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Abstract: In this work, intra- and intermolecular halogen and chalcogen bonds (HlgBs and ChBs,
respectively) present in the solid state of nucleic acids (NAs) have been studied at the RI-MP2/def2-
TZVP level of theory. To achieve this, a Protein Data Bank (PDB) survey was carried out, revealing
a series of structures in which Br/I or S/Se/Te atoms belonging to nucleobases or pentose rings
were involved in noncovalent interactions (NCIs) with electron-rich species. The energetics and
directionality of these NCIs were rationalized through a computational study, which included
the use of Molecular Electrostatic Potential (MEP) surfaces, the Quantum Theory of Atoms in
Molecules (QTAIM), and Non Covalent Interaction plot (NCIplot) and Natural Bonding Orbital
(NBO) techniques.

Keywords: nucleic acids; PDB survey; solid state chemistry; halogen bonding; chalcogen bonding;
theoretical study

1. Introduction

Noncovalent forces are of pivotal significance in biology and compose the fundamen-
tals of modern chemistry [1–4]. This has led to an increase in the number noncovalent
interactions (NCIs) characterized to date, which exert a crucial role in several biological
mechanisms, such as enzyme inhibition [5], ion transport [6], and protein folding [7]. In
a parallel way to the well-known hydrogen bonds (HBs) [8], halogen bonds (HlgBs) are
nowadays a well-established and well-studied NCI among supramolecular chemists [9–15].
Both binding forces have been recently described as members of the ‘σ-hole family’ [16–18].
A σ-hole was originally conceived as a region of positive electrostatic potential located on
the extension of a covalent bond. For instance, σ-holes can be found along the Se–F/C–Br
bonds in difluoro selenide or bromoethane molecules. In the case of halogens, the σ-hole
donor ability increases from F to I, resulting in a strengthening of the interaction upon
descending in the group.

In biological systems, halogen atoms are typically used in the field of drug design and
to probe molecular interactions [19,20], while, on the other hand, halogenated bases are
useful molecular synthons for solving the X-ray crystal structures of nucleic acids (NAs)
using the Multiwavelength Anomalous Dispersion (MAD) technique [21]. In this regard,
several examples exist in the literature where HlgBs are functional and relevant binding
forces, such as works by Carter [22] and Voth [23] and collaborators in which HlgBs were
engineered for studying DNA Holliday junctions. In addition, the theoretical reports from
Parker [24] and Xu [25] and collaborators unraveled the potential role of HlgBs as a relevant
interaction in both NA structures and base pair stabilization.

Furthermore, Enninfar and coworkers [26] utilized a variety of experimental tech-
niques (e.g., steady-state fluorescence, UV thermal melting, X-ray crystallography, and
gel electrophoresis) to understand the influence of halogenation (by incorporating either a
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bromine or iodine) on RNA folding. They demonstrated that the RNA hairpin/duplex ratio
was drastically influenced by both the presence and position of halogenation along the RNA
chain. Moreover, Kolář [27] and Auffinger [28] and collaborators have reported statistical
evidence of the promising potential of HlgBs involving NAs. Our group has also con-
tributed to this field with three computational studies, involving intermolecular protein-NA
HlgBs [29], quantification of intramolecular halogenated nucleotide···phosphate HlgBs [30],
as well as evaluating the effect of NA halogenation on the stability of canonical and non-
canonical base pairs [31].

On the other hand, the use of chalcogen compounds in biology (mainly Se and Te) has
been related to the field of rational drug design and, more specifically, to the development
of noncancer therapeutic agents [32]. Despite this, studies have also demonstrated the
implications of chalcogen bonding interactions (ChBs) [33,34] in several biological phenom-
ena, such as the stabilization of protein structures [35–37] or the formation of RNA–ligand
and protein–ligand complexes [38–40]. In addition, Se and Te have been also incorporated
into the structures of NAs for phase and structure determination in nucleic acid X-ray
crystallography [41–43], similar to the replacement of methionines by selenomethionines
in proteins. In this context, a recent study carried out by Sharma and collaborators [44]
proposed the use of ChBs as an additional source of stabilization in NA base pairs.

Building upon these previous reports, our aim was to investigate the plausible struc-
tural role of HlgBs and ChBs in the solid-state architecture of isolated NAs. To reach this
goal, we conducted a search in the Protein Data Bank (PDB) [45], retrieving a total of
11 nucleic acid structures exhibiting highly directional HlgBs and ChBs in their solid-state
architecture (see Figure 1 for the halogenated and chalcogenated molecules used). These
contacts corresponded to either an intramolecular (e.g., within the same NA strand) or
intermolecular (involving two neighboring NA chains) interaction and assisted in crystal
packing formation. Calculations at the RI-MP2/def2-TZVP level of theory were conducted
to shed light into the strength, directionality, and physical nature of the HlgBs and ChBs
present in these structures by means of the Molecular Electrostatic Potential (MEP), the
Quantum Theory of Atoms in Molecules (QTAIM), and NCIplot (Non Covalent Interaction
plot) and Natural Bonding Orbital (NBO) techniques. We believe that the results derived
from this study might be important to those scientists working in the fields of NA or pro-
tein engineering and σ-hole-based chemistry, as well as in the development of NA-based
materials.
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2. Results and Discussion
2.1. Results from the PDB Survey: Br and I Halogen Bonds

