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Abstract: Over the years, silk fibroin (SF) has gained significant attention in various fields, such
as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its
remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining
regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can
be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now
understood that the dissolution method selected greatly impacts the molecular weight distribution
and structure of RSF, consequently influencing its subsequent processing and application. This study
comprehensively explores and summarizes different dissolution methods of SF while examining their
effects on the structure and performance of RSF. The findings presented herein aim to provide valuable
insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
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1. Introduction

Silk fibroin (SF) is an organic polymer material derived from natural silk, possessing
excellent mechanical properties [1,2], good biocompatibility [3], controllable biodegradabil-
ity [4,5], and ease of modification [6]. Silk fibroin can be converted into water-soluble regen-
erated silk fibroin protein (RSF) through a series of treatments. Under specific conditions,
RSF solutions can be processed into films, sponges, microspheres, gels, and nanofibers for
various applications [7], including biomedicine [8–10] (e.g., drug delivery carriers, wound
dressings, and tissue adhesion), tissue engineering [11–13] (e.g., tissue scaffolds), food
processing [14,15] (e.g., food additives and packaging), effluent treatment [16] (e.g., water
filtration membranes), optics [17,18] (e.g., nanolithography and optical fibers), electrochem-
istry [19–21] (e.g., electrocatalytic materials, supercapacitors, and nanogenerators), and
biosensing [22,23] (e.g., flexible wearable sensors and human–machine interaction).

Current evidence suggests that the molecular weight and protein structure of RSF vary
depending on the extraction method used [24–26], consequently impacting its mechanical
strength [27,28], degradability [29,30], biocompatibility [31], and thermal stability [32,33],
which in turn affect the processing and application of RSF materials. The extraction process
of RSF comprises four steps: degumming, dissolution, dialysis, and centrifugation [34].
Degumming involves heating raw silk in an alkaline aqueous solution to separate silk
fibroin from sericin, which dissolves in water. Silk fibroin devoid of sericin remains poorly
soluble in water due to the crystalline structure formed by the extensive repetitive hy-
drophobic motifs within the heavy chains of SF [35,36]. The dissolution step converts
insoluble SF into soluble RSF through the interaction between solvent molecules and SF,
facilitating subsequent processing. At present, there have been many studies on SF disso-
lution methods, such as LiBr [37], LiSCN [38], Ajisawa method [39], and Mu solvent [40].
Wang et al. summarized the SF fiber dissolution systems in their recent review [41].
Other reviews summarized the forming process of RSF, including compositions [42,43],
nanofibers [44], and chemical modification of silk fibroin [45]. However, these excellent
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reviews focused on more than the extraction methods, forming process, and application
rather than the relationship between the extraction methods and characters of RSF and the
effect of RSF properties on the forming process and application. Actually, the characters
of RSF were deeply affected by the extraction process, and the properties of RSF deeply
influence the further forming process and features of RSF materials and their applications.

This review aims to elaborate and summarize various dissolution methods of SF while
analyzing the effects of different SF dissolution methods on the structure and performance
of RSF, as shown in Figure 1. Overall, our findings establish a systematic link between the
dissolution process and the structure and characters of RSF, providing valuable references
for the future forming process, research, and application of RSF in diverse fields.
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Figure 1. Schematic showing the preparation and subsequent processing of regenerated silk fibroin (RSF):
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(a) The preparation process of RSF comprises four steps: degumming, dissolution, dialysis, and
centrifugation. (b) Different dissolution systems for degummed silk. (c) Under specific conditions,
the prepared RSF solutions can be processed into various forms of materials. (d) The properties of RSF
and RSF solutions, including molecular weight, secondary structure, micromorphology, rheological
properties, and gelatinization. (e) The properties of RSF products, including mechanical properties,
thermal stability, biocompatibility, degradability, and breathability.

2. Silk Fibroin

Silk protein consists of silk fibroin (70%), sericin (25%), and minor impurities (5%) [46].
The silk structure mainly comprises two silk fibroin fibers and is covered with a sericin
layer containing small nonprotein impurities [47]. Sericin is a water-soluble protein with a
loose and disordered spatial structure, which plays the role of lubrication, protection, and
adhesion in cocoon silk [48]. Silk fibroin is a fibrous protein composed of a heavy chain
(H-chain) (390 kDa), light chain (L-chain) (26 kDa), and glycoprotein P25 (30 kDa) at a
molar ratio of 6:6:1 [49]. SF contains 18 kinds of amino acids, with nonpolar amino acids,
such as glycine, alanine, and valine, accounting for about 70.5% and polar amino acids,
such as serine and tyrosine, accounting for about 29.5% [50]. The H-chain of SF consists
mainly of 12 extensive repetitive domains separated by 11 minor nonrepetitive domains [2].
The repetitive domains are composed of a high content of Gly-X (X = Ala, Ser, Thr, and
Val) dipeptide repeat motif and can organize themselves into microcrystalline domains via
intramolecular/intermolecular forces, such as hydrogen bonding, van der Waals forces,
and hydrophobic interactions [36,51]. The nonrepetitive domains with irregular but con-
served GT~GT sequences are the linkers between the microcrystalline domains [52]. The
amino acid composition of the nonrepetitive domains is diverse, including glutamic acid,
aspartic acid, arginine, lysine, and proline [53]. The contained proline residue can reverse
the orientation of the chains of the H-chain through the formation of a five-membered
ring on the backbone, which may be a major factor for antipolar β-sheet formation [52].
Furthermore, the N-terminal 151 residues and C-terminal 50 residues of the H-chain are
completely nonrepetitive and amorphous [35,52]. The L-chain shows greater hydrophilicity
and elasticity than the heavy chain, due to nonrepetitive amino acid sequences with low or
no crystallinity [54].

