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Abstract: Large White pigs are extensively utilized in China for their remarkable characteristics of
rapid growth and the high proportion of lean meat. The economic traits of pigs, comprising repro-
ductive and meat quality traits, play a vital role in swine production. In this study, 2295 individuals,
representing three different genetic backgrounds Large White pig populations were used: 500 from
the Canadian line, 295 from the Danish line, and 1500 from the American line. The GeneSeek 50K
GGP porcine HD array was employed to genotype the three pig populations. Firstly, genomic se-
lective signature regions were identified using the pairwise fixation index (FST) and locus-specific
branch length (LSBL). By applying a top 1% threshold for both parameters, a total of 888 candidate
selective windows were identified, harbouring 1571 genes. Secondly, the investigation of regions
of homozygosity (ROH) was performed utilizing the PLINK software. In total, 25 genomic regions
exhibiting a high frequency of ROHs were detected, leading to the identification of 1216 genes. Finally,
the identified potential functional genes from candidate genomic regions were annotated, and several
important candidate genes associated with reproductive traits (ADCYAP1, U2, U6, CETN1, Thoc1,
Usp14, GREB1L, FGF12) and meat quality traits (MiR-133, PLEKHO1, LPIN2, SHANK2, FLVCR1,
MYL4, SFRP1, miR-486, MYH3, STYX) were identified. The findings of this study provide valuable
insights into the genetic basis of economic traits in Large White pigs and may have potential use in
future pig breeding programs.

Keywords: pig; genomic; selective signature; ROH

1. Introduction

Large White pig breeds have gained recognition for their exceptional performance,
characterized by rapid growth, efficient feed conversion, and high-carcass yield [1]. Through
a combination of natural and artificial selection, these pigs have not undergone a lot of
different and significant evolutionary changes, with the recent emphasis on strong and
directional positive selection, aligning their characteristics more closely with human require-
ments. The advent of cost-effective, high-throughput sequencing techniques has facilitated
comprehensive genome-wide analyses of genetic structure and relationships within animal
populations. Notably, the application of the fixation index (FST) and locus-specific branch
length (LSBL) methodologies have emerged as a valuable approach for discerning selection
signatures and distinguishing traits across diverse breeds and geographic regions [2–4].

In addition to SNP and gene expression data, runs of homozygosity (ROH) have
emerged as valuable components of omics data available in biological databases, serving
as powerful tools for gene discovery and diversity assessment in livestock. ROH refers
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to contiguous segments of the genome where an individual inherits identical haplotypes
from both parents [5,6]. Long haplotype fragments are derived from a closer common
ancestor, whereas short haplotype fragments are derived from a distantly related common
ancestor [7]. Several factors can influence the development of ROH patterns on the genome,
such as inbreeding, genetic drift, the mating system, selection intensity, effective population
size, population structure, and genetic linkage [8]. In 1999, early studies revealed that
the length of homozygous fragments is associated with human diseases, underscoring
their importance [9]. Today, the advent of high-throughput sequencing techniques enables
convenient access to genomic information. The use of high-density SNP markers for
scanning the genome were proposed to identify regions with reduced heterozygosity, thus
enabling ROH detection [10]. The widespread adoption of SNP chips and whole-genome
resequencing offers excellent opportunities to investigate ROH in livestock. Recent studies
in pigs have employed ROH to explore signatures of selection. Wu et al. [11] found some
candidate selection signatures within the DSE pig population were detected through the
ROH islands. Wang et al. [12] used Duroc (American origin) and Duroc (Canadian origin)
pigs to investigate the harmful ROH regions on five economic traits. Xu et al. [13] described
the occurrence and distribution of ROH in the genome of Jinhua pigs and found several
genes within ROH.

In this study, we utilized the GeneSeek 50K GGP porcine HD array to characterize
Canadian, American, and Danish Large White pigs. FST and LSBL were employed as
methods to select signatures associated with specific traits. Additionally, homozygosity
analysis was conducted to further investigate the genetic characteristics of the three pig
populations. The findings of this research contribute novel and valuable insights into
the population history and genetic structure of Large White pigs with diverse genetic
backgrounds.

