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Abstract: Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide.
GPD1L, a member of the glycerol-3-phosphate dehydrogenase family, has emerged as a potential
tumour suppressor gene, with high expression associated with a favourable prognosis in various can-
cers. Despite an intriguing inverse relationship observed with HCC, the precise role and underlying
function of GPD1L in HCC remain poorly understood. Here, we aimed to investigate the prognostic
significance, molecular characteristics, and predictive potential of GPD1L overexpression in HCC.
Analysis of independent datasets revealed a significant correlation between high GPD1L expression
and poor survival in HCC patients. Spatial and single cell transcriptome datasets confirmed elevated
GDP1L expression in tumour tissue compared to adjacent normal tissue. GPD1L exhibited increased
expression and promoter demethylation with advancing tumour stage, confirming positive selection
during tumorigeneses. GPD1L overexpression was associated with metabolic dysregulation and
enrichment of gene sets related to cell cycle control, epithelial-mesenchymal transition, and E2F
targets. Moreover, we demonstrated an inverse correlation between GPDI1L expression and therapeu-
tic response for three therapeutic agents (PF-562271, Linsitinib, and BMS-754807), highlighting its
potential as a predictive biomarker for HCC treatment outcomes. These data provide insights into
the prognostic significance, molecular characteristics, and predictive potential of GPDIL in HCC.

Keywords: hepatocellular carcinoma; glycerol-3-phosphate dehydrogenase 1-like; prognosis;
tumorigenesis; metabolic dysregulation

1. Introduction

Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer with a significant
impact on global health. It is the sixth most common cancer and the third leading cause of
cancer-related deaths worldwide [1]. Despite advances in early detection and treatment,
the prognosis for HCC patients remains poor with a 5-year survival rate of 17%, primarily
due to late-stage diagnosis and limited treatment options [2]. Therefore, there is an urgent
need to identify novel therapeutic targets and develop more effective treatment strategies.
Understanding the molecular mechanisms underlying HCC development and progression
is crucial for improving therapeutic strategies and patient outcomes.

Glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is a member of the glycerol-3-
phosphate dehydrogenase family, which plays a critical role in cellular energy metabolism
and redox homeostasis [3]. GPDIL has emerged as a significant gene in HCC, where previ-
ous studies have identified that high GPD1L expression is associated with poor prognosis
in HCC [4,5]. Interestingly, GPDI1L acts as a tumour suppressor in many other cancers,
where high expression levels are associated with a favourable prognosis [6-10]. The inverse
relationship between high GPD1L expression and poor prognosis in HCC, contrasting with
other cancers where high expression is associated with a favourable prognosis, highlights
the need for further investigation into the underlying molecular mechanisms.
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One of the key mechanisms is the regulation of redox homeostasis, whereby GPD1L
counteracts oxidative stress and maintains cellular redox balance [11]. This activity is
particularly important in the context of mitochondrial stress, as mitochondrial dysfunction
is frequently observed in cancer cells [12]. The protective effect of GPD1L against redox
stress, particularly mitochondrial stress, suggests its potential in adapting to the high
metabolic demands observed in certain tumours. Furthermore, GPD1L has been identified
as a target of miR-210, a key regulator under hypoxic conditions [13]. Elevated miR-210
levels resulted in reduced GPDI1L expression, leading to the stabilisation of hypoxia-
inducible factor 1 alpha (HIF-1c) and the subsequent activation of hypoxia-responsive
pathways [14]. This regulatory axis suggests that miR-210-mediated downregulation of
GPDI1L is a critical event in the adaptive response to hypoxia, highlighting the intricate
interplay between GPD1L, miR-210, and hypoxia signalling pathways.

The aim of this study is to investigate the prognostic significance and molecular
characteristics of GPDIL in HCC, including its correlation with clinical outcomes, its
role in tumorigenesis and progression, and its potential as a predictive biomarker for
treatment response. Differential gene expression analysis, survival analysis, and functional
enrichment analysis were performed to investigate the role of GPD1L in HCC. Drug
response prediction was also conducted using HCC cell lines in silico and in vitro.