In the solid state, there are two crystal forms of Silk I and Silk II in silk fibroin [55]. Silk
I is mainly composed of random coil/β-turns (type II), which constitutes the amorphous
or semicrystalline domain of SF, and its content is positively correlated with the elasticity
of silk fibers [56]. Silk II is the main crystalline domain of SF, composed of antipolar
β-sheet formed by repeated folding of (GAGAGS)n through β-angles, and its content
determines the mechanical strength of the silk fibers [57]. When treated with a specific
solvent, SF molecules gradually dissolve due to changes in the conformation and interaction.
Different solvents can affect the conformation and molecular weight of RSF, which affect
the properties of membranes, nanomaterials, and scaffolds prepared with RSF as substrates.

3. SF Degumming

Degumming is an integral step for RSF preparation, potentially affecting the structural
integrity of RSF. Extensive methods have been reported on the process of degumming,
including alkaline degumming [58,59], acid degumming [60], biological degumming [61],
and physical degumming [62]. In particular, Na2CO3 is the most common degumming
reagent with the advantages of simple operation and a high degumming rate [34,63–65].
However, the Na2CO3 solution destroys the molecular chains of fibroin proteins due to
its strong alkalinity and deteriorates the mechanical properties and thermal stability of
the RSF materials [66–68]. The excessive heating temperature and time will unavoidably
increase the degradation of SF [69,70]. As a destroyer of hydrogen bonds, urea can alter the
conformation of the silk sericin molecule through the breaking of hydrogen bonds, thereby
promoting degumming [71,72]. At the same solubilization conditions, RSF prepared by
urea degumming has a higher molecular weight, crystallinity, and solution viscosity than
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that prepared by Na2CO3 and citric acid degumming, which is advantageous for the prepa-
ration of high-performance RSF materials [73–75]. Organic acids are generally milder and
less destructive to SF than alkali [76]. With the treatment of citric acid, the structure and
properties of SF fibers are preserved to the maximum extent, but the degumming rate is
slow [77]. As a new green degumming agent, the protease efficiently hydrolyzes specific
sites of the sericin at low temperatures of 50–65 ◦C [78]. The ultrasonic method can disinte-
grate silk sericin agglomerates into small particles at 60 ◦C through high frequency acoustic
energy. It is difficult to obtain a high concentration of RSF due to its low degumming
rate [79].

Common degumming processes of silk and their impact on SF are summarized in
Table 1.

Table 1. The common degumming processes of silk and the effects on SF.

Degumming
Reagents/Types Concentration Temperature,

◦C
Time,
min

Cocoon-to-Liquor
Ratio Effects on SF References

Na2CO3

1 g/L Na2CO3 90 60 1:40

SF fibers display a clean fiber
surface with only a few

deposits and a light coating
of the residual sericin.

[62]

0.2 mol/L
Na2CO3

90 30 -

The light and heavy chains
of SF are slightly degraded,

and the structure is
relatively complete.

[70]

0.5 wt%
Na2CO3

100 30 1:40

Various rod-like deposits
instead of individual fibrils
are visible on the surface of

the degummed SF.

[66]

Urea 8 mol/L Urea 90 180 1:30

SF fibers have an average
particle diameter of 221.1 nm
with little or no silk sericin

residue on the surface.

[75]

Citric acid 15 wt% Citric
acid 98 30 1:20

SF fiber surface is highly
smooth, showing very fine
longitudinal striation. The
molecular conformation

does not change and shows
β-sheet and random coil.

[77]

Serine protease crude enzyme 50 120 -

SF fibers are bleached, and
the surface is extremely

smooth without silk
sericin residue.

[80]

Ultrasonic
treatment - 60 30 1:200

SF fibers have sericin
residue, and mechanical

strength decreases.
[65]

4. SF Dissolution Processes and Their Influence on RSF Characters
4.1. Methods and Properties of RSF by Acid Dissolution

Acids capable of dissolving SF fibers include inorganic acids, such as phosphoric
acid [81,82], sulfuric acid [83], and hydrochloric acid [84], and organic acids, like formic
acid [85]. In 1989, Ishisaka successfully dissolved fibroin using concentrated phosphoric
acid [81]. When SF fibers are treated with phosphoric acid, they lose most of the inter-
molecular bonds and transform from a stable β-sheet structure to an unstable random
coil, destroying the SF crystal structure [82]. Over time, the silk peptide chain gradually
undergoes hydrolysis. The viscosity of the solution decreases with an increasing degree
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of hydrolysis [81]. Films prepared from phosphoric acid-extracted fibroin have tunable
nanostructures, excellent stretchability, outstanding biocompatibility, and good wound-
healing effects, which suggest they are promising candidates for full-thickness skin defect
repair [86]. Phosphoric acid also allows the preparation of highly stable Pickering emulsions
with regenerated nanosilk as the emulsifier for the food and cosmetic industries [87].

Sulfuric acid can be harnessed to prepare silk fibroin peptides with good water solubil-
ity, but the hydrolysis process destroys tryptophan and partially damages serine, tyrosine,
and threonine [83]. Compared with sulfuric acid alone, microwave-assisted dissolution
can shorten the dissolution time by 4 h and increase the yield of silk peptide to 69% [88].
Additionally, the extent of hydrolysis affects the length of the peptide chain and the content
of free amino acids [83]. Sulfuric acid can also be used to prepare nanofibers with the origi-
nal crystal structure of silk by directly exfoliating degummed SF [89]. The silk nanofibers
have excellent stability at either acidic (pH = 3) or alkali (pH ≥ 7) conditions, which can
be fully blended with polymers in different pH environments to prepare new advanced
composite materials [89]. Sulfuric acid can also be used to prepare silk protein nanowhisker
suspensions, which can be used to strengthen the RSF (extracted by 9.3 M LiBr) material
films [90].

Hydrochloric acid exhibits a strong hydrolysis effect on SF, resulting in a high content
of oligopeptides and free amino acids in the prepared RSF solution [84]. Hydrochloric
acid dissolution is often used to prepare soluble SF powder, showing great potential in the
development of functional foods [91].