2. Results
2.1. Population Stratification Assessment

Principal component analysis was conducted to assess the genetic variation indices of
the three pig populations. The results demonstrated significant differences in the genetic
backgrounds of the American, Canadian, and Danish line Large White pigs, with PC1
effectively separating the three populations (Figure 1).
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2.2. Selective Signature Analysis

To minimize the risk of false positive selection signals, it has become common practice
to employ multiple detection methods, allowing for cross-validation and strengthening
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the reliability of the findings. In this study, we utilized two such methods, namely FST and
LSBL, for selection signature detection. Through a comprehensive genome-wide selective
sweep analysis, we identified a total of 1434 enriched genes after filtering the intersection
of the top 1% windows obtained from FST (Figure 2A) and LSBL (Figure 2B). Furthermore,
we observed that 83 loci overlapped between these two methods (Figure 2C), indicating
a mutual validation of the results. Candidate genes located within genomic regions with
high frequencies of FST and LSBL are shown in Table 1.
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Table 1. Candidate genes are located in genomic regions based on selection signatures detection.

SSC (Sus Scrofa
Chromosome) Position (Mb) Distance (bp) * Genes

1 182.24–182.36 Upstream 117,606 STYX
2 2.79–2.91 Upstream 74,339 SHANK2
4 83.49–83.61 Upstream 4395 CD247
5 71.79–71.91 Upstream 10,224 LRRK2
9 130.54–130.66 Upstream 1660 FLVCR1

12
16.79–16.91 Downstream 14,536 MYL4
54.85–55.35 Upstream 49,706 MYH3

13 129.24–129.36 Upstream 83 FGF12
14 131.14–131.216 Upstream 41,712 FGFR2

17
10.44–10.56 Downstream 3575 SFRP1
10.64–10.76 Upstream 118,817 miR-486

* The distance was calculated as follows: The starting coordinate of the gene minus the starting coordinate of the
selective signature region; candidate genes are a part of sequences located in the region.

In each selection signature analysis, the top 20% of genomic regions were identified
and subjected to further investigation. Functional annotation of all genes residing within
these selected genomic regions was performed using the WebGestaltR package [14]. Subse-
quently, significant enrichment was observed in specific functional categories within each
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method. In the LSBL analysis (Figure 3B), the genes exhibited significant enrichment in
processes related to morphogenesis of an epithelium, plasma membrane protein complex,
transcription factor complex, oxidoreductase activity involving the CH-OH group of donors
with NAD or NADP as acceptors, and cytoskeletal protein binding. Conversely, in the
FST analysis (Figure 3A), the genes displayed significant enrichment in peptide metabolic
processes, vesicle-mediated transport, catalytic complex, and protein-containing complex
binding.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes enrichment analysis. (A) GO analysis of
FST; (B) GO analysis of LSBL; (C) KEGG pathway analysis of FST; (D) KEGG pathway analysis
of LSBL. In graphs (A,B), the abscissa represents the GO terms that were the most enriched; the
ordinate represents the number of genes that were enriched in this classification. The size of the
circles represents the number of genes contained in the particular class in the graph (C,D), the larger
the circle is, the more genes there are. Differently coloured circles represent the enrichment degree of
false positives, the redder the circle is, the lower the false positive rate.

Finally, the results of the KEGG pathway analysis showed that MAPK signalling
pathways were significantly enriched in FST and LSBL (Figure 3C,D). The MAPK signal
pathway is involved in skeletal muscle regeneration [15]).

2.3. Runs of Homozygosity Analysis

The genome-wide ROHs were assessed on 18 autosomes of all tested individuals.
After the read filtering procedures, 34,150, 34,543 and 34,497 SNPs and 500, 295 and
1500 individuals were retained from the Canadian line, Danish line and American line,
respectively. These SNPs were retained for subsequent ROH analysis.