2. Results
2.1. GPD1L Gene Expression as a Prognostic Biomarker in HCC

We initially investigated the association between the tumour GPDI1L gene expres-
sion and clinical outcomes in HCC. Analysis of the TCGA-LIHC primary tumour dataset
(n =370) revealed a significant correlation between high GPD1L mRNA expression and
several clinical factors associated with poor prognosis, including younger age, female gen-
der, advanced stage, positive resection margins, and worse performance status (Table 1 and
Supplementary Table S1). Notably, no significant differences were observed in the primary
risk factors for HCC or synthetic liver function (INR). These findings are consistent with
results from three additional datasets (HCCDB v2.0) that included matched transcriptomic
and survival data, demonstrating that high GPD1L mRNA expression is associated with
worse overall survival (OS) (log rank p < 0.05) (Figure 1).

Furthermore, we employed a Cox proportional hazards model to assess the prognostic
significance of GPD1L mRNA expression in the TCGA dataset. The results demonstrated
that high GPD1L mRNA expression was a significant poor prognostic factor for OS in
both univariate (hazard ratio [HR] 1.72; confidence interval [CI] 1.21-2.44; p = 0.002) and
multivariate analysis (HR 1.60; CI1.02-2.52; p = 0.042) (Table S2). Regarding the progression-
free interval (PFI), high GPD1L mRNA expression showed poor prognostic significance in
univariate (HR 1.35; CI 1.01-1.82; p = 0.043), but not in multivariate analysis (HR 1.06; CI
0.74-1.52; p = 0.7) (Table S3).

In addition, a strong significant association between high GPD1L mRNA and adverse
histological characteristics such as vascular invasion and higher histological grade was
found in the TCGA-LIHC dataset (Figure S1). The association between high GPDIL
expression and vascular invasion was corroborated in an independent dataset (GSE19977)
(Figure S2). No significant difference in GPD1L expression was found with N+ and M+
disease in the TCGA-LIHC dataset due to low numbers.

Overall, these consistent findings across independent datasets indicate that GPD1L
gene expression is prognostic in HCC and support existing evidence that GPD1L expression
is a marker of aggressive tumours.
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Table 1. Comparison of GPD1L mRNA expression levels in low and high groups in TCGA-LIHC.

Variable Overall, N =370 1 Low, N =1861 High, N =184 1 p-Value 2
Age (years) 61 (51, 69) 64 (55, 70) 59 (50, 68) 0.003
Sex 0.001
Female 121 (33%) 46 (25%) 75 (41%)
Male 249 (67%) 140 (75%) 109 (59%)
Stage <0.001
Stage I 171 (49%) 103 (57%) 68 (41%)
Stage I 85 (25%) 46 (26%) 39 (23%)
Stage IIT 85 (25%) 31 (17%) 54 (33%)
Stage IV 5 (1.4%) 0 (0%) 5 (3.0%)
Resection margin status 0.038
RO 323 (89%) 169 (93%) 154 (85%)
R1 17 (4.7%) 5 (2.8%) 12 (6.6%)
R2 1(0.3%) 0 (0%) 1(0.5%)
RX 22 (6.1%) 7 (3.9%) 15 (8.2%)
ECOG Performance Status 0.004
0 162 (57%) 96 (62%) 66 (50%)
1 84 (29%) 46 (30%) 38 (29%)
2 26 (9.1%) 11 (7.1%) 15 (11%)
3 12 (4.2%) 1 (0.6%) 11 (8.4%)
4 2 (0.7%) 1 (0.6%) 1 (0.8%)
HCC primary risk factor 0.20
Alcohol consumption 117 (33%) 63 (36%) 54 (31%)
Alpha-1 antitrypsin deficiency 1 (0.3%) 0 (0%) 1 (0.6%)
Hemochromatosis 5 (1.4%) 2 (1.1%) 3 (1.7%)
Hepatitis b 80 (23%) 40 (23%) 40 (23%)
Hepatitis ¢ 34 (9.7%) 23 (13%) 11 (6.3%)
No history of primary risk factors 91 (26%) 37 (21%) 54 (31%)
Non-alcoholic fatty liver disease 12 (3.4%) 6 (3.4%) 6 (3.4%)
Other 11 (3.1%) 6 (3.4%) 5 (2.9%)
INR 1.1(1.0,9.1) 1.1(1.0,8.9) 1.1(1.0,9.5) 0.60