Formic acid, on its own, cannot disrupt the Silk II crystalline structure of natural
SF for dissolution [92]. However, the molecular weight and crystallinity of RSF decrease
compared with those of natural SF, enabling formic acid to independently dissolve RSF
fibers [93,94]. Formic acid is commonly mixed with acid, such as phosphoric acid [85,95]
and hydrochloric acid [96], or inorganic salts, such as CaCl2 [97], LiBr [98], CaBr2 [99],
LiCl, and Ca(NO3)2 [100]. During the dissolution process, formic acid interacts with the
polar groups in SF molecules to preserve SF integrity [101]. Concentrated formic acid
enhances the solvation ability of the mixed solvent, reduces the degradation rate of SF,
and improves the stability of the SF solution [102]. Considering the effect of solubility
and solution viscosity, the optimal ratio of phospho–formic acid is 20/80 and 30/70 [85].
The RSF solution prepared using a phospho–formic acid mixed solvent can be directly
used in wet spinning or an electrostatic spinning process without dialysis to prepare
RSF fibers or scaffolds [95]. The RSF filaments maintain a β-sheet structure and exhibit
excellent mechanical properties [85]. With the assistance of ultrasonic waves, degummed
SF can also be dissolved in the mixture of a solution containing 30% formic acid and 0.5%
hydrochloric acid to prepare powdered nanofibers [96]. Acid dissolution is frequently
employed to prepare SF peptides, powder, or RSF filaments applied in spinning, food,
cosmetics, biomedicine, and other fields [103].

The preparation methods and properties of RSF obtained by acid dissolution of SF are
shown in Table 2.

Table 2. Preparation of RSF by acid dissolution of SF and properties of the obtained RSF.

Solvent H3PO4 H2SO4 HCl H3PO4–HCOOH

Dissolution Method

11.5 wt% degummed
SF dissolves in 85%
H3PO4 solution at

room temperature for
30 min [81]

Degummed SF
dissolves in a 20 wt%

H2SO4 acid solution at
120 ◦C for 6 h [83]

Degummed SF dissolves
in 4 mol/L HCl solution
at 98 ◦C in a water bath

for 40 h [84]

Degummed SF
dissolves in

H3PO4–HCOOH
solution at room

temperature for 2 h [85]

Color Light brown Dark brown Yellow Light brown

Molecular weight - 25–100 kDa 10–100 kDa -
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Table 2. Cont.

Solvent H3PO4 H2SO4 HCl H3PO4–HCOOH

Secondary structure
Mainly random coil

with small amount of
β-sheet

Mainly random coil Mainly random
coil/β-sheet Mainly random coil

Rheological
properties Shear thinning - - Shear thinning

Gelation E 1 E E E

Film-forming
properties G 2 - - G

RSF material
properties

RSF films have
excellent tensile

strength and ductility
with 143% breaking

strain

Silk peptides are very
water-soluble and are

easily absorbed by
digestive organs and

skin.

Silk powder has good
water solubility and poor
thermal stability with a

degradation temperature
of 241.5 ◦C.

RSF filament has
excellent mechanical
properties with the

tenacity and breaking
strain of 2.3 gf/d and

18%.

Processing forms Filament, porous film,
peptide

Natural amphoteric
nanofiber, peptide Powder, peptide Filament, film, powder,

peptide

Applications

Wound healing [86],
spinning [81], food,

cosmetic [87],
biosensing [104], waste
cocoon recycling [88]

Biomedicine [89], food
processing [84] Food processing [91] Tissue engineering [95],

spinning [85]

1 SF solution is easy to gelate (E); 2 SF solution has good film-forming properties (G).

4.2. Methods and Properties of RSF by Alkali Dissolution

Due to its strong alkaline properties, the NaOH solution causes the breakage of hydro-
gen bonds and hydrolysis of the peptide chains in the SF filamentous structure [105,106].
The resulting RSF comprises short fibrillar SF proteins with molecular weights typically
less than 66.2 kDa [107]. The prepared RSF short fibers are at the micron level, and the
length of the fibers is controlled by adjusting the dissolution temperature, time, and alkali
concentration [108], which can be added to the materials based on RSF extracted by other
systems to enhance their mechanical properties [106,109]. To facilitate the dissolution of
raw silk in a single step, a certain proportion of urea can be added to the alkali solution. The
formed urea hydrate hinders the reformation of hydrogen bonds between SF molecules,
thereby accelerating the rate of SF fiber dissolution [110]. Prepared silk protein has a
significantly high inhibition rate of tyrosinase and stronger chelation ability to ferrous
ion and moisture retention ability, exhibiting skin care characteristics of whitening and
antioxidation [110]. Consequently, the alkali dissolution of SF finds applications in fields
such as cosmetics [111], hemostatic materials [108], and tissue engineering [105,106,109].

4.3. Preparation Methods and Properties of RSF by Salt and Salt Complex System Dissolution
4.3.1. Salt

High concentrations of neutral salts, such as LiBr [112–114], LiSCN [115,116], CaCl2 [117,118],
and Ca(NO3)2 [119], under hydrothermal conditions, can dissolve SF. The presence of
lithium salts in the solution disrupts the intermolecular hydrogen bonds and van der
Waals forces within SF due to the strong polarity of the ions, promoting the dissolution of
SF [120,121]. It is widely recognized that chains of SF molecules dissolved by LiBr solution
are prone to free extension and aggregation depending on hydrophobic/hydrophilic in-
teractions at high shear stresses, resulting in the transition from shear thinning to shear
thickening with an increasing shear rate [122]. At high concentrations, LiBr efficiently
dissolves SF, resulting in a highly concentrated RSF solution prone to gelation [123,124].
However, LiBr degrades the multilevel structure of silk protein, leading to a decrease
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in molecular weight, which hinders the transformation into a β-folded structure when
forming films [125]. Therefore, the RSF materials from LiBr contain more random coil
and β-turns compared with those from other systems and are suitable for studying SF
conformational changes. But the ductility and stability of RSF materials decreased due to
lower crystallinity [124]. The electrospinnability of RSF was slightly deteriorated with the
increase in extraction temperature [114].

