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Abstract: Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine
oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of
substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration
results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuropro-
tective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to
the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg)
for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In
male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic
loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented
axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect
on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that
repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects,
consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic
meth-induced degeneration.

Keywords: methamphetamine; neurodegeneration; substantia nigra pars compacta; locus coeruleus;
monoamine oxidase; sex difference

1. Introduction

Methamphetamine (meth) is an addictive psychostimulant with escalating rates of
abuse in the United States [1–3]. In addition to being highly addictive, meth is also
neurotoxic [4,5]. Clinical evidence from human meth users shows decreased dopamine
content, tyrosine hydroxylase (TH) and dopamine transporter (DAT) expressions, and
vesicular monoamine transporter 2 (VMAT2) and DAT binding in the striatum, suggesting
nigrostriatal axon loss [6–13]. Similar outcomes are reported in rodents using acute binge
paradigms wherein subjects are administered a single high-dose bolus or multiple injections
in a single day, which result in decreased dopamine tissue content; DAT, VMAT2, and
TH immunoreactivity; DAT and VMAT2 binding; DAT protein expression; and TH and
VMAT2 activity [14–35]. We have recently reported that the deleterious effects of meth
extend beyond nigrostriatal axons. More specifically, chronic (28-day) meth (5 mg/kg;
i.p.) administration to male mice results in overt SNc degeneration that is linked to meth-
induced axonal mitochondrial oxidant stress [36–38].

Meth binds to and induces dysfunction of monoamine reuptake proteins as well as
VMAT2. In dopaminergic neurons, the consequence of binding to and inducing dysfunc-
tion of VMAT2 is increased cytosolic dopamine concentrations [39,40], which increases
mitochondrial oxidant stress in axonal but not somatic subcellular compartments [36,38].
This meth-induced axonal mitochondrial oxidant stress results from MAO metabolism of
dopamine, which generates free electrons that are transferred to the mitochondrial inter-
membrane space [38]. The in vivo administration of meth (5 mg/kg) for 28 consecutive
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days to male mice results in SNc degeneration (both axonal and somatic), which is pre-
vented by a mitochondrial antioxidant (mitoTEMPO) or a MAO inhibitor [36]. Together,
these data suggest that meth-induced MAO-dependent axonal mitochondrial oxidant stress
is necessary for degeneration.

In addition to SNc dopamine neurons, meth similarly impacts locus coeruleus (LC)
norepinephrine neurons [41]. Like in SNc neurons, meth increases MAO-dependent axonal
but not somatic mitochondrial oxidant stress in LC neurons [42]. Furthermore, chronic
in vivo administration of meth results in a loss of LC axon length and the number of
norepinephrine neurons in the LC of male mice, both of which are prevented by MAO
inhibition [42]. Therefore, meth-induced MAO-dependent axonal mitochondrial oxidant
stress appears to be necessary for chronic meth-induced LC degeneration, just as in SNc
neurons [36,37,42]. However, the manner in which SNc and LC degeneration progresses
during chronic meth administration is unclear.

Given that meth increases axonal but not somatic mitochondrial oxidant stress in SNc
and LC neurons, and that MAO inhibition is neuroprotective [36,37,42], we hypothesized
that chronic meth administration would result in axon loss first, followed by somatic loss,
consistent with a dying-back pattern of neurodegeneration. To test this hypothesis, male
mice were administered meth (5 mg/kg; i.p.) or saline for 14, 21, or 28 consecutive days,
after which the axon lengths and numbers of SNc and LC neurons were stereologically
quantified. To confirm MAO-dependence of degeneration, a separate group of mice were
treated with the MAO inhibitor phenelzine (20 mg/kg; i.p.) as a 30-min pretreatment prior
to each meth injection. To determine whether SNc and LC neurons in female subjects are
similarly vulnerable to chronic meth-induced degeneration, female subjects were adminis-
tered saline or meth (5 mg/kg; i.p.) for 28 consecutive days, and axon lengths and numbers
of neurons in the SNc and LC were stereologically quantified.