1 Median (IQR); n (%); 2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.

A. HCCDB15 (TCGA-LIHC)

< 4
@ 4
.. ©
%o
§°7
o
R
23
5
@
o~
S
o
=5
T T T T
0 1 2 3 4 5
Survival Time (Year)
C. HCCDB18
o
©J4
o
2
Y
g o
a
e
< o
H
@
o
S

T T T T T
0 1 2 3 4 5

Survival Time (Year)

B. HCCDB6
<]
«
»©
g e
g S}
o
S=
z3
5
%)
o
S
<
e T T T T T
0 1 2 3 4 5
Survival Time (Year)
D. HCCDB25
< J
@ J
»°
EEY
§ S}
o
S <
z23
5
%)
o~
8
< J
S

T T T T T
0 10 20 30 40 50

Survival Time (Months)

Figure 1. High GPDI1L gene expression is prognostic in HCC. Kaplan-Meier plots showing over-
all survival in HCC cohorts stratified by median GPD1L mRNA level. The datasets included
(A) TCGA-LIHC; (B) HCCDB v2.0 dataset 6; (C) HCCDB v2.0 dataset 18; and (D) HCCDB v2.0
dataset 25.
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2.2. Positive Selection for GPD1L Ouverexpression in HCC

Next, we conducted a pan-cancer analysis using TCGA data to investigate GPD1L
expression patterns. GPD1L exhibited downregulation in all tumour samples compared to
adjacent normal tissue, except for hepato-biliary tumours (HCC and cholangiocarcinoma)
(Figures 2A and S3). Specifically focusing on HCC, GPD1L mRNA levels were found to be
increased in tumour tissues relative to adjacent normal tissue in 13 out of 18 HCC datasets
(Figure S4). This observation was further confirmed by spatial transcriptomic analysis,
which demonstrated elevated GPD1L mRNA levels in HCC tumour regions compared to
adjacent normal tissue (Figure S5). Single-cell RNA sequencing analysis also revealed a
notable expression of GPD1L within the tumour microenvironment, particularly in natural
killer (NK) and T cells (Figure S6).

B
oxn
1.2
*
po” <
_ b -
= 3 g —
Y10 = o .
x X . = o
S o 2‘ 08 ‘ .
. K 2 .
[=}
e K s *
g TR | o
4 D > c < 4
T s, oo
- € Mot | = 2 k¢
o T 2 t . g o ¢
5 Ne P o "B
& 3 £ o
o 5 1 'y ) ’. »
. 2 - .
N 2 o &
5} Ha o _g_‘
w g
0.0
N N\ Q N N \ Q
3 N\ N @ N N
o X3 ) o S 4 ¢ ¢
& ‘.?\'ocb %\q,fb %@Q &% 6\'49 9\'(,0.‘ Fo"bq
Dy E
11
K S R=-0.59
. i p=22x10"° |
)
. —
o. o —_
alos = e
[N . x
. x &
. g g
< <
ER zZ7
€ o
3 €
5 N
& 2
5 ©s
. . . »
.
e S 00 02 04 06 08 RS )
& & GPD1L methylation (HM450) (log2 x + 1) PO & & &
® < & O &
& S

Figure 2. GPD1L overexpression in HCC tumours. (A) GPD1L expression in normal (red) and tumour
tissue (blue) (TCGA-LIHC); (B) GPD1L expression by tumour stage—Stage I (red), Stage II (green),
Stage III (blue), Stage IV (purple); (C) GPDIL promoter methylation by tumour stage—Stage I (red),
Stage II (green), Stage III (blue), Stage IV (purple); (D) Correlation between GPD1L methylation
and mRNA expression; (E) GPD1L expression by copy number aberration—Amplification (red),
Diploid (green), Gain (blue), Shallow deletion (purple). Welch’s T test was performed with Benjamini-
Hochberg correction for multiple testing. * p < 0.05, ** p < 0.01, *** p < 0.0001.