Four examples were retrieved from the PDB inspection involving halogenated nu-
cleobases. The first two corresponded to structures 1UE2 [46] and 376D [47], involving
two DNA fragments containing the sequences d(GICGAAAGCT) and d(GBrCGAAAGCT),
respectively. Studies have demonstrated that similar sequences exhibit unconventional
properties such as (i) abnormal mobility in electrophoresis [48], (ii) high thermostabil-
ity [49], (iii) uncommon circular dichroism spectra [49], as well as (iv) unusual resistance
against nuclease digestion [50]. In both cases, 5IC and 5BrC were used during the X-ray
diffraction process by means of the MAD method [21]. A close inspection of both solid-state
architectures revealed the formation of DNA helical duplexes in parallel disposition to
the z-axis of the crystal lattice. This style of packing has been well studied in A and B
NAs [51,52], and it is considered an important stabilizing effect in the crystal formation
between two aligned symmetry-related helices. The DNA duplexes were associated in the
form of a trimer, forming a molecular cavity (around 8.5 Å) in the middle of the structure
(see Figure 2a,b). Interestingly, three symmetrically distributed HlgBs were established at
the top and bottom parts of the assembly. These involved either iodine (in 1UE2) or bromine
(in 376D) atoms acting as σ-hole donors and O atoms from vicinal phosphate groups as
σ-hole acceptors, exhibiting O···I and O···Br distances shorter than the sum of the O/I
and O/Br van der Waals radii (3.144 Å and 3.093 Å, respectively) and high directionality
(O···I–C and O···Br–C angles of 168.3◦ and 162.2◦, respectively). Theoretical calculations
at the RI-MP2/def2-TZVP level of theory on a dimeric model revealed individual HlgB
strengths of −16.6 and −12.8 kcal/mol, respectively, in line with the results obtained for
charge-assisted HlgBs [53]. The presence of these three centered HlgBs was important for
holding the DNA duplexes together, thus being a nice example of the potential application
of HlgBs as a stabilizing agent in NA crystal structures.
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The third example encompassed structure 3IBK, which corresponded to a telomeric
RNA G-quadruplex with the sequence (UBrAGGGUUAGGGU) [54]. G-quadruplexes
are part of the noncanonical NA family of structures and are formed by the stacking
of G-quartets, which are planar arrangements of four guanines held together by several
HBs [55,56]. In the crystal packing of 3IBK, the asymmetric unit was composed by two RNA
strands (colored green and ice blue in Figure 3a, respectively), each of which contained
two G-rich repeats, folding into a parallel four-stranded bimolecular G-quadruplex. The
structure also contained K+ ions in the center of the channel, positioned between the three
G-quartets. Interestingly, 5BrU was incorporated into the RNA sequence, being crucial
for the enhancement of crystal diffraction quality by holding the dimeric interface tightly
together, as stated by the original authors. A close inspection of the structure revealed
the formation of a mixed HB/HlgB base pair, involving the Br and O atoms belonging to
5BrU and the N7 and −NH2 group from adenine, located at the interface between two
G-quadruplexes (see Figure 3a bottom for a detailed view of the interaction). The computed
interaction energy of this noncanonical base pair reported a strength of −6.0 kcal/mol (in
line with our recent study [31]) and a HlgB energetic contribution of −2.2 kcal/mol. Owing
to the short N···Br distance (2.996 Å) and the directionality observed (157.2◦), this example
illustrates the potential role of halogenated base pairs in the stabilization of noncanonical
nucleic acid structures.
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HlgBs are magnified in the bottom part of the figure with the N···Br and π···Br distances indicated.
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The last selected structure corresponded to a bromo G-quadruplex of human telomeric
DNA (6JKN) [57]. In this example, the crystal packing was composed of discrete G-
quadruplex molecules, with K+ ions inserted in the center of each unit in a similar fashion
to that observed in the 3IBK structure. These isolated units interacted with each other
to form a supramolecular assembly. In Figure 3b, a G-quadruplex dimer is highlighted,
in which the Br atom belonging to 8BrG from one unit (BGM20) interacted through a
HlgB with the π-system of a thymine (T4) belonging to another G-quadruplex, exhibiting
a C···Br distance of 3.674 Å. This type of HlgB has been also described in the literature
as a halogen–π interaction [58]. In addition, a second thymine ring (T16) interacted with
T4 though a π–π stacking interaction (π–π distance of 4.194 Å) and, lastly, a lone pair–
π (lp–π) interaction was undertaken between the sp3 O from a sugar moiety belonging
to a guanine base (BGM8) and the π-system of T16, with an intermolecular distance of
3.324 Å. Computations on a dimeric model consisting of BGM20 and T4 revealed a HlgB
strength of −2.2 kcal/mol. The formation of this supramolecular assembly contributed
to the stabilization of the G-quadruplexes in the solid state, serving as an example of the
cooperation between different NCIs in the formation of solid-state NA structures.