LiSCN, on the other hand, can directly dissolve raw silk fibers at room temperature
with minor degradation of SF without degumming [115]. The ability to ensure the in-
tegrity of SF makes it suitable for studying the composition and structural changes of
silk fibroin [126,127]. The intact fibroin solution also shows a strong tendency to form a
gel [115]. The films dried directly from the RSF solution are mainly amorphous [116]. With
the treatment of acidic reagents (e.g., formic acid and trifluoroacetic acid) or ethanol, the
secondary structure of RSF films is altered to modulate their biodegradability and mechani-
cal properties for cell scaffold materials [128]. In fact, LiSCN is more commonly employed
to dissolve Antheraea pernyi silk fibroin [129–131]. The RSF of Antheraea pernyi obtained
by alkaline degumming and LiSCN solubilization showed considerable degradation, with
dispersed molecular weight bands from 20 kDa to 150 kDa [130]. However, thiocyanates
are toxic and hazardous to humans, limiting their application in food additives, cosmetics,
and biomedicine [132].

In a calcium salt solution, SF fibers swell, and Ca2+ ions penetrate SF, complexing
with tyrosine and serine side-chain groups [124]. This causes a change in the SF molecular
structure from β-folded to a random coil/α-helical conformation [133]. High concentrations
of CaCl2 promote the formation of the hydrated layer on the surface of SF due to the
production of strong polar ions, increasing the hydrophilicity of SF and weakening the
intermolecular interaction forces [134]. As a result, the dissolution rate of the SF filament is
improved with increasing calcium salt concentrations [134]. However, if the concentration
of Ca2+ is too high, it will then seize the water molecules bound to the protein surface,
destroying the hydration layer around the protein, thus causing a decrease in the dissolution
rate [134]. Compared with the CaCl2–ethanol–water system, the RSF solution prepared
by CaCl2 systems has a higher gelation rate, and the formed gel contains more β-sheet
with a more developed three-dimensional network [117]. Ca(NO3)2 has a relatively inferior
solubilization effect on silk fibers, especially at low temperatures or concentrations [119].
RSF solutions prepared using calcium salts tend to have higher viscosity and turbidity [119].
However, the small amount of residual Ca2+ has minimal effects on subsequent material
processing and conformational changes [124].

The preparation method and properties of RSF obtained by salt dissolution of SF are
summarized in Table 3.

Table 3. Preparation of RSF by salt dissolution of SF and properties of the obtained RSF.

Solvent LiBr LiSCN CaCl2 Ca(NO3)2

Dissolution Method
2 wt% degummed SF

dissolves in 9 mol/L LiBr
solution at 80 ◦C [122,124]

Degummed SF dissolves
in 9 mol/L saturated

LiSCN solution at 30 ◦C
for 35 min [135]

2 wt% degummed SF
dissolves in 50 wt% CaCl2

solution at 80 ◦C for 4 h
under vigorous magnetic

stirring [124]

2 wt% degummed SF
dissolves in 50 wt%

Ca(NO3)2 solution of at 70
◦C for 6 h [119]

Color Light yellow Slightly milky White Light yellow

Molecular weight 25 kDa and 60–100 kDa 20 kDa or 30 kDa–200 kDa
or more 25 kDa and 66.2–100 kDa -

Secondary structure Mainly random coil with small
amount of β-sheet Random coil Random coil Random coil

Rheological properties
Shear thinning at low shear

rate, shear thickening at high
shear rate

- - -

Gelation E 1 E E E



Int. J. Mol. Sci. 2023, 24, 13153 8 of 22

Table 3. Cont.

Solvent LiBr LiSCN CaCl2 Ca(NO3)2

Film-forming
properties G 2 G G G

RSF material
properties

RSF film has poor stability
with thermal degradation
temperature of 278 ◦C and

water solubility.
RSF fibers have good

electrospinnability,
outstanding stiffness with

tensile strength of 210 MPa,
and poor ductility with

elongation at break of 11%.

RSF films are mainly
amorphous and have high

thermal stability with a
thermal decomposition
temperature of 286 ◦C.

RSF film conformation is
between the structure of
Silk I and Silk II, with a
thermal decomposition
temperature of 288 ◦C.

RSF film is Silk I
crystalline conformation.

Processing forms Film, gel, fiber, nanoparticle Film, powder Filament, film, powder, gel Film

Applications

Drug delivery [136], tissue
adhesion [137], tissue

engineering [138], food
packaging [139],

electrochemistry [140],
biosensing [141]

Biomedicine, tissue
engineering [128], protein

analysis [126]

Biomaterials, waste
cocoon recycling [134] Biomedicine [119]

1 SF solution is easy to gelate (E); 2 SF solution has good film-forming properties (G).

4.3.2. Salt–Acid Complex System

Formic acid can serve as a cosolvent to promote the swelling of SF fibers, aiding
in the penetration of metal ions from the salt solution into SF fibers [142]. This process
breaks the intermolecular hydrogen bonds of SF, thereby enhancing the efficiency of SF
dissolution [142]. While SF solutions prepared using salt systems are prone to gelation, SF
remains highly stable in salt–formic acid solutions, preventing aggregation, precipitation,
and gelation [101]. The molecular weight of RSF extracted by the salt–acid system has not
been reported for the time being, probably because very little attention has been paid to it.
RSF prepared using salt–acid systems exhibits a nanoscale fiber structure with improved
mechanical properties, enhanced moisture permeability, and excellent biocompatibility
and biodegradability [143]. This makes it suitable for applications such as electrostatic or
fiber-spinning materials [144,145], biomedicine [146,147], and stent materials [148].

CaCl2–FA dissolves interfibrillar parts consisting mainly of amorphous regions while
preserving the nanofiber structure, promoting the preparation of regenerated filamentous
materials with higher strength and ductility [148–150]. The high concentration of CaCl2
converts the partial β-sheet into noncrystalline structures, such as α-helices and β-turns, by
breaking the intramolecular hydrogen bonds in SF, increasing the structural disorder degree.
Therefore, with an increasing CaCl2 concentration from 1.0% to 6.0%, the morphologically
of RSF turns from microfibrils to nanoparticles, and the ductility of those RSF materials
increases, but the stiffness, viscoelasticity, and thermal stability decrease [151,152]. RSF
filaments have a typical β-sheet structure and exhibit excellent enzymatic degradation
properties, biocompatibility, and outstanding strength (breaking stress of 276.4 MPa) and
ductility (elongation at break of 40.8%) after stretching [97].