2. Results
2.1. Chronic Methamphetamine Administration Resulted in Axonal Loss Prior to Somatic Loss of
Substantia Nigra Pars Compacta Dopamine Neurons in Male Mice

In ex vivo brain slices, the bath perfusion of meth (10 µM) increased MAO-dependent
axonal but not somatic mitochondrial oxidant stress in SNc neurons [38]; in vivo, the chronic
administration of meth (5 mg/kg; i.p.) for 28 consecutive days resulted in degeneration of
SNc dopamine neurons, which is prevented by pretreating subjects with a mitochondrial
antioxidant or a MAO inhibitor [36,37]; this suggests that meth-induced MAO-dependent
axonal mitochondrial oxidant stress is a driver of degeneration, and that the deleterious
effects of repeated meth exposure impact the axons first. To test whether axonal loss
precedes somatic loss, male mice were administered saline or meth (5 mg/kg) for 14, 21,
or 28 consecutive days, after which brains were collected and SNc axon lengths in the
dorsolateral striatum (DLS) and numbers of dopamine neurons in the SNc were stained
for TH (TH+). The lengths of TH+ axons in the DLS and numbers of TH+ neurons in
the SNc were stereologically quantified by an experimenter blinded to the treatment
histories. Fourteen days of meth administration decreased SNc axonal lengths in the DLS
(Figure 1A,B), but had no effect on the numbers of TH+ neurons in the SNc (Figure 1F,G).
Similarly, 21 days of meth (5 mg/kg) decreased SNc axonal lengths in the DLS (Figure 1C),
but still had no effect on the numbers of TH+ SNc neurons (Figure 1H). However, consistent
with prior studies [36,37], a chronic 28-day treatment of meth resulted in a decrease in both
SNc axonal length (Figure 1D,E) and numbers of TH+ neurons in the SNc (Figure 1I,J).
We have previously shown that rasagiline, a MAO-B inhibitor with FDA approval for the
treatment of Parkinson’s disease, prevents chronic meth-induced SNc degeneration [36,37].
In the current study, we tested a second clinically available MAO inhibitor, phenelzine,
which inhibits both MAO-A and MAO-B isoforms, and is FDA-approved for the treatment
of panic disorder, social anxiety disorder, and treatment-resistant depression. Pre-treating
mice with phenelzine (20 mg/kg) 30 min prior to each meth administration prevented both
axonal (Figure 1D) and somatic loss of SNc dopamine neurons (Figure 1I).
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Figure 1. Repeated methamphetamine administration in male mice resulted in axon loss prior to
somatic loss in substantia nigra pars compacta dopamine neurons. Male mice were treated with saline
or methamphetamine (meth; 5 mg/kg) for 14, 21, or 28 consecutive days, after which substantia nigra
pars compacta (SNc) axonal lengths in the dorsolateral striatum (DLS) and numbers of dopamine
neurons in the SNc were stereologically quantified. (A) Representative images of SNc axons stained
for tyrosine hydroxylase (TH+; red) in the DLS from a male mouse treated with saline (top) and
meth (bottom) for 14 consecutive days; scale bars denote 20 µm. (B) SNc axon length decreased in
mice treated with meth for 14 days (n = 6) compared to saline-treated control mice (n = 6). Data
analyzed using unpaired t-test (t(10) = 4.483, p = 0.0012, two-tailed). (C) Administration of meth
(5 mg/kg) for 21 days also decreased SNc axonal length (saline: n = 6; meth: n = 6; t(10) = 3.669,
p = 0.0043, two-tailed). (D) Male mice were administered saline (n = 6), meth (n = 6) or meth with
a 30-min phenelzine (20 mg/kg; +MAOi; n = 6) pretreatment for 28 days; 28-day meth treatment
decreased SNc axonal length, and this decrease was prevented by pretreatment with phenelzine. Data
analyzed using one-way ANOVA (F(2,15) = 9.108, p = 0.0026) with Tukey’s post hoc analysis (saline
vs. meth, p = 0.0028; saline vs. +MAOi, p = 0.6713; meth vs. +MAOi, p = 0.0158). (E) Representative
images of SNc axons stained for tyrosine hydroxylase (TH+) in the DLS from a male mouse treated
with saline (top) and meth (5 mg/kg; bottom) for 28 consecutive days; scale bars denote 20 µm.
(F) Representative images of TH+ SNc neurons from a male mouse treated with saline (top) and meth
(bottom) for 14 consecutive days; scale bars denote 200 µm. (G) The numbers of TH+ neurons in the
SNc did not decrease in mice treated with meth (n = 6) for 14 days compared to saline-treated mice
(n = 6). Data analyzed using unpaired t-test (t(10) = 0.1675, p = 0.8703, two-tailed). (H) Administration
of meth (5 mg/kg) for 21 days also did not alter the number of TH+ neurons in the SNc (saline: n = 6;
meth: n = 6; t(10) = 0.7319, p = 0.4810, two-tailed). (I) Male mice were administered saline (n = 6), meth
(n = 6), or meth with a 30-min phenelzine (20 mg/kg; +MAOi; n = 6) pretreatment for 28 consecutive
days; 28-day meth treatment decreased the number of TH+ SNc neurons, and this decrease was
prevented by pretreatment with phenelzine. Data analyzed using one-way ANOVA (F(2,15) = 7.095,
p = 0.0068) with Tukey’s post hoc analysis (saline vs. meth, p = 0.0188; saline vs. +MAOi, p = 0.9515;
meth vs. +MAOi, p = 0.0103). (J) Representative images of TH+ SNc neurons from a male mouse
treated with saline (top) and meth (bottom) for 28 consecutive days; scale bars denote 200 µm;
* p ≤ 0.05, ** p ≤ 0.01.
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2.2. Chronic Administration of Methamphetamine Resulted in Axonal Loss Prior to Somatic Loss of
Locus Coeruleus Norepinephrine Neurons in Male Mice