To demonstrate the implication of the Br and I σ-holes in the HlgBs described above,
we have computed the Molecular Electrostatic Potential (MEP) surfaces of 5BrC, 5IC, 5BrU,
and 8BrG at the RI-MP2/def2-TZVP level of theory (see Figure 4). As noted, in all cases, a
positive potential surface was observed along the prolongation of either the C–Br or C–I
covalent bonds (σ-hole), with values ranging between +15.7 and +30.1 kcal/mol. Also, in
the case of 5BrC and 5IC, the iodinated derivative exhibited a more positive σ-hole potential,
in line with the larger polarizability exhibited by the I atom, as it is commonly known [17].
The presence of these electrophilic regions made these biological synthons suitable for
favorable interactions with electron-rich species (e.g., lone pair-bearing molecules or π-
systems), such as the ones described in the structures shown above.
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Figure 4. Molecular Electrostatic Potential (MEP) surfaces of (a) 5BrC and 5IC, (b) 5BrU, and (c) 8BrG.
Energy values at concrete regions of the surface are given in kcal/mol (0.001 a.u.). The MEP minima
and maxima have been adjusted for clear visualization of the Br and I σ-holes. The corresponding
PDB codes are also included below the schematics of each molecule.

As a final remark, the BSSE-corrected interaction energies, distances, and angle values
corresponding to the HlgBs present in the highlighted structures are gathered in Table 1.
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Table 1. BSSE-corrected interaction energies of the HlgBs present in the 376D, 3IBK, 6JKN, and 1UE2
structures (∆EBSSE, in kcal/mol), distance (d, in Å), and angle values (α, in ◦) at the RI-MP2/def2TZVP
level of theory. In the case of 3IBK, the HlgB contribution to the total interaction energy is indicated
in parentheses.

PDBID ∆EBSSE d α 1

376D (O···Br) −12.8 3.093 162.2
3IBK (N···Br) −6.0 (−2.2) 2.996 157.2
6JKN (π···Br) −2.2 3.674 174.4
1UE2 (O···I) −16.6 3.144 168.3

1 Measured as the A···Hlg–C angle (A = O, N, and C; Hlg = Br and I).

2.2. Results from the PDB Survey: S, Se, and Te Chalcogen Bonds

The first selected example corresponded to the 2H1M structure [59], which was com-
posed of an RNA containing 2′-methylseleno guanosine. In more detail, the authors crys-
tallized a 2′-methylseleno guanosine phosphoramidite by incorporating a methylseleno
moiety in the 2′ position of the pentose ring. The solid-state architecture of this compound
revealed the formation of a helical RNA duplex, which established noncovalent contacts
with two other vicinal units (see Figure 5a). Interestingly, the central region of the RNA
helical triad was mainly stabilized by three “like-like” ChBs between the 2′-methylseleno
moieties, exhibiting equivalent Se···Se distances (3.958 Å). Theoretical calculations revealed
a strength of −3.7 kcal/mol per ChB. This led to the formation of an equilateral trian-
gle, which held the three RNA molecules together, thus significantly contributing to the
observed packing structure.
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The second structure (7Y8P, Figure 5b) corresponded to a 4′-seleno-modified RNA [60],
which crystallized in the form of a duplex, maintaining the A-conformation observed in
natural RNA with almost all of the ribonucleosides exhibiting north-type sugar puckering.
Interestingly, the 4′-seleno derivatives were involved in three consecutive O···Se ChBs
involving the 3′ OH group from a vicinal nucleotide within the same RNA strand; therefore,
they acted as both σ-hole donor and acceptor counterparts. The computed interaction
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strength of one of these intramolecular ChBs (exhibiting a O···Se distance of 3.407 Å)
resulted in −3.1 kcal/mol.

As the two last ChB examples, structures 3LTU [61] and 4KW0 [62], involved a DNA
octamer containing 5-methylseleno-deoxyuridine and a DNA dodecamer containing 2′-
methylseleno-guanine, respectively. As can be observed in Figure 6a,b, the methylseleno
group established a ChB with (i) the π-system of a guanine ring (G3 in Figure 6a) and (ii)
the lone pairs of a negatively charged O atom from a vicinal phosphate group (Figure 6b),
with π···Se and O···Se distances of 3.467 and 3.089 Å, respectively. These interactions
contributed to the stabilization of the DNA assemblies, with energetic strengths of −7.8
and −4.3 kcal/mol, serving as an alternative to classical HB and π–π stacking interactions.
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In Table 2, the interaction energies, distances, and angle values with respect to the four
discussed ChB examples are shown. In addition, we have also included additional NA
structures retrieved from the PDB search that also exhibited directional ChBs in their solid-
state packing (see ESI), such as 3DW6 [63], showing a N···Se ChB; 3HG8 [64] exhibiting a
S···π ChB; and finally 3FA1 [65], which presented both Te···π and O···Te ChBs.

