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Abstract: Numerous basic studies have reported on the neuroprotective properties of several purine
derivatives such as caffeine and uric acid (UA). Epidemiological studies have also shown the inverse
association of appropriate caffeine intake or serum urate levels with neurodegenerative diseases
such as Alzheimer disease (AD) and Parkinson’s disease (PD). The well-established neuroprotective
mechanisms of caffeine and UA involve adenosine A2A receptor antagonism and antioxidant activity,
respectively. Our recent study found that another purine derivative, paraxanthine, has neuropro-
tective effects similar to those of caffeine and UA. These purine derivatives can promote neuronal
cysteine uptake through excitatory amino acid carrier protein 1 (EAAC1) to increase neuronal glu-
tathione (GSH) levels in the brain. This review summarizes the GSH-mediated neuroprotective effects
of purine derivatives. Considering the fact that GSH depletion is a manifestation in the brains of AD
and PD patients, administration of purine derivatives may be a new therapeutic approach to prevent
or delay the onset of these neurodegenerative diseases.

Keywords: glutathione; purine derivatives; caffeine; uric acid; excitatory amino acid carrier protein
1; cysteine; Alzheimer disease; Parkinson’s disease

1. Introduction

A variety of purine derivatives are produced from purine nucleotides (i.e., adenine
nucleotide and guanine nucleotide) by metabolic processes occurring mainly in the liver.
For instance, adenine nucleotides are metabolized to produce ATP, ADP, AMP, adeno-
sine, inosine, hypoxanthine, and xanthine, and finally uric acid (UA). Caffeine (1,3,7-
trimethylxanthine), a naturally occurring purine derivative, is metabolized into several
dimethylxanthines including paraxanthine, theophylline, and theobromine, and finally
into UA derivatives.

Each purine derivative has a particular physiological activity, and several purine
derivatives such as adenosine, guanosine, caffeine, paraxanthine, theophylline, theo-
bromine, and UA have been shown to possess neuroprotective activities [1–9]. Caffeine has
an adenosine A2A receptor (A2AAR) antagonizing activity that is involved in neuroprotec-
tion [5]. The neuroprotective activity of UA is attributed to its antioxidative activity [10,11].
The neuroprotective activities of both caffeine and UA are supported by several epidemio-
logical studies, which show negative correlations of dietary caffeine intake and serum UA
levels with the onset of neurodegenerative diseases such as Alzheimer disease (AD) [12–15]
and Parkinson’s disease (PD) [16–19]. Recently, we have shown that caffeine and its metabo-
lites, paraxanthine and UA, have neuroprotective activities, enhance cysteine (Cys) uptake,
and increase intracellular glutathione (GSH) levels [20,21]. GSH is an intracellular antiox-
idant tripeptide molecule (glutamylcysteinylglycine), which plays an important role in
neuronal survival under oxidative stress in the central nervous system (CNS) [22,23]. There-
fore, it is likely that the increase in GSH levels is related to the neuroprotective activities of
purines such as caffeine, paraxanthine, and UA [20,21].

Increasing GSH levels is a neuroprotective mechanism that increases antioxidant ac-
tivity in neurons. It is widely accepted that neuroprotective processes can be classified into
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three major mechanisms: (i) suppressing excessive neuronal stimulation, (ii) maintaining
antioxidant activity in neurons, and (iii) detoxification of xenobiotics (Table 1). Intracellular
GSH is directly or indirectly involved in all four of the intracellular antioxidizing pathways,
i.e., Table 1 (ii, 1–4): intracellular GSH synthesis, Cys uptake, GSH supply from astrocytes,
and antioxidant supply.

Table 1. Neuroprotective mechanisms.

Mechanism of Neuroprotection References

(i) Suppressing excessive neuronal stimulation
1. Antagonizing excitatory amino acids [24,25]
2. Inhibiting neurotransmitter release [26,27]
3. Promoting neurotransmitter uptake and metabolism [28,29]

(ii) Maintaining antioxidant activity in neurons
1. GSH syntheses (GCL and GSS) [30–33]
2. Cysteine uptake (EAAC1) [34–36]
3. GSH supply from astrocyte (GCL, xCT, and MRP1) [28,37–39]
4. Other antioxidants (ascorbate, UA, and α-tocopherol) [11,40–43]

(iii) Detoxifying xenobiotics
1. Induction of phase I enzymes [44,45]
2. Induction of phase II enzymes [46]
3. Exclusion via MRPs [47,48]

Abbreviations: EAAC1, excitatory amino acid carrier protein 1; GCL, γ-glutamyl cysteine ligase; GSH, glutathione;
GSS, GSH synthetase; MRP1, multidrug resistance protein 1; MRPs, multidrug resistance proteins; UA, uric acid;
xCT, cystine/glutamate antiporter.

Figure 1 summarizes the regulation of GSH synthesis in neurons and astrocytes.
GSH is synthesized from glutamate (Glu), Cys, and glycine (Gly) by two-step enzymatic
reactions [32,49]. The first step of GSH synthesis is catalyzed by γ-glutamyl cysteine ligase
(GCL), which is composed of a GCL catalytic subunit (GCLC, Gene ID: 2729) and a GCL
modifier subunit (GCLM, Gene ID: 2730) [30–32]. The second step of GSH synthesis is
catalyzed by GSH synthetase (GSS, Gene ID: 2937) [33]. The GSH synthesis process is
preceded by Cys uptake, which is mediated by excitatory amino acid carrier protein 1
(EAAC1, Gene ID: 6505) in neurons [35,36]. Cys uptake into neurons is a major pathway
that supplies material for GSH production. Transporting Cys is mainly mediated by a
neuron-specific Cys transporter, EAAC1 [34,35,50].

The intracellular presence of the antioxidants such as ascorbate, UA, and α-tocopherol
help to preserve neuronal GSH levels by doing the work of protecting cells against oxidative
stress through other means [11,40–43]. Neuronal GSH levels are also affected by GSH
production in the astrocytes that surround and support the neurons [28,37,51]. Astrocytes
release GSH via multidrug resistance protein 1 (MRP1, Gene ID: 4363); the GSH is degraded
extracellularly and then taken up by neurons to be reconstructed [39,52]. This GSH release
is promoted by enhancing GSH synthesis in astrocytes, which is mainly regulated by GCL,
GSS, and cystine (cysteine disulfide) uptake via the cystine/glutamate antiporter, system
xc− (xCT, Gene ID: 23657) [38] (Figure 1).