In addition to targeting dopaminergic neurons, meth also binds to and induces dys-
function of VMAT2 in LC norepinephrine neurons [41]. Consistent with meth effects in
SNc dopamine neurons [36,37], meth increases MAO-dependent mitochondrial oxidant
stress in LC axons but not in the soma, and chronic in vivo meth administration to male
mice results in LC degeneration that is prevented by MAO inhibition [42]. To test whether
meth-induced LC degeneration follows the same pattern as that observed in SNc neurons
(i.e., axonal loss prior to somatic loss; Figure 1), LC axons in the M1 motor cortex were
stained for the norepinephrine transporter (NET+), and norepinephrine neurons in the LC
were stained for TH from male mice treated with saline or meth (5 mg/kg; i.p.) for 14, 21,
or 28 days. Consistent with the results in SNc neurons from male mice (Figure 1), chronic
meth administration resulted in LC axon loss in the M1 motor cortex prior to somatic
loss (Figure 2). Repeated meth administration for 14 (Figure 2A,B) and 21 (Figure 2C)
days decreased LC axonal length, but had no effect on the number of TH+ neurons in the
LC (Figure 2F–H), whereas 28 days of administration significantly decreased both axonal
length (Figure 2D,E) and the number of TH+ LC neurons (Figure 2I,J); 28-day meth-induced
deficits in LC axon lengths and numbers of TH+ LC neurons were prevented by pre-treating
with the MAO inhibitor phenelzine (20 mg/kg; Figure 2D,I).

2.3. Female Mice were Resistant to Chronic Methamphetamine-Induced Degeneration of Substantia
Nigra Pars Compacta Dopamine Neurons

Acute binge models wherein subjects are repeatedly administered meth over the course
of one day or given a single high dose consistently show deleterious effects on SNc axons
in male subjects [14,17,21,22,25,27], whereas female subjects are resistant to the deleterious
effects of an acute meth binge [43–50]. To determine whether SNc neurons in female
subjects are similarly resistant to the effects of chronic meth, female mice were administered
saline or meth (5 mg/kg) for 28 consecutive days followed by stereological analysis of
SNc axonal lengths in the DLS and numbers of TH+ neurons in the SNc. Congruent with
results from studies using acute binge models [43–50], female mice were resistant to chronic
meth-induced degeneration of SNc neurons. There was no difference in the length of SNc
axons in the DLS (Figure 3A,B) or the number of TH+ neurons in the SNc (Figure 3C,D)
between mice administered saline or meth for 28 consecutive days.

2.4. Female Mice were Resistant to Chronic Methamphetamine-Induced Degeneration of Locus
Coeruleus Norepinephrine Neurons