In the effect of LiBr–FA, SF lost numerous intermolecular hydrogen bonds and was
decomposed into amorphous nanofibers with diameters of 10–20 nm and lengths of
200–350 nm [153]. The SF nanofibril structure enables RSF solutions to exhibit excellent
spinnability in electrostatic spinning and significantly improves the mechanical properties
of RSF materials. In addition, the average diameter of SF nanofibers in the solution can be
controlled by adjusting the concentration of the LiBr–FA solution. This feature facilitates
the preparation of scaffold materials with various hierarchical micronanofibrous structures
that support cell proliferation and adhesion [154]. The RSF film prepared is a network
structure dominated by intramolecular β-sheets between Silk I and Silk II, contributing
to water insolubility and good ductility [155]. RSF can be stored at room temperature for
more than 3 months in the form of freeze-dried powder, exhibiting adequate stability [153].
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Among the three salt–acid systems, CaBr2–FA demonstrates an optimal effect on
filament solubilization. And the SF nanofibers with small diameters and short lengths tend
to cluster together during fabrication, resulting in a dense surface of the RSF film prepared
by them [99]. The CaCl2–FA [149–151] and LiBr–FA [153,154] systems are widely used in
silk fibroin dissolution of Bombyx mori, while CaBr2–FA [99] has been less-studied and
less-applied. At present, LiCl–FA and Ca(NO3)2–FA have only been studied for the silk
fibroin dissolution of Argema mimosae [100].

The methods of preparing RSF by dissolving SF in the salt–acid system and the
properties of the obtained RSF are summarized in Table 4.

Table 4. Preparation of RSF by salt–acid system dissolution of SF and properties of the obtained RSF.

Solvent CaCl2–HCOOH CaBr2–HCOOH LiBr–HCOOH

Dissolution Method
Degummed SF dissolves in 4% (w/v)
CaCl2–HCOOH solution with stirring
at room temperature for 4 h [99,154]

Degummed SF dissolves in 4%
(w/v) CaBr2–FA solution with

stirring at room temperature for 2
h [99]

Degummed silk dissolves in 2%
(w/v) LiBr–FA at room

temperature for 3 h [145,154]

Color Light yellow Dark yellow Yellow

Molecular weight - - -

Secondary structure Mainly random coil Random coil Random coil/α-helix

Rheological properties First shear thickening, then shear
thinning Shear thinning Shear thinning

Gelation D 1 D D

Film-forming properties G 2 G G

RSF material properties

The filament film is a β-sheet structure
with excellent strength, ductility,

biocompatibility, and biodegradability.
Electrospun nanofibers have good

degradability.

SF film surface is smooth and
dense.

The silk fibroin film has a dense
surface and β-sheet structure, and

its modulus, strength, and
ductility are significantly

improved.

Processing forms Filament, film, gel, nanofiber Film Film, nanofiber, electrostatic
spinning fiber mat, SF coating

Applications

Tissue engineering [148], wound
healing [146], drug delivery [147],

tissue adhesion [156], electrochemistry
[157], spinning [144]

- Tissue engineering [158], drug
release [159], spinning [145]

1 SF solution is difficult to gelate (D); 2 SF solution has good film-forming properties (G).

4.3.3. Salt–Alcohol–Water System

The salt can also be mixed with alcohol and water in a specific ratio to form a ternary so-
lution for SF dissolution. In the salt–alcohol–water ternary system, water acts as a swelling
agent, expanding the noncrystalline regions of SF [160]. Alcohol molecules can enter the
crystallization regions of the filamentous protein chains, reducing the surface tension of
SF and weakening the hydrophobic interactions [39,124]. This increases the permeability
of hydrated metal ions and accelerates the decomposition of SF chains. Compared with
LiBr, the CaCl2–ethanol–water ternary system has become one of the most commonly used
methods for SF dissolution due to its low cost [161], high productivity [124], harmlessness
to organisms [162], and environmental friendliness [163]. In a study by Cho et al. [112],
the molecular weight (Mw) bands of SF were determined using fast protein liquid chro-
matography. It was observed that the Mw bands of 450 kDa decreased, while 150 kDa
and 16 kDa increased with solubilization time in the CaCl2–ethanol–water ternary system,
suggesting that the system may selectively cleave the SF molecular chains at specific sites.
The SF crystalline structure is destroyed upon dissolution, resulting in broken lamellae
from ribbons. After drying, the RSF appears as an irregular granular powder [164]. The
degradation degree of SF molecular chains dissolved by CaCl2–ethanol–water is higher
than by LiBr systems [24]. It is worth mentioning that there is no significant difference
in the biocompatibility of RSF materials prepared by CaCl2–ethanol–water and LiBr sys-
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tems [163]. Compared with other ternary reagents, the film from CaCl2–ethanol–water
maintains more Silk I, probably as a result of its superior ability to protect the conforma-
tional and intermolecular arrangement of RSF [165]. Analyzing the IR spectrogram of
RSF solutions, Lingling Li et al. [166] found that the RSF solution dissolved in the CaCl2–
methanol–water system exhibited more β-structure and less decrystallization compared
with the RSF solution dissolved in the CaCl2–ethanol–water system. This may indicate a
weaker interaction of methanol with SF chains than ethanol.

In contrast to the CaCl2 ternary system, the RSF obtained from the Ca(NO3)2 ternary
system has a smaller molecular weight and undergoes more extensive filament degrada-
tion [165]. In the Ca(NO3)2–methanol–water system, RSF exhibits a relatively uniform
granular shape. However, decreased crystallinity and the smaller molecular weight reduce
the thermal stability and mechanical property of the RSF materials [167]. However, the
poor mechanical properties of RSF materials can be improved through using acidic spin
systems and stretching SF fiber during processing [168]. The Ca(NO3)2–ethanol–water
system poorly dissolves SF, producing a small amount of undissolved silk fibers [166]. The
RSF materials treated with these calcium–alcohol solvents are water-soluble [165]. The
LiBr–ethanol–water system demonstrates a rapid dissolution rate and high yield. However,
the viscoelasticity of the obtained solution is proportional to the concentration of RSF and
the ratio of ethanol to water in the solvent [169].