Several purine derivatives are found to be neuroprotective, and they increase intracel-
lular GSH levels not only in neurons but also in astrocytes. Thus, the regulation of GSH
levels is likely integral to the neuroprotective activity of purines in the CNS. We present
here the relation of purine derivatives with neuroprotection, especially in terms of GSH
synthesis (in Section 3.3).

Whereas increased GSH is known to be neuroprotective, reduced brain GSH levels
have been reported to precede the pathologic hallmarks of AD such as amyloid oligomer-
ization and plaque formation in AD model mice [53]. In a clinical study, GSH depletion
was considered an early event in the progression of PD [54]. Thus, promoting intracellular
GSH synthesis prior to symptomatology may halt the progression of neurodegenerative
diseases such as AD and PD. Basic research on the effect of purine derivatives on increasing
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GSH levels is valuable for developing novel disease-modifying drugs for the treatment of
neurodegenerative diseases.
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Figure 1. Regulations of GSH levels in neurons and astrocytes. In both neurons and astrocytes,
GSH is synthesized from glutamate (Glu), cysteine (Cys), and glycine (Gly) by two-step enzymatic
reactions catalyzed by GCL and GSS. Although Cys is synthesized through the methionine cycle
and the transsulfuration pathway, Cys uptake via EAAC1 is the main mechanism supplying Cys
to produce intracellular GSH in neurons. In astrocytes, cystine (cysteine disulfide, CysCys) is
taken up via xCT and rapidly converted to Cys in intracellular space. In neurons, glutathione
disulfide (GSSG), the oxidized form of GSH, is released via MRP1. Astrocytic GSH is released into
extracellular space via MRP1. GSSG is recycled to GSH by GSH reductase (GR, Gene ID: 2936), and
the released GSH is converted to Cys through the γ-glutamyl cycle. Neurons take up extracellular
Cys and use it to synthesize GSH. Other abbreviations: ApN, aminopeptidase N; GLAST, glutamate-
aspartate transporter (Gene ID: 6507); Gln, glutamine; GLT-1, glutamate transporter 1 (Gene ID:
6506); GluCys, glutamylcysteine; GluR, glutamate transporter; GPx, glutathione peroxidase (Gene
ID: 2876); GS, glutamine synthetase; GST, glutathione S-transferase; CysGly, cysteinylglycine; γ-GT,
γ-glutamyl transpeptidase.

In this review, we summarize the role of purine derivatives in enhancing neuroprotec-
tive activities and alleviating neurodegenerative insults. In the second section, we describe
recent epidemiological studies on the relationship of both caffeine and UA to the onset
of neurodegenerative diseases. Then, in the final section, we present the neuroprotective
functions of purine derivatives especially in terms of GSH synthesis.
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2. Epidemiological Studies of the Relation between Caffeine or UA and Lower Risks
of Neurodegenerative Diseases

Aging societies such as that in Japan face serious problems of age-related neurodegen-
erative disease such as AD and PD and especially the cognitive decline that accompanies
these diseases. No effective curative or prophylactic treatment for the development of
AD or PD has so far been clinically developed. Genetic backgrounds are involved in
the onset and progression of familial AD and PD [55,56], while several environmental
factors that promote or attenuate the onset of sporadic AD [57] and PD [58,59] have been
identified in epidemiological studies. Previous studies have suggested the involvement
of factors such as caffeine intake and serum UA levels in modulating the incidence or
progression of AD and PD. Serum caffeine concentrations in PD patients and matched
healthy control are about 2.4 µM and 7.9 µM, respectively [60]. UA concentration in PD
patients and matched healthy control is about 274 µM and 286 µM, respectively [19]. A
higher serum UA (≥271 µM) is associated with lower risk for AD compared to lower serum
UA (≤210 µM) [15]. The neuroprotective activities of both caffeine and UA have been
confirmed by preclinical studies using animal models. These studies suggest that the neuro-
protective mechanisms of caffeine and UA are respectively involved in A2AAR antagonism
(Kb = 12.3 µM, Table 2) [3,61,62] and in antioxidant activity (200 to 500 µM UA) [63,64],
namely, with upregulation of the signaling pathway that produces antioxidative molecules
in cells.

Table 2. Affinity of purine derivatives at the targets.

Purine Derivatives
Adenosine Receptor Subtypes

References
A1AR A2AAR A2BAR A3AR

Antagonist potency for AR (Kb, µM) [62]
Caffeine 33.8 12.3 15.5 >100

Paraxanthine 15.8 5.3 5.5 >100
Theophylline 8.9 7.9 4.8 >100

Agonist potency for AR (EC50, µM) [62]
Adenosine 0.31 0.73 23.5 0.29

Inosine 290 inactive inactive 0.25
Antagonist potency for AR (Ki, µM) in striatum [65]

Caffeine 20.5 8.6
Paraxanthine 5.0 7.5
Theophylline 4.7 9.8
Theobromine 96.5 109.5

Antagonist potency for AR (Ki, µM) [66]
Theophylline 6.8 1.7 7.9 86

Agonist potency for AR * (IC50, µM) [67]
Adenosine 0.070 0.150 15.4 6.5

Inhibition of AR (IC50, µM) [68]
UA >5300

Caffeine 107

Other Targets
References

PDE RyR

Inhibition of AR (IC50, µM) [69]
Caffeine 400
Caffeine 2000

* Affinity for AR was analyzed by adenylate cyclase inhibition. Abbreviations: A1AR, adenosine A1 receptor;
A2AAR, adenosine A2A receptor; A2BAR, adenosine A2B receptor; A3AR, adenosine A3 receptor, PDE, phosphodi-
esterase; RyR, ryanodine receptor.