To determine whether LC neurons were resistant to chronic meth-induced degenera-
tion in female mice, the lengths of NET+ LC axons in the M1 motor cortex and numbers
of TH+ cells in the LC were quantified after chronic 28-day administration of saline or
meth (5 mg/kg). Consistent with results in SNc dopamine neurons (Figure 3), LC nore-
pinephrine neurons in female mice were resistant to chronic meth-induced degeneration.
There were no differences in the lengths of NET+ axons in the M1 motor cortex (Figure 4A,B)
or numbers of TH+ neurons in the LC between female subjects treated with saline or meth
(Figure 4C,D).
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Figure 2. Repeated methamphetamine administration in male mice resulted in axonal loss prior
to somatic loss in locus coeruleus norepinephrine neurons. Male mice were treated with saline or
methamphetamine (meth; 5 mg/kg) for 14, 21, or 28 consecutive days, after which locus coeruleus
(LC) axonal lengths in the M1 motor cortex and numbers of norepinephrine neurons in the LC were
stereologically quantified. (A) Representative images of LC axons stained for the norepinephrine
transporter (NET+; green) in the M1 motor cortex from a male mouse treated with saline (top) and
meth (bottom) for 14 consecutive days; scale bars denote 20 µm. (B) LC axonal length decreased
in mice treated with meth for 14 days (n = 6) compared to saline-treated control mice (n = 6). Data
analyzed using unpaired t-test (t(10) = 3.102, p = 0.0131, two-tailed). (C) Administration of meth for
21 consecutive days also decreased LC axonal length (saline: n = 6; meth: n = 6; t(10) = 4.562, p = 0.0010,
two-tailed). (D) Male mice were administered saline (n = 6), meth (n = 6) or meth with a 30-min
phenelzine (20 mg/kg; +MAOi; n = 6) pretreatment for 28 consecutive days, and LC axonal lengths
in the M1 motor cortex were stereologically quantified. Chronic 28-day meth treatment decreased LC
axonal length compared to saline-treated controls, and this decrease was prevented by pretreatment
with phenelzine. Data analyzed using one-way ANOVA (F(2,15) = 11.41, p = 0.0010) with Tukey’s post
hoc analysis (saline vs. meth, p = 0.0009; saline vs. +MAOi, p = 0.4192; meth vs. +MAOi, p = 0.0119).
(E) Representative images of NET+ LC axons in the M1 motor cortex from a male mouse treated with
saline (top) and meth (bottom) for 28 consecutive days; scale bars denote 20 µm. (F) Representative
images of LC neurons stained for tyrosine hydroxylase (TH+; red) from a male mouse treated with
saline (top) and meth (bottom) for 14 consecutive days; scale bars denote 200 µm. (G) The numbers
of TH+ LC neurons did not decrease in mice treated with meth for 14 days (n = 6) compared to
saline-treated control mice (n = 6). Data analyzed using unpaired t-test (t(10) = 0.4326, p = 0.6745,
two-tailed). (H) Administration of meth for 21 consecutive days also did not decrease the number of
TH+ LC neurons (saline: n = 6; meth: n = 6; t(10) = 1.026, p = 0.3293, two-tailed). (I) Repeated 28-day
meth treatment decreased the number of TH+ LC neurons compared to saline-treated controls, and
this decrease was prevented by pretreatment with phenelzine (saline: n = 6, meth: n = 6, and +MAOi
n = 6 mice). Data analyzed using one-way ANOVA (F(2,15) = 15.08, p = 0.0003) with Tukey’s post hoc
analysis (saline vs. meth, p = 0.0008; saline vs. +MAOi, p = 0.9837; meth vs. +MAOi, p = 0.0006).
(J) Representative images of TH+ LC neurons from a male mouse treated with saline (top) and meth
(bottom) for 28 consecutive days; scale bars denote 200 µm; * p ≤ 0.05, ** p ≤ 0.01 *** p ≤ 0.001.
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Figure 3. Chronic methamphetamine administration had no effect on axon length or numbers of
tyrosine hydroxylase-stained substantia nigra pars compacta dopamine neurons in female mice.
Female mice were treated with saline or methamphetamine (meth; 5 mg/kg) for 28 consecutive days,
after which substantia nigra pars compacta (SNc) axonal length in the dorsolateral striatum (DLS)
and numbers of dopamine neurons in the SNc were stereologically quantified. (A) Representative
images of SNc axons stained for tyrosine hydroxylase (TH+; red) in the DLS from a female mouse
treated with saline (top) and meth (bottom) for 28 consecutive days; scale bars denote 20 µm. (B) SNc
axonal length was unchanged by 14 days of meth (n = 6) compared to saline-treated mice (n = 6).
Data analyzed using unpaired t-test (t(10) = 0.03984, p = 0.9690, two-tailed). (C) Representative
images of SNc neurons stained for tyrosine hydroxylase (TH+) from a female mouse treated with
saline (top) and meth (bottom) for 28 consecutive days; scale bars denote 200 µm. (D) The numbers
of TH+ SNc dopamine neurons in female mice were unchanged by chronic meth administration
(saline: n = 6 mice; meth: n = 6 mice). Data analyzed using unpaired t-test (t(10) = 0.3416, p = 0.7397,
two-tailed).
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Figure 4. Chronic methamphetamine administration had no effect on axon lengths or numbers of
locus coeruleus norepinephrine neurons in female mice. Female mice were treated with saline or
methamphetamine (meth; 5 mg/kg) for 28 consecutive days, after which locus coeruleus (LC) axonal
lengths in the M1 motor cortex and numbers of norepinephrine neurons in the LC were stereologically
quantified. (A) Representative images of LC axons stained for the norepinephrine transporter (NET+;
green) in the M1 motor cortex from a female mouse treated with saline (top) and meth (bottom) for
28 days; scale bars denote 20 µm. (B) NET+ LC axonal length was unchanged by 28-day meth (n = 6)
compared to saline-treated control mice (n = 6). Data analyzed using unpaired t-test (t(10) = 0.3210,
p = 0.7548, two-tailed). (C) Representative images of LC neurons stained for tyrosine hydroxylase
(TH+; red) from a female mouse treated with saline (top) and meth (bottom) for 28 consecutive
days; scale bars denote 200 µm. (D) The numbers of TH+ LC neurons were unchanged by chronic
28-day treatment of meth (n = 6) compared to saline-treated control mice (n = 6). Data analyzed using
unpaired t-test (t(10) = 0.1698, p = 0.8692, two-tailed).
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3. Discussion