Interestingly, GPD1L mRNA levels showed an incremental increase, while promoter
methylation exhibited a decrease with advancing tumour stage in HCC (Figure 2B,C).
Moreover, a strong inverse correlation was observed between GPD1L promoter methyla-
tion and gene expression (Figure 2D). There was no significant difference between copy
number alterations and GPD1L mRNA levels (Figure 2E). In addition, high GPD1L mRNA
expression was associated with TP53 mutant tumours (Table S4).

Overall, these findings suggest a positive selection for GPD1L overexpression in HCC
that correlates with tumour progression. The results also indicate a potential regulatory
role of promoter demethylation in driving GPD1L upregulation.
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2.3. Molecular Characteristics of GPD1L-High Tumours

In order to explore the molecular characteristics associated with GPD1L overexpres-
sion, we conducted differential gene expression analysis comparing high and low GPD1L
mRNA tumours using the TCGA dataset. This analysis identified 293 up-regulated genes
(log2 fold change [FC] > 2, false discovery rate [FDR] p < 0.05) and 38 down-regulated genes
(log2 FC < —2, FDR p < 0.05) (Figure 3). The functional implications of GPD1L expression
were investigated by employing gene set enrichment analysis (GSEA) and gene set varia-
tion analysis (GSVA). Analysis of Hallmark gene sets revealed that GPD1L-high tumours
were enriched for gene sets associated with G2M checkpoint, epithelial-mesenchymal
transition (EMT), and E2F target genes (Figures 3 and S7). In contrast, pathways related to
bile acid synthesis, fatty acid metabolism, and oxidative phosphorylation were found to be
downregulated in GPD1L-high tumours.
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Figure 3. Molecular characteristics of GPD1L-high tumours. (A) Volcano plot demonstrating differ-
ential genes between GPDI1L high and low tumours. (B) GSEA enrichment plots for significantly
up-regulated and down-regulated Hallmark gene sets.

To further investigate the biological processes associated with GPD1L, functional
enrichment analysis was conducted on genes which exhibited a strong positive correlation
with GPDIL expression in HCC tumours. A total of 196 genes were found to have a
significant positive correlation (Spearman’s rho > 0.4, FDR p < 0.05). Functional enrich-
ment analysis revealed a significant enrichment of E2F-responsive genes (Supplementary
Table S5 and Figure S8), which are known to regulate cell cycle progression, DNA replica-
tion, and checkpoint control.

The literature pinpoints miR-210 as a critical regulator of GPD1L in the hypoxia
response. However, there was no significant increase in its expression in HCC, and only a
weak correlation can be observed between miR-210 and GPD1L expression in the TCGA-
LIHC dataset. This suggests that miR-210 regulation of GPD1L may be context-specific and
not the primary method of GPD1L overexpression in HCC (Figure S9).

GPD1L’s established function involves converting sn-glycerol 3-phosphate to glyc-
erone phosphate [15]. Examination of the STRING protein—protein interaction network
corroborates GPD1L’s position as a hub within a network of highly interacting proteins that
regulate glycerophospholipid (GPL) metabolism (Figure S10). Utilising g:Profiler to func-
tionally annotate TCGA-LIHC genes exhibiting strong co-expression with GPD1L, we fur-
ther confirmed its pronounced correlation with genes linked to phospholipid metabolism,
such as LPCAT1 (Spearman’s tho 0.47, FDR p value 1.27 x 10718) (Figure S11).
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These findings underscore the disruption of E2F-mediated transcriptional programs
and metabolic reprogramming associated with GPD1L mRNA overexpression in HCC.
When considered alongside the clinical, pathological, and gene enrichment data, we specu-
late that heightened GPD1L expression is prompted to sustain membrane GPL biosynthesis
in rapidly proliferating, aggressive HCC tumours, contributing to an overall lipid metabolic
reprogramming.