2.1. Relation between Caffeine Intake and Lower Risk of Neurodegenerative Diseases

Since the 1980s, numerous epidemiological studies have shown a correlation between
coffee/caffeine intake and lowering the risk of neurodegenerative diseases such as AD
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and PD. A negative correlation was found between caffeine intake and the incidence or
progression of AD [12,13,16]. In one study, caffeine intake was correlated with a lower risk
of cognitive decline in women, but not significantly so in men [12]. To clarify whether the
coffee-induced effect could be attributed to molecules other than caffeine, Dong et al. [13]
reported the contribution of caffeine to reducing the risk of cognitive decline in elder adults
by comparing five different groups, including those who did not consume coffee, and
those who consumed coffee, caffeinated coffee, decaffeinated coffee, and caffeine from
coffee. The results showed that cognitive performance was correlated with the intake of
coffee, caffeinated coffee, and caffeine from coffee, but not decaffeinated coffee. Thus, these
findings suggest that intake of caffeine, rather than other components of coffee, significantly
lowers the risk of cognitive decline of AD patients.

Coffee/caffeine intake has also shown correlations with better cognitive performance in
PD patients [16,17,19,70–79]. Although the correlation between coffee intake and the lower
risk of PD was not significant in early studies [70,71], subsequent larger case-control stud-
ies demonstrated the relation of a lower risk of PD to coffee/caffeine intake [16,17,19,72–79].
Ross et al. [17] showed that coffee/caffeine intake was correlated with a low incidence of
PD, whereas tobacco use (smoking) and administration of other nutrients contained in
coffee did not lower the risk of PD.

More than 90% of caffeine clearance is mediated by cytochrome P450 family 1 sub-
family A member 2 (CYP1A2, Gene ID: 1544) [80]. A polymorphic variant of CYP1A2
(–163 C > A) (GenBank accession number AF253322) confers higher CYP1A2 inducibility
and higher individual caffeine metabolic activity [81]. Recently, Tan et al. [82] examined
the correlation of caffeine intake with PD risk in terms of caffeine metabolism: in their case-
control study, there was no difference in the relationship of caffeine intake to low risk of
PD between fast and slow caffeine metabolizer genotypes. Even after normalizing caffeine
absorption and metabolism, reduced salivary caffeine levels in PD patients correlates with
PD progression [83]. These results further support the neuroprotective activities of both
caffeine and its major metabolite, paraxanthine, found in animal studies [6,21,84]. However,
it remains unclear whether paraxanthine alone is correlated with a lower risk of PD.

2.2. Relation between Serum UA and Risk of Neurodegenerative Diseases

High serum UA levels cause some critical diseases such as gout, cardiovascular
disease, hypertension, and renal disease [85], while it has neuroprotective effects in PD
and AD animal models, because UA has antioxidant activity. Several clinical studies have
demonstrated the neuroprotective effect of high serum UA levels on neurodegenerative
diseases such as PD and AD [19,86].

Although some conflicting results have been reported [87], a significant correlation between
serum UA levels and a low risk of PD have been shown by many studies [19,88–92]. Some of the
studies identify a difference in the UA/PD relationship between men and women [18,93].
In one study, higher plasma UA levels correlated with lower risk of PD in men but not in
women [93]. Cortese et al. [18] also demonstrated that higher serum UA levels are related
to lower risk of PD in men. Although the relation is weaker in women, the protective
effect of serum UA is significantly increased in aged women (above 70 years), whose UA
levels are higher than those in premenopausal women. These studies further support the
correlation between serum UA levels and lower risk of PD.

A strong correlation of plasma antioxidant levels with both mild cognitive impairment
and AD has been observed [14,86]. Furthermore, it has been shown that serum UA levels
are correlated with lower risks of dementia, AD, and vascular dementia [15]. Interestingly,
in participants without dementia, there was a correlation between higher serum UA levels
and better cognitive performance in life; however, in participants with dementia, there
was a correlation of high serum UA levels with declines in cognitive performance and
manifestation of brain atrophy [94].

As mentioned above, some studies have supported the potential role of hyperuricemia
to prevent AD, while other studies have reported conflicting results or have failed to
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demonstrate any significant association [95,96]. Although the results of these clinical
studies have been inconsistent, a recent meta-analysis supported the correlation between
serum UA levels and scores on the Mini-Mental State Examination in patients with PD-
related dementia [14,15,94,97].

By treatment with urate-lowering agents, patients with gout maintain lower serum UA
levels over long periods of time. One might think that low serum UA levels would impair
neurons by increasing oxidative stress in the brain. However, use of urate-lowering drugs
(allopurinol, febuxostat) is not correlated with any increase in the risk of dementia [95].
Treatment with pegloticase, a PEGylated urate oxidase (uricase), reduced mean serum UA
levels more than 90% (from 10.8 to 0.9 mg/dL = 642 to 53 µM); however, there was no
significant increase in biomarkers of oxidative stress, and the levels of oxidative markers
did not correlate with serum UA levels [98]. Thus, drug-controlled low serum UA levels do
not appear to affect the development of dementia or oxidative stress. The lack of correlation
between low levels of serum UA and the development of dementia may be due to the
absence of elevated oxidative stress levels. Indeed, it is not yet fully understood whether
UA acts as an antioxidant in blood [11,99] and how serum UA provides neuroprotection in
the CNS.

3. Neuroprotective Activities of Purines
3.1. Regulations of UA Levels in Blood and the Brain

Serum UA levels are maintained by food digestion, purine synthesis, metabolism, and
purine excretion into urine. The net excretion of UA in urine is determined by the balance
between UA re-absorption and secretion within the proximal tubule, and each process is
mediated by its specific transporter (Figure 2). Since uricase activity is absent in primates,
UA is the end metabolite of purines in humans. Therefore, serum UA levels in humans
are higher than in other mammals. Abnormally high UA levels are related to the onset of
diseases such as gout, cardiovascular disease, hypertension, and renal disease [85] because
UA behaves as a pro-oxidant under certain circumstances: for example, in the presence
of transition metals in the microenvironment [100]. However, higher UA levels in serum
and cerebrospinal fluid have been effective in protecting neurons from oxidative stress in
animal studies [8,9,101] and have been related to a lower onset of AD and PD in clinical
studies (as described in Section 2).

