential, which applies an analytical tail
correction to the reported vdW energy and virial equal to the amount lost due to switching
and cut-off of the LJ potential. vdW interactions were truncated at the cut-off distance,
set to 9.0. A cut-off introduces a discontinuity in the potential energy at the cut-off value.
As forces are computed by differentiating potential, a sharp difference in potentials may
result in nearly infinite forces at the cut-off distance. For visual inspections and analysis
of hydrogen bonds (the cut-off for donor–acceptor distance was 3.5 Å and 30◦ for the
donor–hydrogen–acceptor angle), VMD [63] was used. Additional RMSD (root mean
square deviation) analysis was performed using a script obtained from the MD Analysis
toolkit [64] that also enabled pairwise RMSD calculations. For the 1D RMSD plots, the
RMSD of the molecules was calculated using the built-in analysis tool “RMSD Trajectory
Tool” from VMD. The analyzed data were extracted and saved for better visualization. The
plots were generated using the python libraries matplotlib and pandas [65,66].

Postprocessing Analysis of MD Simulations

The MM-GBSA approach [67] was also applied as a post-processing method to the MD
simulation using cpptraj available in AmberTools [50,68]. Again, an implicit solvent model
was used. Intermediate snapshots were extracted from the MD trajectory to account for
conformational changes that occurred during the simulations [35]. Additionally, a potential
entropic effect was computed by a quasi-harmonic approximation [43].

3.4. In Vitro Approach
3.4.1. LUHMES Cell Culture

LUHMES cells were cultured as described before by Scholz et al. [69]. The 96-well
plates (Sarstedt, Nümbrecht, Germany) were coated with 100 µL PLO (50 µg/mL) (Sigma-
Aldrich, Merck, Darmstadt, Germany) in PBS (w/o Ca2+ and Mg2+) into each well. After
one night at 37 ◦C, the solution was discarded. The multi-well plates were then washed
three times with PBS. Afterwards, 100 µL of fibronectin (1 µg/mL) (Sigma-Aldrich, Merck,
Darmstadt, Germany) and laminin (1 µg/mL) (Sigma-Aldrich, Merck, Darmstadt, Ger-
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many) in PBS were added to each well and incubated overnight at 37 ◦C. The solution was
discarded directly before the use of the multi-well plates.

LUHMES cells were maintained in T75 flasks (Sarstedt, Nümbrecht, Germany) in a
proliferation medium. The medium consisted of advanced DMEM/F12 medium supple-
mented with N2 supplement (1×) (Invitrogen, Karlsruhe, Germany), glutamine (2 mM)
(Gibco, Rockville, MD, USA), and recombinant basic fibroblast growth factor (40 ng/mL)
(bFGF, R&D Systems, Minneapolis, MN, USA). Cells were split every two days when
reaching 80% confluency. Before splitting, the cells were washed once with DPBS, then
detached with 0.05% trypsin (Sigma-Aldrich, Merck, Darmstadt, Germany), collected in
non-supplemented medium centrifuged at 340× g for 4 min, resuspended in the medium,
and counted with a Neubauer chamber. The cells were then seeded in a T75 flask with
15 mL of proliferation medium or differentiation medium, respectively (day −1, pre-
differentiation). Three million cells were used for maintenance, three million were used for
pre-differentiation, and nine million were used for differentiation.

One day after seeding (day 0), the proliferation medium was exchanged for the
differentiation medium. The differentiation medium consisted of advanced DMEM/F12
medium supplemented with glutamine (2 mM) (Gibco, Rockville, MD, USA), cAMP (1 mM)
(Sigma-Aldrich, Merck, Darmstadt, Germany), tetracycline (2.25 µM) (Sigma-Aldrich,
Merck, Darmstadt, Germany), and glial cell-derived neurotrophic factor (2 ng/mL) (GDNF,
Bio-Techne, Minneapolis, MN, USA). The proliferation medium was aspirated, the flask
was washed with 10 mL DPBS, and afterward 15 mL of differentiation medium was added.

LUHMES cells were then cultivated for two days in the T75 flask and then seeded into
96-well plates at a density of 60,000 cells/well (206,897 cells/cm2) for experiments on day
9. On days 4, 6, and 8, half a medium exchange was performed with fresh differentiation
medium. Calcium signaling experiments were performed on day 9.

3.4.2. LUHMES Ca2+ Imaging

Ca2+ imaging was performed using a Cellomics Arrayscan VTI HCS Reader (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with an automated pipettor and an incuba-
tion chamber. Measurements were recorded at nominal 37 ◦C and 5% CO2. The Cellomics
Arrayscan allows for the recording of indirect changes in [Ca2+]i via a Ca2+-sensitive fluo-
rescent dye. The Cellomics Arrayscan VTI HCS Reader acquires the fluorescence signal of
one 96-well plate at a time. The integrated pipet unit allows a controlled compound admin-
istration into one well. Cells were imaged as fast as possible for 45 s at approximately 2 fps.
Compounds were administered automatically after 10 s of baseline recording. The images
were exported as 16-bit .tiff image files and analyzed in CaFFEE software version 2 [70].