Table 2. BSSE-corrected interaction energies of the ChBs present in the 2H1M, 7Y8P, 3LTU, 4KW0,
3DW6, 3HG8, and 3FA1 structures (∆EBSSE, in kcal/mol), distance (d, in Å), and angle values (α, in ◦)
at the RI-MP2/def2-TZVP level of theory. In the case of 3LTU, 3HG8, and 3FA1, the ChB contribution
to the total interaction energy is indicated in parentheses.

PDBID ∆EBSSE d α 1

2H1M (Se···Se) −3.7 3.958 170.4
7Y8P (O···Se) −3.1 3.407 148.4
3LTU (π···Se) −7.8 (−2.0) 3.467 168.4
4KW0 (O···Se) −4.3 3.089 172.6
3DW6 (N···Se) −3.0 3.736 166.8
3HG8 (π···S) −7.6 (−1.5) 3.467 172.1
3FA1 (O···Te) −15.8 3.528 170.8
3FA1 (π···Te) −9.0 (−3.4) 3.675 167.6

1 Measured as the A···Ch–C angle (A = Se, O, N, and C; Ch = S, Se, and Te).
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We have also computed the electrostatic potential surfaces of the four selenated
derivatives implied in the structures described in Figures 5 and 6. As noted in Figure 7,
in all cases, the Se atom exhibited an anisotropic distribution of the electron density, with
two regions of high electron density corresponding to the two lone pairs and two regions of
low electron density (σ-holes) located on the prolongation of the Se–C covalent bonds (only
one is shown in Figure 7), as expected for this group [17]. The values of the electrostatic
potential ranged from +7.5 to +13.8 kcal/mol, leading to the attractive energy values
gathered in Table 2.
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Figure 7. Molecular Electrostatic Potential (MEP) surfaces of the Se moieties present in (a) XUG,
(b) ILK, (c) T5S, and (d) 1TW ligands. Energy values at concrete regions of the surface are given in
kcal/mol (0.001 a.u.). The MEP minima and maxima have been adjusted for clear visualization of the
Se σ-hole. The corresponding PDB codes are also included below the schematics of each molecule.
The red squares indicate the portion of each ligand used for computing the MEP surface (see Figure
S1 in ESI for the results involving the 3FA1, 3HG8, and 3DW6 structures).

2.3. QTAIM and NCIplot Analyses

With the purpose of characterizing the HlgBs and ChBs present in the PDB structures
shown above from a charge density perspective, QTAIM [66] and NCIplot analyses were
performed (see Figures 8 and 9). As noted, in the case of the halogen-bonded complexes
(Figure 8), the QTAIM analysis revealed a series of bond critical points (BCPs) and bond
paths that characterized each assembly. In the 1UE2 structure (Figure 8a), three symmet-
rically distributed BCPs connected the iodine atom from 5IC to an O atom belonging
to a phosphate group from a vicinal nucleic acid chain, leading to the formation of a
supramolecular triangle directed by O···I HlgBs.

Structure 376D exhibited the same HlgB pattern, but in this case, the HlgBs involved
5BrC instead (see Figure S2 in ESI). In the case of the 3IBK structure (Figure 8b), six BCPs
and bond paths characterized HBs from two “Watson–Crick” base pairs (disposed in a
vertical fashion) between adenine and 5BrU. However, two BCPs and bond paths described
a mixed HB/HlgB base pair that involved the “Hoogsteen” face of adenine (N7 and the
–NH2 group) and the Br and O atoms from 5BrU (disposed in an horizontal arrangement),
leading to the formation of a O···HN HB and a N···Br HlgB. The formation of this mixed
HB/HlgB base pair interaction is in line with recent results reported by our group [31].

Lastly, in the case of the 6JKN structure (Figure 8c), the QTAIM analysis involved an
assembly of NCIs spawning from an HlgB involving the π-system of thymine (T4) as an
electron donor moiety (revealed by the BCP and bond path connecting the Br and C atoms
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from both counterparts), a π–π stacking interaction between two thymine rings (T4 and T6,
mainly involving a C···N BCP), and finally, a lp–π interaction between T16 and the sp3 O
atom from a pentose ring (denoted by the BCP and bond path connecting the O with a C
atom from the nucleobase).
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as red spheres) and bond paths in the (a) 2H1M, (b) 7Y8P, (c) 3LTU, and (d) 4KW0 structures.
Additional interactions are denoted in red. The density values at the BCPs characterizing the ChB
interactions are also indicated. NCIplot surfaces involving only intermolecular contacts. NCIplot
color range −0.02 au ≤ (signλ2)ρ ≤ +0.02 au. Isosurface value |RGD| = 0.5 and ρ cutoff = 0.04 au.

The ChBs present in structures 2H1M, 7Y8P, 3LTU, and 4KW0 were also analyzed
from a charge density point of view (see Figure S2 in ESI for results involving the 3FA1,
3HG8, and 3DW6 structures). In the case of 2H1M (Figure 9a), three concomitant Se···Se
ChBs were characterized by the presence of three BCPs and bond paths connecting the
central Se atoms. In this structure, each Se atom acted as both Lewis acid (σ-hole donor)
and Lewis base (σ-hole acceptor), being a unique example of how Se ChBs can modulate
the solid-state architecture of nucleic acids. In addition, ancillary CH···HC interactions
were also denoted by the presence of a BCP and bond path connecting the CH groups from
the Se–CH3 moiety and the sugar ring.