UA is also produced during ATP metabolism through the following steps [102]:
(1) ATP is converted to ADP and AMP by nucleoside triphosphate diphospho-hydrolases
(NTPDases; CD39, Gene ID: 953) [103], (2) AMP is converted to adenosine by 5′-nucleotidase
(5′NT; CD73, Gene ID: 4907) [104], (3) adenosine is converted to inosine by adenosine deam-
inase (ADA, Gene ID: 100), (4) inosine is converted to hypoxanthine by purine nucleoside
phosphorylase (PNP, Gene ID: 4860), and (5) xanthine oxidase (XO, Gene ID: 7498) cat-
alyzes the conversion of hypoxanthine to xanthine and finally to UA [105,106] (Figure 2). In
mammals, XO is abundant in the liver, intestine, and mammary gland whereas it is scarce
in the heart, muscle, and brain [105]. In immunolocalization studies, XO protein is located
in mammary epithelial cells and in the capillary endothelial cells of almost all tissues except
the brain and testis in bovines. The human brain lacks XO, and the XO activity is absent
from neurons, astrocytes, epithelial cells, endothelial cells, and capillary endothelial cells in
the brain [105]. Importantly, because UA production mainly occurs in the liver and not in
the brain, serum UA can be supplied to the brain only by passing through the blood–brain
barrier (BBB) (Figure 3).
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Figure 2. Purine metabolism in peripheral tissues. (1) ATP is converted to ADP and AMP by
nucleoside triphosphate diphospho-hydrolases (NTPDases; CD39), (2) AMP is converted to adenosine
by 5′-nucleotidase (5′NT; CD73), (3) adenosine is converted to inosine by adenosine deaminase
(ADA), (4) inosine is converted to hypoxanthine by purine nucleoside phosphorylase (PNP), and
(5) xanthine oxidase (XO) catalyzes the conversion of hypoxanthine to xanthine and finally to UA.
GTP is converted to GDP and GMP by NTPDases. GMP is converted to guanosine by 5′NT, guanosine
is transformed into guanine by PNP. Guanine is converted to xanthine by guanine deaminase (GDA,
Gene ID: 9615). Caffeine (1,3,7-trimethylxanthine) is demethylated to paraxanthine (PX), theobromine
(TB), and theophylline (TP) by cytochrome P450 (CYP). PX, TB, and TP can be further demethylated by
CYP to monomethylxanthines such as 1-methylxanthine (1MX), 3MX, and 7MX. The 8-hydroxylation
of MXs to form corresponding methyl UAs (MUAs) is mainly catalyzed by XO.

In 1981, Granger et al. and McCord et al. [107,108] hypothesized that XO-generated
reactive oxygen species (ROS) cause ischemic reperfusion injury in bowel and cardiac
tissue. AMP catabolism to hypoxanthine occurs under hypoxic conditions in the ischemic
process, while in the reperfusion process, XO and O2 mediate hypoxanthine oxidation to
form xanthine and the end metabolite, UA, concomitant with super oxide anions (O2

−).
Therefore, the lack of XO in the brain may protect neurons from such oxidative stress.
In vivo preclinical study has shown that UA protects hippocampal neurons after ischemia
reperfusion in rats [109].

In terms of the mechanism by which UA in blood is involved in neuroprotection in
the brain, Amaro et al. [110] argued that the main target of UA is endothelial cells, because
UA is practically unable to pass through the BBB. The protection of endothelial cells from
ischemic injury leads to the survival of the whole neurovascular unit. When the BBB is
impaired, UA passes through it. In fact, UA levels in cerebrospinal fluid correlate positively
with serum UA levels, especially when the BBB is impaired [96]. The neuroprotective
activity of UA has been reported in 6-hydroxydopamine (6-OHDA) lesioned PD model
rats [8], as in ischemia-injured rats [9,109]. Although it is not clear how UA crosses the BBB
and how it acts on the neurons, these results support the notion that systemic administration
of UA might induce neuroprotective activity in the CNS.
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3.2. Regulation of Purine Metabolism in the Brain  

Other than nucleic acids, the typical intracellular purine derivative is ATP, which acts 

as an energy source for driving neuronal activity. Huge amounts of ATP (on the order of 

Figure 3. Purine metabolism and neuroprotection. (1) ATP is converted to ADP and AMP by CD39,
(2) AMP is converted to adenosine by CD73, (3) adenosine is converted to inosine by ADA. The
neuroprotective mechanism of UA is its antioxidant activity, while that of caffeine is A2AAR receptor
antagonism. Adenosine reduces neuronal excitability and firing rate via A1AR stimulation. The
mechanism of guanosine induced neuroprotection involve A1AR agonism. Upregulation of GSH
levels is one of the neuroprotective mechanisms of UA, caffeine, PX, and guanosine. Abbreviations:
cAMP, cyclic AMP; MEK, extracellular-signal regulated kinase kinase; P2X, ionotropic purinergic
receptor; P2Y, metabotropic purinergic receptor.

3.2. Regulation of Purine Metabolism in the Brain

Other than nucleic acids, the typical intracellular purine derivative is ATP, which acts
as an energy source for driving neuronal activity. Huge amounts of ATP (on the order of
several mM) are produced in nervous tissues to maintain energy for Na+/K+ ATPase and
synaptic transmission [111–113]. In contrast, extracellular ATP (at a concentration of low
nM) regulates cellular signaling via P2-purinergic receptors such as P2Y and P2X [114–116]
(Figure 3). ATP is released from cells under physiological conditions [117] and is also
released from damaged cells [118–120] (Figure 3).

ATP is converted to ADP, AMP, adenosine, inosine, hypoxanthine, and xanthine and
finally yields UA in the peripheral tissues (Figure 2). These purine derivatives have a variety
of physiological activities by modulating adenosine receptors in the brain. Methylxanthines
(MX) such as caffeine, paraxanthine, theophylline, and theobromine can be converted to
UA by both demethylation and oxidation processes (Figure 2).