2.4. GPD1L as a Predictive Biomarker for Treatment Response

Finally, we explored the potential of utilising GPDIL as a predictive biomarker for
therapeutic response. We analysed the GDSC dataset, which includes FDA-approved
drugs potentially not well-studied in HCC, using correlation analysis to identify novel
associations with GPDI1L expression in HCC cell lines, aiming to uncover unexplored
connections and insights into treatment responses. Analysis of GPD1L mRNA levels in
17 hepatocellular carcinoma (HCC) cell lines in the GDSC1 database revealed a robust
inverse correlation with therapeutic response, as measured by the half-maximal inhibitory
concentration (IC50), for three therapeutic agents including PF-562271, Linsitinib, and BMS-
754807 (Figure 4A,B). PF-562271 is an inhibitor that targets focal adhesion kinase (FAK), a
key signalling protein involved in cell adhesion, migration, and invasion [16]. Linsitinib
and BMS-754807 are inhibitors that target the insulin-like growth factor 1 receptor (IGF1R),
a receptor tyrosine kinase involved in cell growth and survival-signalling pathways [17,18].

Additionally, we delved into the potential association between GPD1L expression
and the response to tyrosine kinase inhibitors (TKIs), specifically the first-line treatments
sorafenib and lenvatinib for advanced HCC. Given that lenvatinib response data are
absent from the GDSC dataset, we turned to response data for lenvatinib from the study
by Rees et al. [19]. This unveiled a statistically significant inverse correlation between
GPDI1L mRNA levels in HCC cell lines and the AUC for lenvatinib (Spearman’s rho
—0.55, p = 0.011), signifying a heightened drug sensitivity that corresponds to elevated
GPD1L expression (Figure 512). Conversely, our inquiry indicated a lack of substantial
correlation between GPD1L mRNA and sorafenib response, both in the GDSC dataset and
the Rees et al. datasets (Figure 513).

To validate the predictive potential of GPD1L in silico, IC50 values were imputed in
the TCGA LIHC dataset using oncoPredict. This analysis predicted differential responses
to two out of three agents, namely BMS-754807 and PF-562271 (Figure 4C). For in vitro
validation, we selected three HCC cell lines with varying levels of GPDIL expression
(Figure S14). The cell lines characterised by lower GPD1L expression, namely PLC/PRF/5
and HepG2, exhibited greater resistance to all three drugs compared to the cell line with the
highest GPD1L expression (Hep3B). Furthermore, we conducted a knockdown experiment
using siRNA to suppress GPD1L expression in Hep3B cells, which resulted in reduced
sensitivity specifically to PF-562271, while the sensitivity to Linsitinib and BMS-754807
remained unchanged (Figure 4D,E). These findings indicate the presence of additional
regulatory mechanisms beyond GPD1L expression that contribute to the cellular response
to IGFIR inhibitors.

These findings indicate that GPD1L holds promise as a candidate surrogate biomarker
for response to inhibition of IGFIR and FAK. The observed inverse correlation between
GPD1L expression and therapeutic response highlights its potential utility in predicting
treatment outcomes and guiding the stratification of targeted therapies in HCC patients
based on GPDIL gene expression status, particularly in FAK inhibitors.
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Figure 4. GPDIL as a predictive biomarker for treatment response. (A) Volcano plot of correlation
between GPD1L in HCC cell lines and IC50 of drugs from GDSC1; (B) Top three most significant
correlations between GPDI1L and drug response; (C) Differential analysis of predicted drug sensitivity
in TCGA LIHC. Imputed sensitivity generated using oncoPredict and GDSC1 data; (D) siRNA
knockdown of GPD1L in Hep3B as measured by qPCR (n = 3); (E) Dose-response curves of drug
treatments with non-linear fit (n = 4). For (C), Mann U Whitney testwas performed with Benjamini-
Hochberg correction for multiple testing. * p < 0.05, *** p < 0.001.

3. Discussion

The present study investigated the role of GPD1L gene expression as a prognostic
biomarker in HCC and explored its potential implications in tumorigenesis, molecular
characteristics, and therapeutic response. It is speculated that GPD1L overexpression in
HCC may be a consequence of promoter demethylation and the wider E2F dysfunction
with advancing tumour stage, where GPD1L itself is an E2F3 target.