In the case of the 7Y8P structure (Figure 9b), the analysis was carried out on a dimer,
and a O···Se ChB was characterized by the presence of a BCP and bond path connecting



Int. J. Mol. Sci. 2023, 24, 13035 10 of 16

both atoms. In addition, an ancillary HB was also denoted by the presence of a BCP that
connected a CH group and an O atom from the two selenated sugar moieties.

In 3LTU (Figure 9c), several BCPs and bond paths were observed, characterizing
(i) a ChB involving the σ-hole present in the Se–CH3 moiety and the N atom from the
five-membered ring belonging to guanine, (ii) a π–π stacking interaction denoted by the
presence of three BCPs and bond paths that connected both nucleobases, and (iii) a lp–
π bond that involved the sp3 N atom from guanine and the π-system of the selenated
nucleobase.

Finally, in the 4KW0 structure (Figure 9d), an intramolecular ChB was denoted by
the presence of a BCP and bond path connecting the σ-hole present in the Se–CH3 moiety
attached to the pentose ring and an O atom from a neighboring phosphate group. QTAIM
analyses of the 376D, 3DW6, 3HG8, and 3FA1 structures are included in Figure S2 (see
ESI), exhibiting BCPs and bond paths that characterized (i) three symmetrical O···Br HlgBs
(376D), (ii) a π···S/Te ChB (3HG8 and 3FA1), and (iii) a O···Te ChB (3FA1). In the case of
3DW6, no N···Se BCP was found and the interaction was analyzed by means of the NCIplot
visual index.

In this regard, the NCIplot analysis revealed a greenish (in 6JKN, 2H1M, 7Y8P, 3LTU,
3DW6, and 3HG8) or bluish (in 1UE2, 376D, 4KW0, and 3FA1) isosurface between the
halogen/chalcogen atoms and the electron-rich moiety, thus confirming the attractive and
weak/moderate nature of the HlgB and ChB interactions studied herein along with their
extension in real space (see Figure S2 in ESI for the NCIplot analyses of the 3FA1, 3HG8,
and 3DW6 structures).

2.4. NBO Analysis

At this point, we were also curious about the orbital interactions responsible for the
stabilization of the HlgB and ChB complexes studied herein. Thus, the NBO approach
was used with particular emphasis on the second-order perturbation analysis [67] of
the structures discussed above, owing to its usefulness when studying donor–acceptor
interactions (see Table 3). As noted, in structures 376D, 3IBK, and 1UE2 (corresponding to
HlgB complexes), the orbital contribution that characterized the interaction corresponded
to the donation from either a N or O lone pair (LP) to an antibonding (BD*) Hlg–C orbital
(Br–C/I–C). In the case of the 6JKN structure, the NBO analysis revealed a donation from
the π-system of the thymine ring, involving a bonding (BD) C=O orbital to an antibonding
(BD*) Br–C orbital.

Table 3. Donor and acceptor NBOs with indication of the second-order interaction energy E(2) in the
structures found during the PDB search. LP, BD, and BD* represent lone pair, bonding orbital, and
antibonding orbital, respectively. Energy values are in kcal/mol.

PDBID Donor Acceptor E(2)

376D (O···Br) LP O BD* Br–C 1.66
3IBK (N···Br) LP N BD* Br–C 3.29
6JKN (π···Br) BD C–O BD* Br–C 0.96
1UE2 (O···I) LP O BD* I–C 2.81

2H1M (Se···Se) LP Se BD* Se–C 0.85
7Y8P (O···Se) LP O BD* Se–C 0.48

3LTU (π···Se) BD C–C
BD C–N

BD* Se–C
BD* Se–C

0.31
0.39

4KW0 (O···Se) LP O BD* Se–C 1.97
3DW6 (N···Se) LP N BD* Se–C 0.14
3HG8 (π···S) BD C–N BD* S–C 0.40
3FA1 (O···Te)
3FA1 (π···Te)

LP O
BD C–N

BD* Te–H
BD* Te–H

1.31
0.85



Int. J. Mol. Sci. 2023, 24, 13035 11 of 16

On the other hand, in 2H1M, 7Y8P, and 4KW0, a contribution from a LP of the Se/O
atoms to an antibonding (BD*) Se–C orbital was observed. In addition, in 3LTU, the
donating orbitals involved the π-system of a selenated thymine (BD C–C and BD C–N),
which interacted with antibonding (BD*) Se–C orbitals. The magnitude of these orbital
interactions ranged between 3.29 and 0.14 kcal/mol, representing 10–60% (in the case of the
HlgB complexes) and 5–25% (in the case of ChB complexes) of the total interaction energies
gathered in Table 1, thus playing a moderate role in the stabilization of the HlgBs and ChBs
studied herein. The differences observed in the magnitude of the orbital contribution for
both interactions might be attributed to (i) the shorter distances exhibited by the HlgB
complexes (all of them below 3 Å except for the 6JKN structure) as well as (ii) their higher
directionality (between 157◦ and 175◦) compared to the ChBs (between 148◦ and 173◦).