Adenosine is formed from AMP intracellularly in the CNS. Under physiological con-
ditions, ATP and adenosine can be released from presynaptic neurons. Adenosine is also
produced in extracellular space from AMP derived from released ATP and cyclic AMP
(cAMP) [121–123]. In addition, astrocytes in the brain use ATP to regulate the extracellular
concentration of purines, the metabolism of which is catalyzed by ecto-enzymes on cell
membranes [122,124]. ATP is rapidly converted to ADP, AMP, adenosine, and inosine in
the extracellular space [117,120,125] (Figure 3). ATP is decomposed into ADP and AMP
by CD39 [103], AMP is decomposed into adenosine by CD73 [126], and adenosine is de-
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composed into inosine by ADA [127]. Adenosine stimulates adenosine A1 receptor (A1AR)
and A2AAR (EC50 values for A1AR and A2AAR are 0.31 µM and 0.73 µM, respectively,
Table 2). Trauma and ischemia induce the expression of CD39 and CD73 in astrocytes
and increase extracellular adenosine derived from ATP metabolism [126,128] (Figure 3).
Clearly, a variety of purine derivatives are produced from metabolic processes of purine
nucleotides, and at least some of them seem to have neuroprotective activity in vitro and
in vivo.

3.3. Neuroprotective Mechanisms of Purines

As described in the Introduction and illustrated in Table 1, neuroprotective processes
can be classified into three major categories (Table 1): (i) suppressing excessive neuronal
stimulation by neurotransmitter antagonism, (ii) maintaining antioxidant activity in neu-
rons, which limits cellular oxidative stress caused by electrophile molecules such as ROS,
and (iii) detoxifying xenobiotics such as nucleophile molecules and abnormally aggregated
proteins such as α-synuclein and amyloid β peptide. Known neuroprotective activities
induced by purine derivatives have been classified in categories (i) and (ii) above, but
category (iii)-mediated neuroprotective effects of purine derivatives have been unclear.

3.3.1. Neuroprotection by Antioxidative Activity

UA has antioxidant activity [11,129,130] that leads to an established neuroprotective
property, while xanthine structure has no such activity [64]. Structure-activity relationships
for purine derivatives indicate that the 8-one substituent in the chemical structure of UA
plays an important role in its antioxidant properties [63,129]. It has been suggested that UA
may neutralize reactive oxygen species produced via a Fenton-type chemical reaction in
cells. However, UA levels in cerebrospinal fluid (17.7 µM) are lower than those in plasma
(172.3 µM) [96] (Figure 3), suggesting that UA might have an antioxidant effect in blood.

UA both acts as a scavenger of ROS and peroxynitrite [99] and prevents iron-mediated
ascorbate oxidation [131]. In vitro, UA has an antioxidant activity similar to that of ascor-
bate, but humans have much higher levels of UA than ascorbate, due to their loss of uricase
function during the course of evolution. However, low serum UA levels do not increase
oxidative stress in blood [98]. In fact, UA is a less effective antioxidant than ascorbate in hu-
man blood [10,11]. This is because of UA’s alternative role as an iron chelator. Therefore, UA
inhibits iron-catalyzed oxidation of ascorbate and stabilizes ascorbate levels in serum [132].
Antioxidant activity is observed at UA concentrations of more than 200 µM [10,64]; how-
ever, a much lower concentration of UA (10 µM) was shown to increase Cys uptake through
the Cys transporter, resulting in GSH synthesis in hippocampal slices [20]. Thus, UA may
contribute neuroprotection not only by antioxidant activity but also by promoting GSH
production in neurons.

The neuroprotective activities of UA and caffeine have been confirmed by several
preclinical studies. The well-established neuroprotective mechanism of UA is its antioxidant
activity (10 to 100 µM), while that of caffeine is A2AAR receptor antagonism (IC50 = 107 µM,
Table 2). Furthermore, UA and caffeine have other neuroprotective mechanisms in which
GSH levels are increased by upregulating expressions of antioxidant-related proteins
(Figure 3 and Table 3). UA appears to increase GSH levels by enhancing expression of
nuclear factor erythroid-2-related factor 2 (Nrf2)-responsive genes, including GCLC, heme
oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO1), and the resultant
GSH increase provides antioxidant activity (Table 3).
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Table 3. Neuroprotective effects of purine derivatives via regulating GSH synthesis and AR.

Treatment or Stimulus Model Analysis
(Neuroprotective Activity) Signal Transduction References

UA 6-OHDA-treated PC12 cells (UA
200–400 µM)

LDH release↓, MDA↓, and
8-OHdG levels↓ SOD↑ and GSH↑ [133]

UA
6-OHDA-induced striatum
lesioned rat (twice daily UA

200 mg/kg i.p. 10 days)

DA neuron loss↓, behavioral
deficit↓, and MDA↓ SOD↑ and GSH↑ [8]

UA 6-OHDA-treated SH-SY5Y cells
(200 µM UA) cell viability↑ PI3K↑ and Akt/GSK3β↑ [8]

UA MPTP treated Parkinson’s disease
model mouse (UA 250 mg/kg i.p.)

Recovery of behavioral and
cognitive function. DA neuron

loss↓, GFAP+ astrocyte↓,
and MDA↓

Nrf2 (nuc translocation)↑
GCLC/NQO1/HO-1↑, SOD↑,

CAT↑, and GSH↑
[101]

UA Cerebral ischemia/reperfusion
model rat (UA 16 mg/kg i.v.)

TUNEL+ cell↓, MDA↓, carbonyl
groups↓, and 8-OHdG levels↓ Nrf2/BDNF and NGF levels↑ [9]

UA Mouse cortical astrocyte culture
(100 µM UA)

Oxidative stress-induced DA
neuronal cell death↓

Nuclear translocation of Nrf2↑,
GCLM/NQO1/HO-1↑, and
GSH synthesis and release↑

[37]

Caffeine
LPS-induced oxidative stress

model mouse (Caffeine
30 mg/kg/day i.p. 4 weeks)

Apoptotic cell death↓ and
synaptic dysfunction↓

Nrf2/HO-1↑ and
TLR4/p-NF-κB/p-JNK↓ [134]

Caffeine
Cadmium-induced cognitive

deficits model mouse (caffeine
30 mg/kg i.p. 2 weeks)

Neuronal cell loss↓ and
synaptic dysfunction↓ Nrf2/HO-1↑ [135]

Caffeine HT-22 and BV-2 cells
(100 µM caffeine) ROS↓ and lipid peroxidation↓ Nrf2/HO-1↑ [135]

Caffeine and UA
SIN-1 treated mouse (caffeine

10 mg/kg i.p. and
UA10 mg/kg i.p.).