The association between the total genomic length covered by runs of homozygosity
(ROH) per individual and the total number of ROH per individual was examined and
presented in Figure 4A. The Danish line displayed a higher number of ROH compared to



Int. J. Mol. Sci. 2023, 24, 12914 5 of 14

the Canadian and American lines. Furthermore, within the Danish line, certain individuals
exhibited exceptionally long ROH segments covering more than 750 Mb. Analysis of auto-
somes (Figure 4B) revealed variations in the number of ROHs across the three populations,
indicating an uneven distribution of ROHs. Interestingly, all three groups exhibited the
fewest ROHs per chromosome on SSC 18, while the highest number of ROHs was observed
on SSC 1. The distribution of ROH according to length is shown in Figure 4C. To further
assess the distribution of ROHs on autosomes, we estimated the coverage of ROHs for each
autosome. Notably, SSC10 displayed the lowest coverage of ROH segments (Figure 4D).
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To identify the genomic regions most associated with ROH in the three pig populations,
we calculated the frequency of SNP occurrence within the ROH segments. From these
calculations, we selected the top 1% of SNPs with the highest frequency and plotted their
positions along the respective chromosomes (Figure 5A–C). Our analysis revealed a total of
25 genomic regions exhibiting a high frequency of ROH, encompassing a range of lengths
from 7.9 kb on SSC6 to 5.12 Mb on SSC6, as presented in Table 2. On chromosome 6, from
position 105,105,811 to 107,369,304, there is only a shared overlap in the ROH of these three
populations. Furthermore, 12% of the total ROH length was discovered in the American
lines; 11% in the Canadian lines; and 14% in the Danish lines. The longest ROH segment
was identified on SSC6, spanning 121 SNPs. In Table 2, a comparison between the identified
QTLs in this study and those catalogued in pigQTLdb reveals noteworthy associations.
Specifically, in the Danish line, a genomic segment spanning 54.09 Mb to 54.25 Mb on
SSC5 is linked to reproductive traits. In the American line, the chromosomal region from
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14.60 Mb to 14.90 Mb onSSC1 is associated with average daily weight, while the region
between 72.34 Mb and 74.40 Mb on SSC7 is correlated with fat area percentage in the carcass.
In the Canadian line, the genomic region ranging from 44.73 Mb to 448.38 Mb on SSC4
is implicated in ham weight, and the span from 70.70 Mb to 74.26 Mb on SSC7 is tied to
the teat numbers. These findings indicate that the selection emphasis within the Canadian
line is centred on reproductive traits and growth performance. Moreover, we identified
1216 genes within these ROH regions. Intriguingly, our analysis uncovered 32 overlapping
genes across all three populations of ROH (Figure 5D). These findings further enhance our
understanding of the genetic architecture and potential selective pressures acting upon
these regions. Candidate genes located in genomic regions with high frequencies of ROH
are shown in Table 3.
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Table 2. List of the top 1% runs of homozygosity was detected in three Large White pig popula-
tions and the overlapping QTL in pigQTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/SS/
index/; accessed on 16 March 2023).

Groups Chromosome Start (bp) End (bp) Length (bp) Number of SNPs pigQTLdb

American

1
43,045,542 43,357,270 311,728 5 -

146,085,059 148,974,102 2,889,043 42
S: 145,869,313 E:

173,242,773 Average
daily gain

4 98,912,988 102,212,696 3,299,708 51 -

6

102,107,540 102,337,903 230,363 4 -
102,717,110 102,796,136 79,026 2 -
102,917,556 104,370,915 1,453,359 23 -
104,981,850 110,109,305 5,127,455 121 -

7 72,338,896 74,402,073 2,063,177 42
S: 72,215,870 E:

87,765,126 Fat area
percentage in carcass

14 98,912,988 102,212,696 3,299,708 43 -

https://www.animalgenome.org/cgi-bin/QTLdb/SS/index/
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index/
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Table 2. Cont.