3. Materials and Methods
3.1. Protein Data Bank Search Criteria

The PDB was inspected in June 2023 to find nucleic acid structures in which HlgBs
and ChBs were established in their solid-state architecture. To achieve this, the following
criteria were used:

- Only isolated nucleic acid X-ray structures were considered;
- Structures with disorder were not considered;
- In the case of halogens, only the incorporation of Br/I in the nucleobase (U, C, and

G) was taken into account, while for chalcogens, the incorporation of S/Se/Te was
considered in both the nucleobase and the sugar moiety (see Figure 1 above);

- Any type of nucleic acid structure (both canonical and noncanonical) was considered.

The application of these criteria yielded a total of 134 (Br and I), 22 (S), 54 (Se), and 3
(Te) X-ray structures. These were manually inspected for the presence of highly directional
HlgBs and ChBs using the following geometrical criteria:

Distance criteria: dA···X ≤ ∑ van der Waals (vdW) radii + 0.5 Å. Angle criteria:
αA···X–C/H between 145◦ and 180◦ (A = O, N, S, and Se; X = Br, I, S, Se, and Te). HlgBs or
ChBs involving O atoms from water molecules were not considered. The vdW radii values
used for O, N, S, Se, and Te were taken from the study by Álvarez [68].

This resulted in the following list of structures: 376D, 1UE2, 3IBK, 6JKN, 2H1M, 7Y8P,
3LTU, 2A0P, 4KW0, 3DW6, 3IKI, 3HG8, and 3FA1. Since 7Y8P/2A0P and 3IKI/3HG8
exhibited very similar geometrical features, we selected one structure from each pair as a
representative example. Consequently, structures 376D, 1UE2, 3IBK, 6JKN, 2H1M, 7Y8P,
3LTU, 4KW0, 3DW6, 3HG8, and 3FA1 were used for calculations.

3.2. QM Calculations on Selected Structures

The interaction energies of the HlgB and ChB complexes studied herein were computed
at the RI-MP2 [69]/def2-TZVP [70] level of theory. This level of theory has obtained
success to accurately represent σ-hole-based interaction energies involving both neutral and
charged electron donors [71]. The calculations were performed using TURBOMOLE version
7.2 software [72]. The interaction energy values (∆EBSSE) were calculated as single point
calculations of the energetic difference between the complex and the isolated monomers
following supermolecule approximation (∆Ecomplex = Ecomplex − EmonomerA − EmonomerB),
with the exception of structures 4KW0 and 3FA1 (O···Te), where the values shown in Table 1
were obtained by computing the energetic difference between the “closed” and “open”
conformations of the Se and Te nucleotides (see ESI for the cartesian coordinates of both
models).

In the case of the HlgBs, the computational models included the halogenated nucle-
obase (capped with a methyl group) and the electron donor molecule (a dimethyl phosphate
group in the case of the 376D and 1UE2 structures, an adenine in the case of 3IBK, and a
thymine ring attached to a sugar moiety in the case of the 6JKN structure). The capping of
the nucleobase was avoided in 6JKN due to the proximity to the sp3 O atom from the sugar
ring; therefore, a H atom was used instead of the methyl group on the nucleobase.
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On the other hand, the theoretical models used to compute the ChB energies consisted
of (i) the nucleobase (in 3LTU and 3HG8) or (ii) the selenated sugar moiety (in the 2H1M,
7Y8P, 3DW6, and 4KW0 structures), and (iii) the electron donor species (the same molecule
in the case of the 2H1M and 7Y8P structures, a guanine/adenine ring in 3LTU, 3HG8
and 3DW6, and a phosphate group in 4KW0). In the case of the 3FA1 structure, two
computational models were used; the first one contained the nucleobase and a guanine
ring (−9.0 kcal/mol in Table 2), and the second one contained the nucleobase attached to
sugar and phosphate groups (−15.8 kcal/mol in Table 2).

Lastly, in the 3IBK, 3LTU, 3HG8, and 3FA1 structures, additional computational
models were built to estimate with higher accuracy the energetic contribution of the HlgB
and ChB interaction to the stability of the supramolecular complex. To achieve this, the
following modifications were carried out:

- In 3IBK, the amino group from the guanine ring was replaced by a −H atom;
- In the 3LTU, 3HG8, and 3FA1 structures, the Ch–X (Ch = S, Se, and Te; X = Me and H)

moiety was replaced by a –H atom.

In all four cases, the energetic contribution of the HlgB/ChB was estimated as a differ-
ence between the interaction energies gathered in Tables 1 and 2 and the interaction energies
retrieved from these additional models, resulting in the values noted into parentheses in
Tables 1 and 2 (see also ESI for their cartesian coordinates).

In the case of I and Te, pseudopotentials [73] along with the def2-TZVP basis set were
used to accelerate the calculations and account for relativistic effects, which could not be
neglected. The theoretical models used to compute the interaction energies from the X-ray
structures are gathered in the ESI. In all cases, the H atoms were relaxed at the BP-86 [74]-
D3 [75]/def2-SVP level of theory to obtain a more reliable position before evaluating the
interaction energy of the system at the RI-MP2/def2-TZVP level of theory, and the rest of
the atoms were kept frozen during the optimization process.