We recently reported that chronic 28-day in vivo administration of meth (5 mg/kg)
results in a loss of SNc dopamine and LC norepinephrine neurons in male mice [36,37,42].
Results from the current study extend these findings to show that in both SNc dopamine
and LC norepinephrine neurons, meth administration produces axonal deficits prior to
somatic loss, suggesting that chronic meth administration produces a dying-back pattern
of degeneration in both SNc and LC neurons. The observed losses of TH+ neurons in the
SNc and LC are unlikely to be the result of phenotypic suppression, as our prior studies
have shown decreased numbers of NeuN-, the neuronal-specific nuclear splicing regulator
Fox 3 [51] stained cells in the SNc and LC [36,42], supporting the interpretation of overt cell
loss. Furthermore, the number of SNc neurons and optical density of nigrostriatal axons
fluorescently labelled by genetically encoded TdTomato were also decreased by chronic 28-
day meth [37]. However, it is possible that phenotypic suppression occurs prior to cell loss,
as recently reported in a mouse model of Parkinson’s disease [52]. Our prior studies also
demonstrated the neuroprotective efficacy of rasagiline and isradipine [36,37,42]. Rasagiline
is an irreversible MAO-B inhibitor that is FDA-approved for treatment of Parkinson’s
disease, and isradipine is an L-type calcium channel inhibitor that is an FDA-approved
dihydropyridine antihypertensive medication. Current results expand the list of clinically
available medications that attenuate meth-induced degeneration to include phenelzine, an
irreversible MAO-A/B inhibitor FDA-approved for treatment-resistant depression, panic
disorder, and social anxiety disorder. MAO inhibition using the MAO-A selective inhibitor
clorgyline also attenuates meth-induced mitochondrial oxidant stress in SNc axons [38];
future studies will be necessary to determine whether MAO-A inhibition is similarly
effective at preventing meth-induced SNc and/or LC degeneration. A third key outcome
from our investigation is a robust sex difference wherein female subjects were resistant to
chronic meth-induced degeneration.

Chronic 28-day meth administration to male mice resulted in a ~30% decrease in the
numbers of TH+ neurons in the SNc and LC as well as in corresponding axon lengths
in the DLS and M1 motor cortex, a magnitude of effect that is consistent with our prior
studies [36,42]. However, the same treatment paradigm had no effect on the axon length
or number of SNc or LC neurons in female mice. Female subjects have similarly been
shown to be resistant to the neurotoxicity that results from an acute meth binge [43–50].
The mechanism underlying these observed sex differences regarding meth neurotoxicity
is unclear. One potential mechanism may be linked to L-type calcium channels. Cav1.3
L-type calcium channel activity contributes to mitochondrial oxidant stress in SNc and
LC neurons [53–57]; inhibition of L-type calcium channels with isradipine attenuates
mitochondrial oxidant stress in SNc and LC neurons, is neuroprotective in mouse models
of Parkinson’s disease, and prevents chronic meth-induced degeneration of SNc and LC
neurons in male mice [36,42,54,56,58,59]. In cultured striatal neurons, 17β-estradiol inhibits
L-type calcium channel-mediated currents, and the magnitude of this effect is larger in
neurons from female subjects [60]. Therefore, we would predict that mitochondrial oxidant
stress in SNc and LC neurons from female subjects would be less than that in males
due to inhibition of L-type calcium channels by endogenous 17β-estradiol, and that this
endogenous mechanism of L-type calcium channel inhibition could potentially account
for the observed sex difference. Future studies are needed to test this hypothesis and
determine the impact of sex hormones on mitochondrial oxidant stress and its implications
for neurodegeneration. Whether the observed resistance to meth-induced degeneration in
females is long-lasting is also in need of further study. In male rats trained to self-administer
meth for 14 days, evidence of nigrostriatal axon loss did not become apparent until 14 days
of abstinence, with evidence of SNc degeneration appearing at 28 days of abstinence [61].
This suggests that degenerative processes may continue to evolve throughout periods of
abstinence. Further investigation is needed to fully examine and explore mechanisms of
potential degeneration during abstinence, and whether resistance to degeneration in female
subjects persists. Overall, the neurotoxic effects of meth on catecholaminergic systems
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and the possibility of continued degeneration during abstinence raise significant concerns
regarding the potential impact of meth abuse on neurodegenerative diseases.