Nitrotyrosine levels in
hippocampal slice↓ Cys uptake via EAAC1↑ GSH↑ [20]

Paraxanthine H2O2 treated SH-SY5Y cells
(10–100 µM paraxantine) LDH release↓ Cys uptake via EAAC1↑ GSH↑ [21]

Guanosine
C6 astroglia and adult rat

astrocyte culture
(100 µM guanosine)

Azide-induced cytotoxicity↓ HO-1↑, GS/GR/GCL↑
and GSH↑ [136,137]

Guanosine Cortical astrocyte culture
(10 µM guanosine)

Oxygen/glucose deprivation
and reoxygenation-induced

cell death↓

A1AR agonism and A2AR
antagonism, PI3K/Akt↑, and

MEK/ERK↑
[138]

Guanosine Rat hippocampal slices
(100 µM guanosine) Glu-induced cell death↓ PI3K/ Akt//GSK3↑ [139]

Adenosine
Cerebral ischemia/reperfusion

model rat (treatment with
adenosine kinase inhibitor)

Infarct volume↓ A1AR agonism [2,140]

Caffeine MPTP treated mice (Caffeine
10–20 mg/kg, i.p.) Striatal DA depletion↓ A2AAR antagonism [5]

Caffeine, paraxanthine,
and theophylline

MPTP treated mice (caffeine
10 mg/kg, Paraxanthine

10–30 mg/kg, Theophylline
10–20 mg/kg, i.p.)

Striatal DA depletion↓ [6]

Theobromine

Fat-enriched diet-induced
cognitive deficits model rat
(Theobromine 30 mg/L in

drinking water)

Improve cognitive functions
and Aβ and IL-1β levels

in brain↓
A1R mRNA and protein level↑ [7]

Paraxanthine MPP+ treated rat DA neuron
culture (800 µM paraxanthine) DA neuron loss↓ Ryanodine receptor activation [84]

Abbreviations: Akt, protein kinase B; Aβ, amyloid-beta protein; BDNF, brain-derived neurotrophic factor; CAT,
catalase; DA, dopamine; ERK, extracellular-signal regulated kinase; GCLC, GCL catalytic subunit; GCLM,
GCL modifier subunit; GSK3, glycogen synthase kinase 3; HO-1, hemeoxygenase-1; IL-1β, interleukin-1β; i.v.,
intravenously injection; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MDA, Malondialdehyde; MPP+,
1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, NGF, nerve growth factor;
Nrf2, nuclear factor erythroid-2-related factor 2; NQO1, NAD(P)H quinone oxidoreductase 1; p-JNK, phosphor-c-
Jun n-terminal kinase; PI3K, Phosphoinositide 3-Kinase; p-NF-κB, phosphor-NF-κB; ROS, reactive oxygen species;
SIN-1, 3-morpholinosydnonimine; SOD, superoxide dismutase; TLR4, toll-like receptor 4,; TUNEL, Terminal
deoxynucleotidyl transferase-mediated dNTP nick end labeling; 6-OHDA, 6-hydroxydopamine; 8-OHdG, 8-
hydroxyl-2′-deoxyguanosine. Cell lines: BV-2, murine microglia cell line; HT22 cells, mouse embryonic fibroblasts;
PC12 cells, rat pheochromocytoma cell line; SH-SY5Y cells, human neuroblastoma. ↑ and ↓ indicate an increase
and decrease of the object, respectively.
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There are numerous examples of UA’s direct neuroprotective roles. UA protects PC12
cells from 6-OHDA-induced cell injury by increasing levels of both GSH and superoxide
dismutase (SOD) protein [133]. UA treatment enhances SOD activity, increases GSH levels,
and reduces oxidative products of malondialdehyde (MDA) in a 6-OHDA-induced PD
model rat [8]. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD model
mice, UA improves behavioral performance and cognition, and UA also prevents the cell
death of dopaminergic neurons, which is induced by modulation of neuroinflammation and
oxidative stress [101]. UA treatment enhances Nrf2-responsive gene expression, including
GCLC, HO-1, and NQO1, increases SOD, catalase (CAT), and GSH levels, and reduces
MDA in the substantia nigra [101] (Table 3).

UA also has an indirect neuroprotective activity by increasing GSH levels in astrocytes.
UA treatment activates Nrf2 and leads to upregulation of gene expression of the GCLM,
which enhances GSH production in astrocytes [37] (Table 3). This increase in astrocytic
GSH levels can enhance GSH release into extracellular space, and the released GSH can be
converted to Cys, which is taken up by neurons [37].

Nrf2 activation is another indirect mechanism by which purine derivatives provide
neuroprotection. Nrf2 activation was observed when caffeine was treated as a neuropro-
tective agent in lipopolysaccharide (LPS)-induced oxidative stress model mice [134] and
cadmium-induced cognitive deficit model mice [135] (Table 3). Nrf2 activators such as
tert-butylhydroquinone (t-BHQ) and L-sulforaphane can induce EAAC1 expression by
the Nrf2/ARE pathway in C6 glioma cells [141]. In vivo treatment of t-BHQ upregulates
EAAC1 expression by Nrf2 activation and increases neuronal GSH levels in the mouse stria-
tum [141]. T-BHQ also upregulates xCT expression in astrocytes in vitro [142]. Although
caffeine-induced EAAC1 expression via A2AAR antagonism is observed in the developing
retina [143], it is still unclear whether caffeine-induced Nrf2 activation upregulates EAAC1
or xCT and leads to increasing GSH synthesis.

Our previous study showed a novel mechanism by which treatment with caffeine
(10 to 100 µM) and UA (1 to 10 µM) provided neuroprotection by increasing GSH levels in
the brain. The upregulation of GSH synthesis is mediated by increasing Cys uptake via
EAAC1 in hippocampal slices [20]. In addition, paraxanthine (1,7-dimethylxanthine), a
major metabolite of caffeine, increases Cys uptake in hippocampal slices whereas other
purine metabolites (theophylline, theobromine, 1-MX, 3-MX, and 1,7-methyluricacid) do
not [21]. Paraxanthine (10 to 100 µM) increases Cys uptake in human neuroblastoma SH-
SY5Y cells via EAAC1 transport activity, and paraxanthine also exhibits neuroprotective
activity in SH-SY5Y cells [21]. The upregulation of GSH levels is independent of both
A1AR and A2AAR antagonisms, because an A2AAR antagonist, SCH58261, did not increase
GSH levels in hippocampal slices [20], and because UA exhibits no activity on A1AR
(IC50 > 5300 µM, Table 2) [68].