Groups Chromosome Start (bp) End (bp) Length (bp) Number of SNPs pigQTLdb

Canadian

4 44,727,463 48,379,816 3,652,353 54 S: 44,723,094 E:
91,039,884 Ham weight

6 105,047,268 107,701,419 2,654,151 64 -

7
50,032,121 52,080,918 2,048,797 31 -

70,691,786 74,260,534 3,568,748 66 S: 70,292,251 E:
83,677,435 Teat number

8
22,032,465 23,585,036 1,552,571 29 -

24,568,718 25,096,226 527,508 2
S: 24,414,300 E:

25,683,843 Umbilical
hernia

57,175,682 58,758,032 1,582,350 35 S: 56,966,700 E:
67,491,976 Hematocrit

14 92,778,821 94,149,712 1,370,891 39 -

Danish

2 71,619,091 74,328,649 2,709,558 33
S: 71,416,758 E:

128,795,277 Leaf fat
weight

5
51,535,641 54,004,977 2,469,336 52 -

54,091,881 54,253,706 161,825 5
S: 54,354,525 E:

54,411,945 uterine horn
length

6 105,105,811 107,369,304 2,263,493 57 -

9 83,483,921 88,168,152 4,684,231 111

S: 80,796,751 E:
97,479,874

Immunoglobulin G
level

13 86,541,183 88,583,284 2,042,101 48
S: 86,471,446 E:

118,227,339 Lean meat
percentage

15
76,452,937 76,592,155 139,218 5

S: 76,167,178 E:
76,761,699

Intramuscular fat
content

77,669,772 79,049,130 1,379,358 26 S: 77,173,290 E:
90,664,324 Drip loss

Table 3. Candidate genes related to the economic traits located in genomic regions with a high
frequency of ROH.

SSC (Sus Scrofa Chromosome) Start (bp) End (bp) Distance(bp) * Genes

American line
4 98,912,988 102,212,696 Upstream 11,008 PLEKHO1
6 102,917,556 104,370,915 Upstream 770,187 LPIN2

Meta-analysis

6 105,105,811 107,369,304

Upstream 308,820 ADCYAP1
Upstream 634,739 CETN1
Upstream 934,231 THOC1
Upstream 982,113 USP14

Upstream 1,314,132 GREB1L
Upstream 1,893,085 miR-133
Upstream 2,177,038 GATA6

* The distance was calculated as follows: The starting coordinate of the gene minus the starting coordinate of the
selective signature region; candidate genes are a part of sequences located in the region.

The 1216 candidate genes identified within ROH in pigs were subjected to functional
enrichment analyses. Gene Ontology (GO) analysis revealed significant enrichment of
specific biological processes (Figure 6A). Kyoto Encyclopedia of Genes and Genomes



Int. J. Mol. Sci. 2023, 24, 12914 8 of 14

(KEGG) enrichment analysis was performed to further elucidate the pathways associated
with these genes, as depicted in Figure 6B–D. In the American line, the candidate genes
were significantly enriched in processes related to muscle cell differentiation, muscle system
function, U12-type spliceosomal complex, as well as oxidoreductase activity involving the
CH-OH group of donors with NAD or NADP as acceptor. In the Canadian line, significant
enrichment was observed in processes related to muscle hypertrophy, regulation of G
protein-coupled receptor signalling pathway, muscle adaptation, zinc ion binding, and
oxidoreductase activity involving the CH-CH group of donors with NAD or NADP as
acceptor. In the Danish line, significant enrichment was observed in processes related
to tumour necrosis factor receptor binding, lipid droplets, and negative regulation of
gliogenesis.

The KEGG pathway analysis demonstrated the enrichment of specific pathways
associated with the candidate genes identified in each pig population. In the Danish
line, candidate genes were significantly enriched in the PPAR signalling pathway and the
cGMP-PKG signalling pathway (Figure 6D). In the Canadian line, candidate genes showed
significant enrichment in the Spliceosome pathway and the one-carbon pool by the folate
pathway (Figure 6B). In the American line, candidate genes were notably enriched in the
Regulation of the actin cytoskeleton pathway and the Focal adhesion pathway (Figure 6C).
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3. Discussion