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder,
and the second-most common neurodegenerative disease overall. The deleterious effects
of meth are strikingly similar to the neurodegeneration seen in PD. In PD, both SNc and
LC neurons are particularly vulnerable to degeneration [62,63], a feature recapitulated by
chronic meth administration [36,42]. Neurodegeneration in PD has been hypothesized to
advance in a dying-back pattern wherein nigrostriatal axons are lost, followed by overt SNc
degeneration [64–66] in a manner that is analogous to the observed effects of chronic meth
on both SNc and LC neurons in male mice. Indeed, clinical research has demonstrated that
at PD onset, patients display more severe markers of striatal axon loss than SNc cell loss,
with axonal loss progressing faster than cell loss in the following 10 years [67]. Like in SNc
neurons, LC axon loss also appears to occur prior to somatic loss of LC norepinephrine
neurons in PD [68,69]. Meth treatment in rodents has also been shown to increase the
expression of α-synuclein, a hallmark of PD, in the nigrostriatal system and gut [70–72].
Another parallel between meth-induced neurotoxicity and PD is the presence of a sex
difference, with female subjects displaying relative resistance in both cases. In humans,
the incidence of idiopathic PD is approximately 1.5x more common in men than women,
and has an earlier onset [73]. Given the similarities between meth neurotoxicity and PD,
it is perhaps not surprising that meth abuse is associated with an increased the risk for
developing PD [74–79], although see [80,81]. Whether disease trajectory and severity are
altered in PD patients with a history of meth abuse is unclear; further research is required
to determine longitudinal effects, and to explore potential converging or overlapping
mechanisms driving this degeneration. In addition to PD, our findings, past and present,
on meth-induced neurodegeneration share connections with another neurodegenerative
disorder: Alzheimer’s disease (AD).

AD is the most common neurodegenerative disease and most common form of de-
mentia, accounting for between 50–75% of dementia cases worldwide [82,83]. In AD,
hippocampal and cortical degeneration is quite prominent; however, monoaminergic neu-
rons, including LC neurons, are also vulnerable to degeneration. Clinical studies report an
approximate 38–88% loss of TH+, neuromelanin-, and dopamine β-hydroxylase-labeled LC
neurons in post-mortem tissue [84–86]. Clinical studies also report that AD patients have
decreased LC volume [87] and decreased LC signal intensity in neuromelanin-sensitive
MRI scans [88,89]. Importantly, decreases in TH+ LC neurons are associated with worsened
cognitive function and increased AD neuropathology in human subjects [84]. Preclinical
AD rodent models also show LC degeneration. Aged APP/PS1 mice have fewer TH+ and
NET+ LC neurons than age-matched controls [90–93]. This loss of TH+ LC neurons is also
observed in the Tau P301S/DBH mouse model [94]. The presence of AD-related pathology
in the LC and LC neuron loss may even occur during pre-symptomatic and mild cognitive
impairment stages of AD prior to glutamatergic degeneration [95,96]. LC degeneration and
loss of noradrenergic signaling is particularly concerning in AD, as it may contribute to dis-
ease progression and pathogenesis; pre-clinical studies show that noradrenergic signaling
attenuates amyloid-β deposition, and lesioning the LC increases amyloid-β pathology and
neuroinflammation [97–101]. Additionally, LC lesions in a mouse tauopathy model of AD
increases hippocampal degeneration, inflammation, and mortality [97]. Therefore, the LC
appears to play a protective role in AD. Although there is a paucity of studies examining
the relationship between meth and AD in vivo, 15 mg/kg (i.p.) of meth injected every
12 h for 8 weeks increases amyloid-β protein and amyloid precursor protein levels in the
hippocampus of non-transgenic C57Bl/6J mice [102]. Additionally, meth exposure in vitro
has also shown increased amyloid-β and hyperphosphorylated tau pathology [102–104].
While epidemiological evidence linking meth and AD is lacking, the neurotoxic effect of
chronic meth on LC neurons shown in the current report and prior study [42] suggest
that a history of meth abuse could be a potential risk factor for AD, and is in need of
further investigation.
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4. Conclusions