In astrocytes, guanosine upregulates GCL, glutamine synthetase (GS), and GSH reduc-
tase (GR), resulting in elevated GSH levels [136,137] (Table 3). The increase in GSH levels
in astrocytes may protect neurons against oxidative stress by promoting GSH supply to
neurons. Thus, GSH-regulated gene expression is one of the neuroprotective mechanisms
of UA, caffeine, and guanosine alike.

Finally, guanosine is a nucleotide metabolite that acts as an efficient neuromodulator
in the brain, and its extracellular role has recently been clarified [4,137,144]. Extracel-
lular guanosine is found to be neuroprotective and active in neurological regeneration
in response to brain ischemia and trauma [4]. The mechanisms of guanosine-induced
neuroprotection involve A1AR and A2AAR (of which it is a weak agonist [4]), Kir 4.1
potassium channels (Kir 4.1), and the excitatory amino acid transporter, glutamate trans-
porter 1 (GLT-1). In neurons and astrocytes, guanosine activates pro-survival pathways
such as Phosphoinositide 3-Kinase (PI3K), protein kinase B (Akt), and extracellular-signal
regulated kinase kinase (MEK)/extracellular-signal regulated kinase (ERK) via adenosine
receptors [138,145]. Guanosine also exerts neuroprotective activities by upregulations
of PI3K/Akt and MEK/ERK signals in rat cortical astrocytes [138], and upregulation
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of PI3K/Akt/glycogen synthase kinase 3 (GSK3) signal in rat hippocampus slice [139]
(Table 3). In vivo treatment of guanosine treatment improves behavioral performance and
reduces mitochondrial dysfunction in the penumbra area in ischemia model rat [146].

3.3.2. Neuroprotection by Adenosine Receptor Modulation

Adenosine is another purine that has neuroprotective activities. Since the 1940s,
adenosine has been used clinically for cardiac protection and vasodilation [147]. Adenosine
exhibits both neurostimulative and neuroprotective activities. Its neuroprotective activity
is typified as repression of excess neuronal activation (category (i) in Table 1). Extracellular
adenosine at concentrations of 0.05 to 0.2 µM is sufficient to modulate synaptic func-
tions [147]. The actions of adenosine in the brain are mediated by A1AR (IC50 = 0.070 µM),
A2AAR (IC50 = 0.150 µM), adenosine A2B receptor (A2BAR, Gene ID: 136) (IC50 = 15.4 µM),
and adenosine A3 receptor (A3AR, Gene ID: 140) (IC50 = 6.5 µM), which are variously
activated, depending on adenosine concentrations [67,148,149] (Table 2). The expression of
subtypes of adenosine receptors varies according to cell type. A1AR is the most abundant
in the brain. Adenosine reduces neuronal excitability and firing rate via A1AR stimula-
tion [150–152]. A1AR stimulation by adenosine induces neuroprotection in cultured neu-
rons and ischemia model of rats [2,140] (Figure 3, Table 3). In vivo studies have shown that
neuroprotection was induced by A1AR stimulation in animal models of ischemia [152,153].
A1AR stimulation inhibits Ca2+ entry into the presynaptic terminal, resulting in a reduction
in neurotransmitter release [154–156] and hyperpolarizes postsynaptic neurons [157,158].
In contrast, A2AAR stimulation in the brain induces neuronal excitability and synaptic
transmission [147,159]. Specific A2AAR antagonists such as KW-6002 (istradefylline), which
is xanthine-based compound, protect nigral dopaminergic cells from damage induced
by 6-OHDA in rats or by MPTP in mice [160]. Genetic depletion of A2AAR lowered the
dopaminergic neurotoxicity in PD model animals [62]. These results indicate neuroprotec-
tive activities of both A1AR agonism and A2AAR antagonism [3].

Caffeine is another purine that offers category (i) neuroprotection through the A2AAR
receptor, as well as its previously described category (ii) role of increasing intracellular
GSH levels via Cys uptake. Methylxanthines such as caffeine and theophylline are known
for their bronchoprotective effects. The molecular mechanisms include adenosine recep-
tor antagonism (Caffeine; IC50 = 107 µM) and phosphodiesterase inhibition (Caffeine;
IC50 = 400 µM) [69] (Table 2). A 30 mg/kg intraperitoneal injection of caffeine provides
neuroprotective effects (Table 3). Since the serum caffeine concentration is 116 µM 60 min
after the injection [161], it is enough concentration to antagonize adenosine receptors
but not to affect phosphodiesterase activity. Of course, caffeine also has motor stimu-
lant, psychostimulant, arousal, anti-inflammatory, anti-oxidative, and neuroprotective
effects [69,162]. A1AR antagonism is involved in the stimulus effects of caffeine [163]. Of
these, the arousal effect of caffeine (15 mg/kg, i.p.) is dependent on the A2AAR antag-
onism [164], and the anti-inflammatory effect of caffeine (100 µM) is mediated by both
A1AR and A2AAR [165,166]. The locomotor stimulatory effect of high doses of caffeine
cannot be attributed to the modulation of either the A1AR or the A2AAR, suggesting that
this effect is independent of AR activity. It is accepted that the neuroprotective activities
of caffeine are mediated by A2AAR inhibition [3]. Caffeine, paraxanthine, or theophylline
(10 or 30 mg/kg, i.p.) prevents neuronal cell loss in MPTP-treated PD model animals [5,6]
(Table 3). In fat-enriched diet-induced cognitive deficits rats, chronic treatment with theo-
bromine (30 mg/day) improved cognitive functions and amyloid-beta protein (Aβ) and
interleukin-1β (IL-1β) levels in the brain [7] (Table 3). Chronic treatment with caffeine
resulted in tolerance to its motor stimulation activity, whereas caffeine-induced neuropro-
tection does not diminish with exposure [167]. Mechanisms other than adenosine receptors
may also be involved in the neuroprotective effects of caffeine.
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3.3.3. Neuroprotection by Other Mechanisms

There are a few other, less pervasive mechanisms responsible for neuroprotective
activities of purines. UA promotes pro-survival pathways such as activating PI3K/Akt,
and MEK/ERK in the brain. For example, UA treatment (200 µM UA) prevents dopamine
(DA) neuron loss and behavioral deficits in 6-OHDA treated rat by recovery of Akt/GSK3β
signaling [8] (Table 3). A PI3K inhibitor was shown to interfere with UA-induced neuro-
protection and regulations on Akt/GSK3β signaling in 6-OHDA-treated SH-SY5Y cells [8].
Thus, PI3K/Akt/GSK3β signaling can be involved in the neuroprotective activities of UA.