The rheological behavior of the SF solution can reflect the solvation in the dissolved
system [122]. Solvation primarily involves electrostatic interactions between solvent and
SF molecules, the intensity of which affects the conformational stability of SF molecules to
a certain extent [170]. SF molecules have a unique amphiphilic block structure that gives
them an inherent tendency to form β-sheet under favorable conditions [35,171]. Due to
the inherent tendency to form β-sheet and the weak solvation of LiBr, SF molecular chains
tend to extend freely to form intermolecular interactions and aggregate with an increas-
ing shear rate, resulting in shear thinning followed by shear thickening behavior [122].
The strong solvation in the Ca(NO3)2–methanol–water, LiBr–ethanol–water, and CaCl2–
ethanol–water systems allows SF solutions to maintain near-constant viscosity at high shear
rates [122]. The hydrophilic/hydrophobic interactions of the SF chains make them prone
to self-assembly in water, forming micelle structures [172]. The average diameters of RSF
micelles prepared from different systems are as follows: CaCl2 (128.8 nm) > LiBr (82.7 nm)
> CaCl2–ethanol–water (63.2 nm) > LiBr–ethanol–water (60.5 nm) > Ca(NO3)2–methanol–
water (33.89 nm). Smaller micelle diameters indicate a higher degree of SF degradation by
the solvent [124]. Among the above systems, the Ca(NO3)2–methanol–water system is the
most destructive for SF.

The gelation rate of RSF solution is influenced by the SF concentration, tempera-
ture [173], and molecular weight [174]. Increasing the SF concentration and temperature
accelerate the gelation rate of the RSF solution and result in narrower pore sizes in the
prepared hydrogel. Smaller pore sizes allow for more even stress distribution, leading
to higher compressive strength and modulus [173]. The molecular weight is directly pro-
portional to the gelation rate of the RSF solution and inversely proportional to solution
stability [174,175]. The molecular weight is closely related to the properties of the RSF
solution and the resulting material. A high-molecular-weight RSF solution exhibits high vis-
cosity and a fast gelation rate, resulting in a densely packed spatial structure and excellent
mechanical properties in the prepared RSF material. On the other hand, low-molecular-
weight RSF forms nanoparticles with smaller diameters, superior solution stability, less
tendency to gel, and excellent degradability in the resulting RSF material [145,176]. As
shown in Table 4, the gel properties of RSF solutions prepared by different systems can be
roughly evaluated in terms of the summarized molecular weights.

The methods of preparing RSF by dissolving SF in the salt–alcohol–water system and
the properties of the obtained RSF are summarized in Table 5.
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Table 5. Preparation of RSF by salt–alcohol–water system dissolution of SF and properties of the
obtained RSF.

Solvent CaCl2–EtOH 1–H2O CaCl2–MeOH 2–H2O

Dissolution
Method

5 wt% degummed SF
dissolves in

CaCl2–EtOH–H2O
(1:2:8 molar ratio)

solution at 58 ◦C for
2 h [166]

5 wt% degummed SF
dissolves in

CaCl2–EtOH–H2O
(1:2:8 molar ratio)

solution at 65 ◦C in
water bath for

1 h [165]

2 wt% degummed SF
dissolves in

CaCl2–EtOH–H2O (1:2:8
molar ratio) solution at 80
◦C in water bath [124]

5 wt% degummed SF
dissolves in

CaCl2–MeOH–H2O
(1:2:8 molar ratio)
solution in a water

bath at 58 ◦C for
2 h [166]

5 wt% degummed SF
dissolves in

CaCl2–MeOH–H2O
(1:2:8 molar ratio)
solution in a water

bath at 65 ◦C for
1 h [165]

Color Yellow - White and highly opaque Yellow Yellow and opaque

Molecular
weight

25 kDa–200 kDa or
more 100–300 kDa 25 kDa and 60–100 kDa 25 kDa–200 kDa or

more 140–200 kDa

Secondary
structure

Between random coil
and β-sheet

More α-helix, type II
β-turns, a few

β-sheets

Mainly random coil with
a small portion of β-sheet

Between random coil
and β-sheet

Mainly β-sheet with
partial random coil

Rheological
properties Shear thinning at low shear rates and Newtonian fluid at high shear rates -

Gelation E 3 E

Film-forming
properties G 4 G

RSF material
properties

RSF film has strong toughness with a fracture strain of 215.1% and high
thermal stability with a thermal decomposition temperature of 284 ◦C.

Freeze-dried SF powder contains more Silk II
structures versus fewer Silk I structures.

Processing
forms Film, gel, nanoparticle, nanofiber mesh, microsphere Film, fiber, hydrogel, nanoparticle

Applications Drug delivery [177], wound dressings [178], tissue engineering [179], optics
[180] Biomaterials [166]

Solvent Ca(NO3)2–EtOH–H2O Ca(NO3)2–MeOH–H2O LiBr–EtOH–H2O

Dissolution
Method

Degummed SF
dissolves in
Ca(NO3)2–

4H2O:EtOH (1:2
molar ratio) solution
in water bath at 68 ◦C

for 2 h [166]

5 wt% degummed SF
dissolves in
Ca(NO3)2–

4H2O:EtOH (1:3
molar ratio) solution
with stirring at 80 ◦C

for 30 min [124]

5 wt% degummed SF
dissolves in

Ca(NO3)2–4H2O:ethanol
(1:2 molar ratio) solution
at 65 ◦C in water bath for

1 h [165,168]

2 wt% degummed SF dissolves in
LiBr–EtOH–H2O (45:44:11 weight ratio) solution

at 80 ◦C [122,124]

Color Yellow and opaque Yellow Yellow Light yellow

Molecular
weight 25–150 kDa 25 kDa and 100 kDa 95 kDa–170 kDa or more 25 kDa and 50–110 kDa

Secondary
structure

Between random coil
and β-sheet Mainly β-sheet

Mainly random coil with
a small portion of
ordered structure

Mainly random coil with a small portion of
β-sheet

Rheological
properties -

Linear shear thinning at
low shear rates and

Newtonian fluid at high
shear rates

Rapid shear thinning at low shear rates and
Newtonian fluid at high shear rates

Gelation E E E

Film-forming
properties G G G

RSF material
properties

RSF film is a Silk II structure and has excellent
thermal stability with a thermal degradation

temperature of 288 ◦C.