We recently reported that chronic 28-day administration of meth results in axonal
and somatic degeneration of SNc dopamine and LC norepinephrine neurons in male
mice [36,37,42]. These deleterious effects of meth were further shown to be prevented
by administration of the clinically available MAO-B inhibitor rasagiline and L-type
calcium channel inhibitor isradipine. Results from the current report expand upon our
prior studies to show that in male mice, axon loss precedes somatic loss in both SNc
and LC neurons with 14- and 21-day administration of meth, decreasing axonal length
without altering the number of SNc or LC neurons; meanwhile, consistent with our prior
investigations [36,37,42], 28 days of meth resulted in both axonal and somatic loss. Similar
to the neuroprotective effect of the MAO-B inhibitor rasagiline [36,37,42], phenelzine, a
non-specific MAO-A/B inhibitor that is also clinically available, prevented meth-induced
neurodegeneration. In stark contrast to results in male mice, we found that female mice
were resistant to meth-induced SNc and LC degeneration. The pattern of degeneration
observed in male mice and the sex difference parallels that seen in Parkinson’s disease, the
most common neurodegenerative movement disorder, and patients with a history of meth
abuse are reported to have an increased risk for developing Parkinson’s disease [74,75,79].
Whether the mechanisms underlying degeneration are shared between meth and Parkinson’s
disease requires further investigation. In addition to concerns for Parkinson’s disease, we
believe there may also be increased risk for Alzheimer’s disease, the most common neurode-
generative disease. LC neurons degenerate in Alzheimer’s disease, and LC degeneration has
been linked to pathogeneses related to Alzheimer’s [105]. Taken together, the deleterious
effects of meth abuse may extend beyond neurotoxicity, and perhaps set the stage for the
development of Parkinson’s and/or Alzheimer’s disease. Based on the current report, it
would seem that this potential risk is relegated to male subjects, given that female mice were
resistant to meth induced neurodegeneration; however, further study is needed to determine
whether the observed resistance in females persists, or if perhaps the deleterious effects of
meth simply take longer to manifest.

5. Materials and Methods
5.1. Experimental Subjects

Male and female C57Bl/6J mice were bred in-house. All subjects were group housed,
maintained on a 12-h light/dark cycle, and provided free access to food and water in the
home cage throughout the study. The procedures were reviewed and approved by the
University of Minnesota Animal Care and use Committee, and conform to the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.

5.2. In Vivo Drug Administration

The male and female mice began in vivo treatments at approximately 8 weeks of
age. The subjects were administered saline (10 mL/kg; General Laboratory Products) or
(+)-methamphetamine hydrochloride (meth, 5 mg/kg; Sigma-Aldrich, St. Louis, MO, USA)
for 14, 21, or 28 consecutive days in the home cage. To test whether monoamine oxidase
(MAO) inhibition prevents degeneration, the irreversible MAO-A/B inhibitor phenelzine
(20 mg/kg; Sigma-Aldrich) was administered as a 30-min pretreatment prior to each meth
injection. Meth and phenelzine were dissolved in sterile saline, and all of the injections were
intraperitoneal. The dose of meth and 28-day duration were based on our prior studies
demonstrating meth-induced degeneration of SNc and LC neurons in male mice [36,37,42].
The dose of phenelzine (20 mg/kg) was chosen based on it being a behaviorally relevant
dose in mice [106].

5.3. Immunohistochemistry

The tissue collection, sectioning, processing, and staining procedures were consistent
with our prior studies [36,42]. The mice were euthanized within 12 h of the last treatment
via terminal anesthesia using ketamine (50 mg/kg)/xylazine (4.5 mg/kg) followed by