Ya et al. [9] have shown that UA treatment (UA 16 mg/kg i.v.) reduces focal cere-
bral ischemic reperfusion-induced oxidative stress, preventing neuronal damage. The
mechanisms underlying this neuroprotective activity of UA are the upregulations of both
brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) via the Nrf2
signaling pathway.

Paraxanthine at a concentration of 800 µM has a neuroprotective activity for dopamin-
ergic neurons [84]. Its neuroprotective mechanism is attributed to a cytosolic calcium
release from the endoplasmic reticulum via the activation of ryanodine receptor channels.
However, this activity of paraxanthine is not mediated by antagonizing adenosine receptors
or by elevation of intracellular cAMP (phosphodiesterase inhibition).

ATP itself has no neuroprotective activity corresponding to categories (i) and (ii) in
Table 1. However, ATP increases the expression of the astrocyte glutamate transporter,
GLT-1, by P2Y (ATP receptor) stimulation, which activates the ERK/nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Since upregulation of
GLT-1 in astrocyte promotes the removal of excess glutamate from extra-synaptic space,
ATP may be involved in this category (i) neuroprotective mechanism. Thus, extracellular
purines such as adenosine and ATP regulate cellular signaling via their specific receptors.

As described above, the neuroprotective mechanisms of purine derivatives are mainly
due to adenosine receptor modulation and upregulation of the synthesis of proteins that are
involved in increasing antioxidative activity or activating pro-survival pathways in cells.
Many receptor activities develop tolerance to their antagonists [167], i.e., caffeine-induced
arousal, psychostimulant, and motor stimulant activities develop tolerance to caffeine,
but the neuroprotective activity does not. In addition to antagonizing A2AAR, increasing
GSH levels via Cys uptake may play an important role in the neuroprotective activities of
purine derivatives.

4. Conclusions

Several purine derivatives exhibit neuroprotective activity mediated by increasing
neuronal GSH levels, which can be due to not only induction of GSH synthesis-related en-
zymes, but also the upregulation of GSH levels explained by promoting EAAC1-mediated
Cys uptake, which is a commonly seen after treatment with caffeine, UA, or paraxanthine.

The upregulation of GSH levels may enhance antioxidative activity in neurons and
appears to be effective in preventing the incidence and progression of neurodegenerative
disease. Further studies to investigate how purine derivatives increase GSH levels by
promoting EAAC1-mediated Cys uptake would provide valuable insights into neuroprotec-
tion by purine derivative treatment. These studies of purine derivative biochemistry could
lead to novel preventions and treatments for the growing burden of neurodegenerative
disease in aging societies worldwide.
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Abbreviations

5′NT, CD73 5′-nucleotidase
6-OHDA 6-hydroxydopamine
8-OHdG 8-hydroxyl-2′-deoxyguanosine
A1AR adenosine A1 receptor
A2AAR adenosine A2A receptor
A2BAR adenosine A2B receptor
A3AR adenosine A3 receptor
AD Alzheimer disease
ADA adenosine deaminase
Akt protein kinase B
ApN aminopeptidase N
Aβ amyloid-beta protein
BBB blood–brain barrier
BDNF brain-derived neurotrophic factor
cAMP cyclic AMP
CAT catalase
CNS central nervous system
CYP cytochrome P450.
CYP1A2 cytochrome P450 family 1 subfamily A member 2
Cys Cysteine
CysCys Cystine
CysGly Cysteinylglycine
DA Dopamine
EAAC1 Excitatory amino acid carrier protein 1
ERK Extracellular-signal regulated kinase
GCL γ-glutamyl cysteine ligase
GCLC GCL catalytic subunit
GCLM GCL modifier subunit
GDA Guanine deaminase
GLAST Glutamate-aspartate transporter
Gln Glutamine
GLT-1 Glutamate transporter 1
Glu Glutamate
GluCys glutamylcysteine
GluR glutamate transporter
Gly glycine
GPx glutathione peroxidase
GR GSH reductase
GS glutamine synthetase
GSH glutathione
GSK3 glycogen synthase kinase 3
GSK3β glycogen synthase kinase 3 beta
GSS GSH synthetase
GSSG glutathione disulfide
GST glutathione S-transferase
HO-1 heme oxygenase-1
IL-1β interleukin-1β
i.v. intravenously injection
Kir 4.1 Kir 4.1 potassium channel
LDH lactate dehydrogenase
LPS lipopolysaccharide
MDA malondialdehyde
MEK extracellular-signal regulated kinase kinase
MPP+ 1-methyl-4-phenylpyridinium
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MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRP1 multidrug resistance protein 1
MRPs multidrug resistance proteins
MX methylxanthine
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NGF nerve growth factor
NQO1 NAD(P)H quinone oxidoreductase 1
Nrf2 nuclear factor erythroid-2-related factor 2
NTPDases, CD39 nucleoside triphosphate diphospho-hydrolase
PD Parkinson’s disease
PI3K Phosphoinositide 3-Kinase
p-JNK phospho-c-Jun n-terminal kinase
p-NF-κB phosphor-NF-κB
PNP purine nucleoside phosphorylase
PX paraxanthine
ROS reactive oxygen species
SIN-1 3-morpholinosydnonimine
SOD superoxide dismutase
TB theobromine
t-BHQ tert-butylhydroquinone
TP theophylline
TUNEL terminal deoxynucleotidyl transferase-mediated dNTP nick end labeling
UA uric acid
xCT cystine/glutamate antiporter
XO xanthine oxidase
γ-GT γ-glutamyl transpeptidase
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