The MEP surfaces were calculated at the RI-MP2/def2-TZVP level of theory using the
Gaussian-16 calculation package [76] and the results were visualized using the Gaussview
5.0 program [77]. Bader’s “atoms in molecules” theory was used to analyze and describe
the interactions discussed in this work using the AIMall calculation package [78]. The
RI-MP2/def2-TZVP level of theory was also used for wavefunction analysis (also using
Gaussian-16 software).

The NCIplot [79] isosurfaces acknowledge the presence of both attractive and nonat-
tractive interactions, as denoted by the sign of the second-order density Hessian eigenvalue
and the isosurface color. Noncovalent contacts are identified with the peaks that emerge in
the reduced density gradient (RDG) at low densities [80]. These are plotted by mapping
an isosurface of s (s = |∇ρ|/ρ4/3) for a low value of RDG. The color scheme comprises a
red–yellow–green–blue scale using red for repulsive (ρ+ cut) and blue for attractive (ρ−

cut) NCI interaction density. Weak repulsive and attractive interactions are identified by
yellow and green surfaces, respectively. Finally, NBO (Natural Bonding Orbital) analysis
was carried out at the HF/def2-TZVP level of theory.

4. Conclusions

In summary, we have explored the PDB and found isolated nucleic acid structures in
which halogens (Br and I) and chalcogens (S, Se, and Te) formed part of either the nucleobase
or the sugar moiety. A close inspection revealed the presence of electrophilic regions over
the halogen and chalcogen atoms that were interacting with electron-rich species (e.g., N
and O atoms), thus directing the solid-state architecture of the NAs. Computations at the
RI-MP2/def2-TZVP level of theory revealed the attractive and weak/moderately strong
character of these noncovalent interactions. Furthermore, QTAIM, NCIplot, and NBO
methodologies were used to further inspect the HlgBs and ChBs studied herein from a
charge density perspective, extension in real space, as well as the orbital contributions
implied in the formation of these supramolecular complexes. We expect that the results
derived from our study will be useful for those scientists working in the fields of NA or
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protein engineering and σ-hole interactions, as well as in the design and synthesis of novel
biomaterials based on DNA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241713035/s1, Cartesian coordinates of the PDB models used
in Figures S1 and S2.

Author Contributions: Conceptualization, A.B.; methodology, A.B. and M.d.l.N.P.; software, M.d.l.N.P.;
investigation, A.B. and M.d.l.N.P.; data curation, M.d.l.N.P.; writing—original draft preparation, A.B.;
writing—review and editing, A.B. and M.d.l.N.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by MICIU/AEI of Spain (grant number PID2020-115637GB-I00).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data needed to reproduce the results are gathered in the supporting
information.

Acknowledgments: We thank the “Centre de les Tecnologies de la Informació” (CTI) at the UIB for
computational facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schneider, H.J. Supramolecular Systems in Biomedical Fields, 1st ed.; RSC Publishing: Cambridge, UK, 2013.
2. Lehn, J.M. Supramolecular Chemistry: Concepts and Perspectives, 1st ed.; Wiley VCH: Weinheim, Germany, 1995.
3. Cragg, P.J. Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications, 1st ed.; Springer: Dordrecht, The

Netherlands, 2010.
4. Steed, A.W.; Atwood, J.L. Supramolecular Chemistry, 1st ed.; John Wily & Sons, Ltd.: Chichester, UK, 2009.
5. Williams, D.H.; Stephens, E.; O’Brien, D.P.; Zhou, M. Understanding Noncovalent Interactions: Ligand Binding Energy and

Catalytic Efficiency from Ligand-Induced Reductions in Motion within Receptors and Enzymes. Angew. Chem. Int. Ed. 2004, 43,
6596–6616. [CrossRef] [PubMed]

6. Vargas Jentzsch, A.; Emery, D.; Mareda, J.; Nayak, S.K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Transmembrane anion
transport mediated by halogen-bond donors. Nat. Commun. 2012, 3, 905. [CrossRef] [PubMed]

7. Bartlett, G.J.; Choudhary, A.; Raines, R.T.; Woolfson, D.N. n→π* interactions in proteins. Nat. Chem. Biol. 2010, 6, 615–620.
[CrossRef] [PubMed]

8. Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond; Oxford University Press: Oxford, UK, 2009.
9. Anderson, L.N.; Aquino, F.W.; Raeber, A.E.; Chen, X.; Wong, B.M. Halogen Bonding Interactions: Revised Benchmarks and a

New Assessment of Exchange vs Dispersion. J. Chem. Theory Comput. 2018, 14, 180–190. [CrossRef]
10. Wolters, L.P.; Schyman, P.; Pavan, M.J.; Jorgensen, W.L.; Bickelhaupt, F.M.; Kozuch, S. The many faces of halogen bonding: A

review of theoretical models and methods. WIREs Comput. Mol. Sci. 2014, 4, 523–540. [CrossRef]
11. Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116,