Int. J. Mol. Sci. 2023, 24, 13039 10 of 15

transcardial perfusion with 4% paraformaldehyde in phosphate-buffered saline (PBS). The
brains were extracted, post-fixed overnight in 4% paraformaldehyde in PBS, and cryopro-
tected in 30% sucrose in PBS. The fixed brains were sectioned (40 µm) using a microtome
(Leica SM2010R, Deerfield, IL, USA), and sections spanning the dorsolateral striatum (DLS),
anterior portion of the primary motor cortex (M1), substantia nigra pars compacta (SNc),
and locus coeruleus (LC) were collected. Every third brain section spanning the SNc and
LC was stained for tyrosine hydroxylase (TH+), resulting in 11–13 SNc and 7–8 LC sections.
Antibodies were tested for non-specific staining in-house by incubating the tissue with
either primary or secondary antibody omission; fluorescent staining was not observed
after primary or secondary antibody omission. Additionally, as per manufacturer websites,
rabbit anti-TH polyclonal primary antibody (AB152, Millipore, Burlington, MA, USA) was
tested in the corpus striatum, sympathetic nerve terminal, and adrenal gland tissue as posi-
tive controls, with liver tissue as a negative control, and Western blot analysis; mouse IgG1
anti-NET primary antibody (MA5-24647, ThermoFisher, Waltham, MA, USA) was tested
in rat locus coeruleus, mouse cortex and hippocampus, and human prostate, placenta,
and locus coeruleus tissue as positive controls. Secondary antibodies (Alexa 555 donkey
anti-rabbit (A-31572, Invitrogen, Waltham, MA, USA) and Alexa 488 donkey anti-mouse
(A-21202, Invitrogen)) have been evaluated by the manufacturer for non-specific staining
in cell cultures using primary antibody exclusion and isotype controls. For the striatum
and primary motor cortex, every sixth section was stained for TH+ and the norepinephrine
transporter (NET+), respectively, resulting in 4 sections for each region. Prior to immunos-
taining, the sections were first treated with 20% formic acid for antigen retrieval, followed
by blocking with 5% normal donkey serum. TH+ staining of the SNc, LC, and DLS sec-
tions consisted of incubation with the primary antibody (rabbit anti-TH polyclonal AB152,
Millipore 1:2000), followed by washing and incubation with Alexa 555 donkey anti-rabbit
secondary antibody (A-31572, Invitrogen, 1:200). NET+ staining of LC axons in the primary
motor cortex were carried out using mouse IgG1 anti-NET primary antibody (MA5-24647,
ThermoFisher; 1:1000) and Alexa 488 donkey anti-mouse (A-21202, Invitrogen) secondary
antibody (1:200). The stained sections were mounted on glass slides (Electron Microscopy
Sciences, Hatfield, PA, USA) with ProLong Diamond Antifade Mountant (Invitrogen), then
coverslipped and stored at −20 ◦C.

5.4. Stereological Quantification

The stained sections were analyzed using a Zeiss microscope with a motorized stage
and digital camera controlled by StereoInvestigator software version 2020 (MBF Bioscience,
Williston, VT, USA). Anatomical boundaries were delineated using a 2.5X/0.085NA objec-
tive lens and stereological counting using the optical fractionator and Spaceballs probes
performed using a 63×/1.4NA lens. Using the optical fractionator probe, cells were indi-
vidually marked within counting frames, and total numbers of cells were calculated with
StereoInvestigator software. The Spaceballs probe uses a virtual hemisphere superimposed
over tissue through the z-plane; the axons were marked where they crossed the hemispheres
at counting sites, and total axon lengths were calculated using StereoInvestigator software.
For further reading on the optical fractionator and Spaceballs probes, see [107,108]. The TH+

cells were counted throughout the SNc with a 150 µm × 150 µm counting frame and grid
size of 250 µm × 275 µm [36]. A 150 µm × 150 µm counting frame and 275 µm × 175 µm
grid size was used to count the LC neurons [42]. Somatic counting in the SNc and LC was
performed using the optical fractionator probe with 3 µm guard zones; the stereological
parameters used resulted in a Gunderson coefficient of error (m = 1) of 0.03 (SNc TH+

neurons) and 0.05 (LC TH+ neurons) or less. The SNc axons in the dorsolateral striatum
(DLS) and LC axons in the primary motor cortex were quantified using the Spaceballs
probe with a hemisphere of 7 µm and 20 µm radius, respectively. For SNc axons in the
DLS a grid size of 275 µm × 275 µm, was used [36], and for LC axons in the primary motor
cortex a grid size of 250 µm × 250 µm was used [42]. Quantification of SNc axons in the
DLS and LC axons in the primary motor cortex was carried out using a guard zone of 3 µm;
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the described parameters resulted in a Gundersen coefficient of error (m = 1) of 0.08 (DLS
TH+ axons) and 0.06 (motor cortex NET+ axons) or less. All stereological counting was
performed by an experimenter blinded to the treatment conditions.

5.5. Statistical Analysis

All datasets passed Shapiro–Wilk normality testing, and were analyzed using un-
paired Student t-tests or one-way ANOVAs with Tukey’s post hoc analysis; α = 0.05. The
statistical analyses were performed using GraphPad Prism Software, and data are presented
as histograms depicting mean and standard error of the mean overlayed with individ-
ual dot plots. Detailed statistical reporting for all of the experiments is provided in the
figure legends.
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