Clinical studies have demonstrated that higher GPD1L expression in HCC is associ-
ated with an advanced tumour stage, larger tumour size, increased microvascular invasion,
and reduced overall and disease-free survival rates [4-10,20]. In addition to altered gene
expression, aberrant promoter methylation levels of GPD1L have been observed in vari-
ous malignancies [21]. Promoter hypermethylation of GPD1L has been associated with
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adverse clinicopathological features and reduced patient survival, indicating that promoter-
methylation-mediated GPD1L inactivation may contribute to HCC progression [5,6,22].
These findings suggest that GPD1L expression may serve as a prognostic marker for HCC
and a potential therapeutic target.

At the molecular level, altered GPD1L expression and activity have been observed in
HCC tissues compared to adjacent non-tumour liver tissues. Furthermore, GPD1L plays
a role in dysregulated lipid metabolism, a hallmark of HCC, influencing lipid synthesis,
lipolysis, and mitochondrial function, which impact tumour cell proliferation, survival,
and metastatic potential [23,24]. GPDI1L, through its involvement in lipid metabolism
and its interaction with AMP-activated protein kinase (AMPK) and mammalian target of
rapamycin (mTOR) signalling, plays a critical role in integrating metabolic and signalling
cues that contribute to HCC development and progression [6,25]. GPD1L modulates the
AMPK pathway, a critical regulator of cellular energy homeostasis, thereby influencing
downstream signalling cascades associated with cell growth, metabolism, and apoptosis [6].
Activation of the AMPK pathway can inhibit HCC cell proliferation and induce cell cy-
cle arrest, suggesting that the dysregulation of GPD1L-mediated AMPK signalling may
contribute to HCC development and progression [26,27]. Additionally, GPD1L has been
shown to affect mTOR signalling, possibly through its impact on lipid metabolism and
energy balance [6]. Dysregulated mTOR signalling is frequently observed in HCC and is
associated with increased tumour cell proliferation and survival [28].

In addition to its role in HCC, GPDIL has also been implicated in other solid tumours,
indicating its broader relevance in cancer biology [7-10]. For example, in non-small cell
lung cancer, GPDIL is involved in the regulation of cell polarity, metabolic reprogramming,
and tumorigenesis [8]. These findings suggest that GPD1L may have common functions
and regulatory mechanisms across different tumour types, underscoring its potential as a
therapeutic target and prognostic marker in various cancers.

In healthy liver tissue, GPDI1L primarily serves as a key player in lipid metabolism and
energy homeostasis. It participates in glycerolipid biosynthesis, aiding in energy storage
and cellular membrane composition. GPD1L’s involvement in the glycerol phosphate
shuttle facilitates the transfer of reducing equivalents during glycolysis and oxidative
phosphorylation, which is essential for energy production [9,11,15]. In contrast, GPD1L’s
functional role in other organs can vary widely and has been linked to processes like cell
polarity and adipogenesis [15]. This diversity underscores the tissue-specific nature of
GPD1L’s functions, adapting to the distinct metabolic demands and physiological require-
ments of different organ systems.

A major strength of our study was the use of multiple datasets, including the TCGA-
LIHC primary tumour dataset and three additional HCCDB v2.0 datasets, which provided
robustness and consistency to our findings. The significant association between high GPD1L
mRNA expression and poor clinical outcomes in HCC patients, as well as the independent
prognostic significance of GPD1L expression for OS, highlights the potential of GPD1L
as a prognostic biomarker in HCC. While our study provided insights into the molecular
characteristics associated with GPD1L overexpression in HCC, further functional studies
are needed to elucidate the underlying mechanisms. For example, the dysregulation
of metabolic pathways observed in GPD1L-high tumours suggests the involvement of
metabolic reprogramming in GPD1L-mediated tumorigenesis. Future studies should
focus on deciphering the metabolic alterations associated with GPD1L overexpression and
evaluating their therapeutic implications.

Furthermore, the need to explore GPD1L’s potential as a surrogate predictive biomarker
for treatment response becomes apparent. Our results indicated an inverse correlation
between GPD1L mRNA levels and therapeutic response, particularly in relation to inhi-
bition of IGFIR and FAK. The cell line drug testing data should be further validated in
patient-derived HCC-tumour organoids characterised by GPD1L expression. Our gene si-
lencing experiments, in fact, underscore the likelihood that the association between GPD1L
and IGFIR inhibitor response is not directly functional but rather reflects its interrelation
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with other influential factors. Conversely, GPD1L’s expression potentially showcases a
more immediate mechanistic connection with FAK inhibitor (PF-562271) response. In the
future, delving into mechanistic inquiries should encompass the exploration of additional
underlying regulatory mechanisms, beyond GPDI1L, that potentially contribute to the
IGF1R inhibitor response.