2478–2601. [CrossRef]
12. Szell, P.M.J.; Gabriel, S.A.; Caron-Poulin, E.; Jeannin, O.; Fourmigué, M.; Bryce, D.L. Cosublimation: A Rapid Route Toward

Otherwise Inaccessible Halogen-Bonded Architectures. Cryst. Growth Des. 2018, 18, 6227–6238. [CrossRef]
13. Erakovic, M.; Cincic, D.; Molcanov, K.; Stilinovic, V. A Crystallographic Charge Density Study of the Partial Covalent Nature of

Strong N···Br Halogen Bonds. Angew. Chem. Int. Ed. 2019, 58, 15702–15706. [CrossRef]
14. Puttreddy, R.; Rautiainen, J.M.; Maekelae, T.; Rissanen, K. Strong N-X···O-N Halogen Bonds: A Comprehensive Study on

N-Halosaccharin Pyridine N-Oxide Complexes. Angew. Chem. Int. Ed. 2019, 58, 18610–18618. [CrossRef]
15. Vioglio, P.C.; Chierotti, M.R.; Gobetto, R. Solid-state nuclear magnetic resonance as a tool for investigating the halogen bond.

CrystEngComm 2016, 18, 9173–9184. [CrossRef]
16. Politzer, P.; Murray, J.S.; Clark, T. Halogen Bonding and Other σ-Hole Interactions: A Perspective. Phys. Chem. Chem. Phys. 2013,

15, 11178–11189. [CrossRef] [PubMed]
17. Clark, T. σ-Holes. WIREs Comput. Mol. Sci. 2013, 3, 13–20. [CrossRef]
18. Politzer, P.; Murray, J.S.; Lane, P. σ-Hole Bonding and Hydrogen Bonding: Competitive Interactions. Int. J. Quantum Chem. 2007,

107, 3046–3052. [CrossRef]
19. Shinada, N.K.; de Brevern, A.G.; Schmidtke, P. Halogens in Protein–Ligand Binding Mechanism: A Structural Perspective. J. Med.

Chem. 2019, 62, 9341–9356. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms241713035/s1
https://www.mdpi.com/article/10.3390/ijms241713035/s1
https://doi.org/10.1002/anie.200300644
https://www.ncbi.nlm.nih.gov/pubmed/15593167
https://doi.org/10.1038/ncomms1902
https://www.ncbi.nlm.nih.gov/pubmed/22713747
https://doi.org/10.1038/nchembio.406
https://www.ncbi.nlm.nih.gov/pubmed/20622857
https://doi.org/10.1021/acs.jctc.7b01078
https://doi.org/10.1002/wcms.1189
https://doi.org/10.1021/acs.chemrev.5b00484
https://doi.org/10.1021/acs.cgd.8b01089
https://doi.org/10.1002/anie.201908875
https://doi.org/10.1002/anie.201909759
https://doi.org/10.1039/C6CE02219G
https://doi.org/10.1039/c3cp00054k
https://www.ncbi.nlm.nih.gov/pubmed/23450152
https://doi.org/10.1002/wcms.1113
https://doi.org/10.1002/qua.21419
https://doi.org/10.1021/acs.jmedchem.8b01453
https://www.ncbi.nlm.nih.gov/pubmed/31117513


Int. J. Mol. Sci. 2023, 24, 13035 14 of 16

20. Sirimulla, S.; Bailey, J.B.; Vegesna, R.; Narayan, M. Halogen Interactions in Protein–Ligand Complexes: Implications of Halogen
Bonding for Rational Drug Design. J. Chem. Inf. Model. 2013, 53, 2781–2791. [CrossRef]

21. Pähler, A.; Smith, J.L.; Hendrickson, W.A. A Probability Representation for Phase Information from Multiwavelength Anomalous
Dispersion. Acta Crystallogr. A 1990, 46, 537–540. [CrossRef]

22. Carter, M.; Voth, A.R.; Scholfield, M.R.; Rummel, B.; Sowers, L.C.; Ho, P.S. Enthalpy–Entropy Compensation in Biomolecular
Halogen Bonds Measured in DNA Junctions. Biochemistry 2013, 52, 4891–4903. [CrossRef]

23. Voth, A.R.; Hays, F.A.; Ho, P.S. Directing macromolecular conformation through halogen bonds. Proc. Nat. Acad. Sci. USA 2007,
104, 6188–6193. [CrossRef]

24. Parker, A.J.; Stewart, J.; Donald, K.J.; Parish, C.A. Halogen Bonding in DNA Base Pairs. J. Am. Chem. Soc. 2012, 134, 5165–5172.
[CrossRef]

25. Xu, L.; Sang, P.; Zou, J.-W.; Xu, M.-B.; Li, X.-M.; Yu, Q.-S. Evaluation of nucleotide C–Br···O–P contacts from ONIOM calculations:
Theoretical insight into halogen bonding in nucleic acids. ChemPhysLett 2011, 509, 175–180. [CrossRef]

26. Ennifar, E.; Bernacchi, S.; Wolff, P.; Dumas, P. Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding.
RNA 2007, 13, 1445–1452. [CrossRef] [PubMed]
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