RSF fiber conformation is
random coil and β-sheet,
with good elasticity but

reduced strength.

RSF film is a Silk II structure and has good
thermal stability with a thermal degradation

temperature of 288 ◦C.

Processing
forms Film, fiber, hydrogel, nanoparticle Film, nanofiber, powder Hydrogel, porous sponge, nanoparticle

Applications Biomaterials [124] Drug delivery [181],
spinning [168] Biomaterials, spinning [182]

1 Ethanol (EtOH); 2 Methanol (MeOH); 3 SF solution is easy to gelate (E); 4 SF solution has good film-forming
properties (G).
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4.4. Preparation Methods and Properties of RSF by Ionic Liquid Dissolution

Ionic liquids are ionic systems composed of organic cations and anions (organic or
inorganic) in a liquid state slightly above room temperature [183]. They are new, nontoxic,
and environmentally friendly solvents with high solubility for many organic, inorganic,
and metal–organic compounds and polymer materials [184]. The solubility of SF in ionic
liquids depends on the nature of the cations and anions, with the anions having a more
significant effect [185]. During the dissolution process, organic cations, such as imidazole
and TBA+ liquids, can partially weaken the hydrophobic effect through steric hindrance
or electrostatic repulsion [186]. Anions, such as Cl− and OH−, interact with hydroxyl
protons and amino groups on the SF chain to form hydrogen bonds, which weaken or
further disrupt the original SF hydrogen bonding network from both the outside and inside,
thereby promoting dissolution [185].

Due to the interactions between ionic liquids and SF molecules, SF has good solubility
in ionic liquids [187]. And the obtained RSF solution mixed with ionic liquid has a high
stability and a slow gelation rate, allowing it to be stored for a long time [188,189]. Slowly
adding a certain proportion of water to the mixed solution of SF and ionic liquid can reduce
the viscosity of the solution without precipitation [190,191]. However, the degree of SF
solvation decreases with increasing water content [189]. When the water content exceeds a
certain ratio, ionic liquid/H2O becomes a poor solvent to RSF, and the hydrophobic moieties
of SF reform a β-sheet through hydrophobic solvent action and intra/intermolecular
hydrogen bonding, which in turn facilitates the sol-to-gel transition [189]. In addition,
along with the addition of polar organic solvents called coagulants, such as methanol or
ethanol, to the mixed solution, RSF can be quickly separated from ionic liquids in the form
of a precipitate [192]. The polar organic solvent can be further removed by volatilization to
prepare pure RSF nanoparticles. This system avoids long dialysis and concentration steps
and greatly saves time [192]. It is also environmentally friendly because ionic liquids can
be recycled through rotary evaporation [187].

Ionic liquids containing Cl− ions, such as 1-allyl-3-methylchloroimidazole ([AMIM]Cl),
exhibit an increasing solubility with increasing temperature, reaching 14.5% at 100 ◦C [193].
Vortex stirring or ultrasonic treatment is commonly used to assist in the dissolution pro-
cess [194,195]. The sealed SF/AmimCl solution can be stored at room temperature for more
than 1.5 years due to the stability of ionic liquids [196]. The protein in low-concentration
SF/[AMIM]Cl solutions exists mainly as dispersed individual chains [196]. When the
concentration of SF is increased to more than 3%, SF molecular chains tend to overlap
and associate with each other, which makes the whole solution like Newtonian fluid in
the low-shear-rate region, while at high shear rates, macromolecules undergo a process
of rearrangement to reduce intermolecular friction, resulting in shear thinning [196]. As
coagulants, ethanol and n-butanol can facilitate the transformation of SF conformation
from the random coil to the β-sheet during SF regeneration. And the RSF film exhibits
a good wet-state mechanical strength and a small water solubility loss rate due to their
mainly β-sheet structure [193].

However, excessive temperatures can lead to increased SF degradation [197]. To
address this, researchers have developed alkali-based aqueous solutions of ionic liquids,
such as choline hydroxide aqueous solution and tetra-butyl ammonium hydroxide. These
solutions can dissolve SF under mild conditions and preserve the structural integrity of SF.
In the study by Muhammad on the choline hydroxide aqueous system [198], the solubility
of SF reaches up to 25% at 50 ◦C. Regenerated nanoparticles with an average particle
size of 134.4–395.2 nm can be obtained by methanol treatment. And RSF nanoparticles
have a negatively charged surface, preventing further agglomeration of the particles by
electrostatic repulsion, so that the nanoparticles can remain stable for a long time in the cell
culture medium [198,199]. In contrast, SF rapidly dissolves into a tetra-butyl ammonium
hydroxide solution at room temperature. The higher the concentration of SF, the cloudier
the solution, which is probably attributed to the formation of RSF-transient aggregates in
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the solution [200]. This dissolution system has been used to prepare a novel multilayered
silk nanofibril-based membrane for water filtration systems [201].

The preparation of RSF by ionic liquid dissolution of SF and the properties of the
obtained RSF are summarized in Table 6.

Table 6. Preparation of RSF by ionic liquid dissolution of SF and properties of the obtained RSF.