In addition, recent research underscores metformin’s immunomodulatory attributes [29],
suggesting its synergistic utilisation with IGF1R and FAK inhibitors may enhance thera-
peutic efficacy in HCC. Leveraging the inhibitory effects of metformin on gluconeogenesis
alongside the targeted inhibition of IGF1R and FAK pathways may offer a dual-pronged
approach to tackling the intricate molecular landscape of HCC. Further investigation into
the intricate interplay among these agents is crucial to optimise their combined potential
and elevate the prospects of effective HCC treatment strategies.

Nonetheless, the results obtained from our study have potential implications for
clinical practice and personalised medicine in HCC. The identification of GPDIL as a
prognostic biomarker could aid in patient stratification and enable more tailored treatment
approaches. GPD1L expression status could help guide therapeutic decisions, particularly
for targeted therapies such as the inhibition of FAK. The integration of GPD1L assessment
into clinical practice has the potential to improve treatment outcomes and patient survival.
Prospective clinical trials that stratify HCC patients based on GPD1L expression levels and
evaluate treatment response are necessary to validate the predictive potential of GPD1L.

In conclusion, our study provides evidence of the prognostic significance of GPD1L
gene expression in HCC and sheds light on its potential implications on tumorigenesis,
molecular characteristics, and treatment response. Future work should focus on prospective
studies, functional investigations, and clinical trials to fully explore the potential of GPDI1L
as a prognostic and predictive biomarker in HCC and other solid tumour types. The impact
of our results extends beyond HCC and could have broader implications in the field of
cancer research and personalised medicine.

4. Materials and Methods
4.1. Public Databases

Molecular (transcriptomic, copy number alteration, mutation, methylation) and clini-
cal data from the TCGA-LIHC primary tumour dataset (n = 370) were downloaded from
the GDC portal using the TCGAbiolinks package in R (accessed on 15 June 2023). Datasets
were dichotomised by median GPD1L mRNA value into ‘high” and ‘low” GPDI1L expres-
sion [30,31]. HCC transcriptomic (bulk, spatial, and single-cell RNA-seq) and survival data
were evaluated using the online portal at HCCDB v2.0 (http:/ /xsh.mywsat.cn/#/home,
accessed on 15 June 2023).

4.2. Survival Analysis

Kaplan-Meier and Cox proportional hazards survival analysis was performed using
the survival package in R [32]. Survival curves were compared using the log rank test.
The following co-variates were included in the multivariate Cox regression analysis after
confirming the proportional hazards assumption was maintained: age, sex, resection
margin status, stage, ECOG performance status, and tumour purity. Continuous variables
(age and tumour purity) were dichotomized by median value. We evaluated overall
survival (OS) and progression-free interval (PFI) as recommended by Liu et al. [33].

4.3. Differential Gene Analysis

Differential gene analysis was performed in TCGA-LIHC using RNA-seq raw counts data
and DEseq2 in R [34]. Genes were ranked by t-statistic and analysed using gene set enrichment
analysis software (pre-ranked analysis) and the Hallmark gene set MSigDB v2023.1.Hs (Mar
2023) (Broad Institute, Cambridge, MA, USA, accessed on 16 June 2023) [35,36]. A parallel
analysis of the 50 Hallmark gene sets was conducted using gene set variation analysis (gsva)
in R to identify differential gene set activity (FDR p < 0.05) [37]. Top positively correlating
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genes (Spearman’s tho > 0.4; FDR p < 0.05) were downloaded from cBioportal (https:
/ /www.cbioportal.org/, accessed on 20 June 2023) and functional enrichment analysis
was performed using g:Profiler (https://biit.cs.ut.ee/gprofiler/gost, accessed on 23 June
2023) [38-40]. miRNA analyses were performed and visualised using CancerMIRNome
(http:/ /bioinfo.jialab-ucr.org/CancerMIRNome/, accessed on 23 June 2023) [41].