LUHMES cells were differentiated for 2 days in a T75 flask. On differentiation day 2,
cells were seeded into 96-well plates at a density of 60,000 cells/well (206,897 cells/cm2) and
cultivated until differentiation day 9, if not indicated otherwise. Cells were incubated with
Cal-520 AM (AAT Bioquest) for 1 h at a concentration of 5 µM at 37 ◦C. The fluorescence Ca2+

indicator solution contained 1 µM/mL HOECHST-33342 (H-33342) (Sigma-Aldrich, Merck,
Darmstadt, Germany); for nuclear detection, PNU-120596 (10 µM) (Sigma-Aldrich, Merck,
Darmstadt, Germany); an allosteric modulator for the α7 nicotinic receptor, Probenecid
(1.54 mg/mL) (Thermo Fisher Scientific, Karlsruhe, Germany); an inhibitor of organic anion
transporters located in the cell membrane; and PluronicTM-F127 (0.4%) (Thermo Fisher
Scientific, Karlsruhe, Germany), a non-ionic tensid-polyol which helps with the dispersion
of the dye.

3.4.3. Calcium Fluorescent Flash Evaluating Engine (CaFFEE)

The CaFFEE enables the user to process and evaluate large quantities of image data. It
automatically identifies individual cells in mixed, heterogeneous populations and evaluates
their fluorescent signal. It enables the evaluation of the influence of a treatment on the
[Ca2+]i of hundreds of cells. The data can be exported in spreadsheet format. Moreover,
the image data can be processed for an optimized visual representation of the time-lapsed
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image data, which can be explored by setting the parameters for semi-automated data
processing [70]. The CaFFEE identifies cells automatically by additional staining with
HOECHST-33342 for structural features. After identification of a cell, the CaFFEE defines
each cell as a region of interest. The average fluorescent intensity of these pixels is measured
over a series of pictures, thereby obtaining time-dependent fluorescent values for each
cell. This information is then converted into curves from which different parameters can
be obtained.

With the CaFFEE, the timepoint of peak fluorescence can be obtained. Fluorescent
data for baseline recording allowed for the automated assessment of the ground state (F0)
and peak timepoint (F1) for all cells. The difference between base level and peak level in
fluorescence, ∆F = F1 − F0, was used for further data analysis.

The noise-level-based threshold, mean (∆F) + 3 × SD (∆F), defining a reactive or
non-reactive cell, was determined as follows: The mean ∆F value was calculated from all
wells that received a negative stimulus (differentiation medium). A cell was defined as
reactive when ∆Fstimulus > threshold or non-reactive when ∆Fstimulus < threshold.

4. Conclusions

Within this study, a common hypothesis was applied stating that noncovalent inter-
actions of protein–ligand complexes can be used to characterize the binding mode and to
explain differences in binding affinities. In this context, a higher affinity is due to more
beneficial interactions being formed in the binding site.

When an electronegative moiety is lost through metabolism (DNIMI, DCNT, DCNTO),
either via environmental causes or enzymatically [14], an increased binding affinity to-
wards human nAChRs can be expected, which was also predicted by the structure-based
approaches used in this study. Other metabolic changes, such as reduction to an additional
double bond, e.g., imidacloprid-olefin, would not cause equivalent drastic changes in
affinity, which has also been shown in our previous study [17]. The underlying mechanism
may be based on the increased stability of the nicotinoids in the binding site, which is
also reflected in binding energy estimates (including an entropic effect) and also in more
favorable interactions. Cation–π interactions seem to be one of the main driving factors for
the increased stability of nicotinoid compounds in a binding site [34].

For a description of the binding mode of neonicotinoid parent compounds, it is
important to consider that more than one binding mode is likely to exist in human nAChRs.
This is against the common hypothesis of only one representative binding mode, which
is often reported from co-crystallization experiments. Therefore, the issue arises that
during crystallization, multiple factors like detergents and freezing techniques influence
the derived structural models, which also have to be considered when, e.g., knowledge-
based approaches for binding mode reconstructions are applied [71]. This reinforces the
need for additional methods for binding mode elucidations, such as molecular docking and
MD simulations, since they also, at least partly, account for physiological protein flexibility.
When analyzing the results of structure-based computational approaches, it is also crucial to
consider that different scoring functions have an influence on ranking correlations and the
selection of “representative” poses. Nevertheless, these methodologies present a benefit in
that they generate 3D descriptors, since the triggering action of protein binding is also three-
dimensional in nature. Therefore, contacts with Trp148, Tyr92 and Trp149 residues and the
Tyr93 residue in α7 and α3β4, respectively, could serve as advanced structural alerts or as
descriptive inputs for machine learning models to indicate increased binding affinity to
nAChRs that are involved in potential AOPs (adverse outcome pathways) causing DNT
(developmental neurotoxicity). As an extension to this, transferring the binding modes to
toxophores and further applying them as advanced structural alerts for the classification
of moderate/acute effects on human nAChRs could be an additional application of the
work presented in this study. Furthermore, these structural insights help in understanding
one of the MIEs (molecular initiating events) for DNT. Importantly, different mammalian
nAChR subtypes exist and in silico models can present insights into compound–receptor