Solvent [AMIM]Cl 1 46 wt% Choline Hydroxide
Aqueous Solution TBAOH 2

Dissolution Method 90 ◦C oil bath 1.5 h [196]
Stir in 46 wt% choline

hydroxide aqueous solution at
200 rpm for 2 h at 50 ◦C [198]

Stir in 40 wt% TBAOH
aqueous solution at room

temperature for 30 min [200]

Color Amber - Light yellow

Molecular weight 144 kDa - 321 kDa

Secondary structure Random coil random coil/β-sheet Nearly random coil with little
ordered structure

Rheological properties
Newtonian flow at a low shear rate

and shear thinning at a high
shear rate

- Shear thinning

Gelation D 3 D D

Film-forming
properties G 4 - -

RSF material
properties

RSF film is β-sheet with a thermal
degradation temperature of 310 ◦C.

RSF powder crystallinity
decreases, and the thermal
degradation temperature is

320 ◦C.

-

Processing forms Powder, film, sponge, fiber Nanoparticle, sponge,
fiber, gel -

Applications
Drug delivery [202],tissue bone

engineering [203], electrochemistry
[204], spinning [205,206]

Tissue engineering [198] Effluent treatment [201]

1 1-allyl-3-methylchloroimidazole ([AMIM]Cl); 2 Tetra-butyl ammonium hydroxide (TBAOH); 3 SF solution is
difficult to gelate (D); 4 SF solution has good film-forming properties (G).

4.5. Preparation Methods and Properties of RSF by Enzyme Dissolution

SF is composed of 18 amino acids, with a high content of glycine and alanine [207].
When SF is dissolved by acid [83] or alkali reagents [106], some amino acids, such as
tryptophan, serine, and arginine residues of SF, are partially destroyed or racemized,
reducing the glossiness of the RSF fibers. Enzymatic reactions used for SF dissolution
have mild reaction conditions and are less destructive to the composition and structure
of SF [208]. Moreover, enzymes exhibit specificity, making it easy to control the degree
of SF hydrolysis [209]. Commonly used proteases for SF dissolution include alkaline
protease [210–212], papain [213], and pancreatic protease [214]. Alkaline protease and
papain have broad specificity and can act on a wide range of peptide bonds, degrading the
crystalline region primarily composed of glycine and alanine, thus demonstrating excellent
SF hydrolysis activity [215,216]. On the other hand, trypsin specifically degrades peptide
bonds formed by lysine (Lys) and arginine (Arg), selectively targeting the noncrystalline
region of SF. This can result in more precipitates within the solution, indicating a narrower
range of action [217].

The silk peptide prepared by alkaline protease has a particle size of 100–500 nm and a
lamellar morphology due to agglomeration of RSF [210]. After freeze-drying, the RSF pep-
tide powder shows excellent scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical, demonstrating significant antioxidant properties [211], while the composites based
on chitosan and modified by silk peptides exhibit excellent moisture absorption, retention
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properties, and pronounced cell compatibility for wound dressing applications [212]. The
silk peptide treated with papain possesses anti-inflammatory activity by suppressing the
activation of ERK, which can be applied as food ingredients and skincare products [213].
Trypsin-hydrolyzed SF peptides are nanoscale and have been applied in the preparation of
nanometer silk fibroin peptide/polymer composite biomaterials [214].

The products obtained from SF enzymatic hydrolysis are mixtures of amino acids
and oligopeptides [218]. These products have small molecular weights and can be eas-
ily absorbed by the human body [107]. They exhibit various functions, such as hypo-
glycemic [218], hypocholesterolemic [219], and antioxidant [211]. Due to these properties,
they hold significant application value in fields like functional health food [220], cosmet-
ics [213], and medical materials [221].

The preparation of RSF by enzyme dissolution of SF and the properties of the obtained
RSF are summarized in Table 7.

Table 7. Preparation of RSF by enzyme dissolution of SF and properties of the obtained RSF.

Solvent Alkaline Protease Papain Trypsin

Dissolution Method
4% SF concentration, enzyme to
substrate ratio 2%, and reaction

at 55 ◦C, pH 8 for 6 h [211]

5% SF concentration, enzyme
amount of 1000 U/g, and

reaction at 50 ◦C, pH 7.5 for
240 min [222,223]

5% SF concentration, enzyme
amount of 1000 U/g, and
reaction at 37 ◦C, pH 8 for

240 min [223]

Molecular weight 5–14 kDa 14.1–20.1 kDa <20 kDa

Secondary structure Random coil/β-turns (type II) Random coil/α-helix/β-sheet Random coil/α-helix/β-sheet

Gelation D 1 D D

Film-forming properties P 2 N 3 N

RSF material properties

RSF powder has excellent water
solubility and significant
procoagulant properties

in vitro.

- -

Processing forms Film, powder, silk peptide Powder, silk peptide Powder, silk peptide

Applications Wound dressings [212,221], skin
care [211], food processing [224] Food materials, skin care [213] Food processing,

biomedicine [214]
1 SF solutions are difficult to gelate (D); 2 SF solution has poor film-forming properties (P); 3 SF solution cannot
form film (N).

5. Perspectives

Silk protein has been extensively applied in biomedicine, biosensing, and wearable
equipment due to its excellent biocompatibility, chemical modifiability, and mechanical
properties. However, due to internal hydrophilic, hydrophobic, and hydrogen bonds, silk
protein is challenging to dissolve in conventional solvents. Various solubilization systems
have been developed to extract natural silk protein, including acid, base, salt, salt–acid,
salt–alcohol, ionic liquid, and enzyme systems. However, there is still a lack of systematic
and comprehensive studies on the properties of regenerated silk fibroin (RSF) prepared
using each solubilization system. The influence of various factors within each system on the
properties of RSF has not been fully explored, and comparative studies between different
systems are also lacking. Furthermore, while there are numerous methods available for
preparing RSF, LiBr dissolution is commonly used, and the resulting RSF is often prepared
in the form of membranes, hydrogels, porous scaffolds, and other structures for applications,
such as tissue scaffolds, wearable devices, and sensors. In future research, selecting a more
suitable extraction system based on the performance of the RSF obtained using different
extraction methods would be beneficial. This approach would help identify the optimal
preparation scheme and achieve optimal performance for specific applications.
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