4.4. Drug Response Prediction

Drug response (IC 50) (n = 326) and HCC cell line (n = 17) transcriptomic data for
gene response correlation analyses were downloaded from the GDSC portal (GDSC1)
(https:/ /www.cancerrxgene.org/, accessed on 27 June 2023) [42]. Drug response was
imputed in TCGA-LIHC using oncoPredict in R [43].

4.5. Cell Culture

The human HCC cell lines Hep3B, HEPG2, PLC/PRF/5 were obtained from the Amer-
ican Type Culture Collection. Cells were cultured in minimum essential medium (MEM,
Gibco, Paisley, UK) supplemented with 10% fetal bovine serum (FBS, Sigma, Welwyn
Garden City, UK), 1X Glutamax (Gibco, UK), 1X Penicillin-Streptomycin (Sigma, Welwyn
Garden City, UK), non-essential amino acids (Sigma, UK), and 1 mM sodium pyruvate
(Sigma, UK). Cells were incubated (37 °C, 5% CO,, humidified) and passaged using TrypLE
Express (Gibco, UK) to maintain 70-80% confluency.

4.6. siRNA Transfection

GPD1L siRNA (sc-78210) and the negative control scramble siRNA (sc-37007) were
purchased from Santa Cruz (Germany). Hep3B cells were seeded at 80% confluency prior to
transfection. For transfection, a 1:1 ratio of siRNA duplex and siRNA transfection reagent
(Santa Cruz Biotechnology, Heidelberg, Germany) was diluted in an antibiotic-free siRNA
transfection medium (Santa Cruz Biotechnology, Germany) and added to cells. After
6 h incubation, the complete growth medium containing 20% FBS was added into the
transfection mixture. After 24 h, the transfection mixture was replaced by fresh media for
downstream assays.

4.7. Drug Treatment and Cell Viability Assay

Linstinib (OSI-906), PF-562271, and BMS-754807 were purchased from Selleckchem.
Cells were seeded at 40% confluency overnight and incubated with drugs dissolved in 0.1%
DMSO for 48 h. Viability was measured by the CellTiter 96 AQueous One Solution cell
proliferation assay (Promega, Southampton, UK) following manufacturer’s instructions.
The optical absorbance was recorded at 490 nm using a BioTek 800 TS microplate reader
(Agilent, Cheadle, UK). Data were normalised against the vehicle control.

4.8. gPCR

To assess transfection efficiency, total RNA was extracted with RNeasy Kit (Qiagen,
Manchester, UK), quantified with Nanodrop One UV-Vis Spectrophotometer (Thermo
Scientific, Loughborough, UK), and cDNA was synthesised from mRNA using LunaScript
RT SuperMix Kit (New England Biolabs, Hitchin, UK) following manufacturer’s instruc-
tions. Luna Universal qPCR master mix (New England Biolabs) was used with the fol-
lowing primers: GPD1L_Fw: 5-GTTGCCATGTCAAATCTTAGCG-3’; GPDIL_Rv: 5'-
GCACTCTCCCAGTGATCTCAT-3'; GAPDH_Fw: 5-TCAAGGCTGAGAACGGGAAG-3/;
GPDIL_Rv: 5-CGCCCCACTTGATTTTGGAG-3'. The primer sequences were generated
using the NCBI BLAST. cDNA was amplified for 40 PCR cycles in technical triplicates
with QuantStudio 7 Pro Real-Time PCR System (Applied Biosystems, Warrington, UK)
using GAPDH as internal reference gene. Data are presented as expression fold change
normalised against vehicle control.
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4.9. Statistical Analysis

Variables were compared using Welch's t test or Mann U Whitney for continuous
variables as appropriate, and Pearson’s chi-square or Fisher exact test for categorical
variables. Data have been presented as means with standard deviation (SD) for continuous
variables and frequency with percentage for categorical variables. Multiple testing was
adjusted using the Benjamini-Hochberg method. All statistical analyses were done using R
software version 4.0.2 unless otherwise indicated. Graphing and non-linear curve fitting
for transfection and drug dose response experiments were performed with Prism 9.0.2
(GraphPad, San Diego, CA, USA).
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