Int. J. Mol. Sci. 2023, 24, 13170 17 of 21

interactions for different subunits, as presented here for α3β4 and α7. However, in order to
gain confirmation that the docked compounds contact the discussed residues, photoaffinity
labelling experiments could provide the final proof. Alternatively, a radioligand binding
assay could also confirm the binding of DCNT, DNCT, and THIAC to nAChR α3β4.

Using the available knowledge, we constructed here a putative AOP that links nAChR
activation (by, e.g., neonicotinoids) to DNT (Figure 5). While the initial steps/events
are clearly defined, later KEs in this preliminary AOP have large uncertainties. Why
do we nevertheless feel that such an AOP is justified? The main reason is that there is
solid evidence that exposure to nicotine does indeed lead to adverse outcomes related to
classical DNT or to neural crest defects. This means that the beginning and end of such
an AOP are documented. Nicotine-induced neural crest disturbances are exemplified by
craniofacial malformations [72]. Examples of DNT effects are structural alterations in brain
regions (especially catecholamine systems), cognitive deficits, cortical dysfunctions, and
an increased incidence of attention deficit/hyperactivity disorder (ADHD) [73–78]. In
addition to this toxicological evidence for the existence of an AOP with nAChR linked
to DNT, there is also technical evidence that such types of AOP may be constructed and
accepted. Other AOPs for DNT, with receptor interactions as the MIE, exist, e.g., for NMDA
(N-methyl-D-aspartate) receptors [23,24]. The adverse outcomes, as observable in the
human population or in animal studies, are not a highly defined disease symptom or a
quantifiable pathology. They are better described as a large spectrum of potential cognitive
performance deficits, which vary considerably between species and individuals.
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Figure 5. Putative AOP (adverse outcome pathway) linking nAChR binding to potential adverse
outcomes related to DNT. The AOP is based on the assumed mode of action of nicotine, which
might apply also to certain neonicotinoids and their metabolites. KE3 might be triggered via
KE1 either directly or via KE2. At present, KE3 and the adjacent key event relationships are the
most uncertain elements of the putative AOP. More information on these processes is necessary.
MD: molecular dynamics; MIE: molecular initiating event; KE: key event; AO: adverse outcome;
MEA: microelectrode array.

The concept of endophenotypes as one form of adverse outcome helps to better
define AOPs related to DNT. This concept is very broadly used in psychiatry and has
been introduced into toxicology to allow the establishment of more robust
AOPs [79,80]. The basic assumption is that any external symptom (often hard to quantify)
must be linked to an altered network connectivity (structural or functional) in the brain [81].
This endophenotype may be assessed by classical toxicological methods (histology or neuro-
physiology). This would be more difficult for, e.g., attention deficits or an altered executive
function. One endophenotype may manifest in several exophenotypes and thus explain the
broad spectrum of potential adverse events. For instance, dopamine network disturbance
in basal ganglia may lead to hyperlocomotion and restlessness in rodents, but to delusions
in humans. For practical purposes, our suggested AOP has two sequential AOs. This
is not uncommon, as it is also the case, e.g., in AOP 3 (Inhibition of the mitochondrial
complex I of nigrostriatal neurons leads to parkinsonian motor deficits [82]). The two AOs
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(endophenotype and exophenotype) in this AOP are a loss of nigrostriatal dopaminergic
neurons (endophenotype) and parkinsonian motor deficits (exophenotype).

With these considerations, and since our experimental validation shows that also a key
event (KE) downstream of the MIE is activated by the metabolite DCNT, we provide an alert
for the potential involvement of thiacloprid in DNT. For further validation, investigations
of KE3, in which we postulate key neurodevelopmental processes (KNDP) are altered,
will be important. A promising tool will be assays using microelectrode arrays (MEAs) to
examine network functionality, which is closely linked to an altered endophenotype.

Herein, methodologies were applied that are at the intersection of drug design and
toxicology and that have been carefully evaluated. We paved the way for the integration of
structure-based tools with validation by in vitro methods as NAMs in NGRAs. A further
goal could be the specific tailoring of an in vitro and in silico test battery suitable for a
specific research direction. In this context, regulatory acceptance could be increased by
quantifying the uncertainty of an NAM approach and by eventually being able to perform
better human risk assessments.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713170/s1.
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