The identification of numerous candidate genes associated with economic traits in
this study contributes to our understanding of the genetic factors influencing these traits
in pigs (Table 1). Among the identified genes, MYL4 was found to exhibit differential
expression in the longest muscle tissue of the pig’s back, which correlated with variations
in the number of muscle fibres within the tissue [16]. Other genes of interest include FGFR2,
which has been recognized as a crucial regulator of myogenesis during skeletal muscle
development and regeneration [17], and SFRP1, predicted to be targeted by miRNA-1/206,
and implicated in muscle cell proliferation and prenatal skeletal muscle development [18].
SHANK2, a member of the Shank protein family, was found to be associated with childhood
obesity, and to influence oestradiol blood concentration [19,20]. Induction of miR-486
takes place during the differentiation of myoblasts, whereby they directly target the 3′

untranslated region (UTR) of Pax7 leading to its downregulation. This downregulation
mechanism promotes the differentiation of muscle cells [21]. The MYH3 gene, encoding
myosin heavy chain 3, was identified as a regulator of myofiber-type specification and
adipogenesis in skeletal muscle [22]. In a study by Lin et al. [23], the SHANK2 gene was
identified as likely to affect the backfat thickness in pigs. FLVCR1 deficiency results in
Diamond–Blackfan anaemia, often associated with skeletal malformations [24]. STYX,
the main signalling regulator in the ERK1/2 MAPK signalling pathway, increased pre-
adipocyte adipogenesis by promoting pre-adipocyte proliferation [23]. Knockout LRRK2
displayed lipid accumulation in the liver and kidney of rodents. LRRK2 was identified
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as an important gene for Intramuscular fat content (IFC) using GWAS in Suhuai pigs [25].
FGF12 exhibits significant and localized expression in midgestation mouse embryos and
plays a crucial role in inducing the differentiation of mouse embryonic stem cells [26]. The
protein encoded by CD247 is T-cell receptor zeta, which has an important role in antigen
recognition and signal transduction [27].

In this study, the GeneSeek 50K GGP porcine HD array was utilized to investigate
the frequency and distribution of ROH in the genome of three distinct pig breeds. The
formation of ROH patterns is primarily influenced by various factors, including population
bottlenecks, inbreeding, genetic drift, and selective pressures arising from both natural
and artificial selection [28]. Our findings revealed variations in the number and coverage
of ROHs among chromosomes, with a general trend of increasing ROH numbers along
with the length of the chromosome. Interestingly, shared ROHs among individuals in
livestock populations may not solely be attributed to demographic history but could also
reflect selection pressures [8]. Therefore, exploring ROH islands can provide valuable
insights into potential selection signatures and shed light on different selection events, the
direction of selection, and adaptations to diverse production systems [29]. Regarding our
results, the ROH lengths observed in the three populations were approximately 500 Mb,
and no significant differences were found among the three populations in terms of ROH
characteristics. These findings contribute to our understanding of the genomic landscape
of ROH and provide important implications for the genetic selection and adaptation of pig
populations in various production contexts.

The present study identified distinct sets of candidate genes from both selection signa-
ture analysis and ROH analysis. In pigs, inbreeding represents a combination of natural
and artificial events, and our results demonstrate the complementary nature of different
methods in investigating complex traits. There is some difference in the focus of artificial
selection in these three distinct Large White Pigs discussed in this study. The Danish line
focuses on reproductive performance, such as litter size; the American line focuses on
growth performance, such as growth rate and meat ratio; and the Canadian line is similar
to the American line in that it also focuses on growth performance. In order to improve the
populations, all three populations were subjected to accurate phenotypic data collection
and were regularly monitored, and data were analysed to identify the best-performing
breeding individuals. The identification of candidate genes associated with economic traits
was based on genomic regions exhibiting a high frequency of ROH. Functional analysis
and previous studies support the association of most candidate genes with economic traits
(Table 3). Several candidate genes relating to reproduction traits were identified: ADCYAP1
global knockout has decreased fertility and affects spermatogenesis [30,31]. U2 and U6
play an important role in snRNP assembly and pre-mRNA splicing in oocytes. An essential
role for CETN1 is in the late steps of spermiogenesis and spermatid maturation, and this
gene plays a role in the reproductive capacity of the Danish line [32]. Loss of spermatocyte
viability is a consequence of defects in the expression of genes regulation by THOC1 re-
quired, which means that this gene also has an effect on the ability of the Danish line to
reproduce [33]. USP14 is required for spermatid differentiation during spermiogenesis [34].
The knockdown of GATA6 resulted in a loss of the normal steroidogenic testis function [35].
GREB1L plays a major role in genital development [36]. In addition, Niu et al. [37] claim that
GREB1L were potential candidate genes for controlling the expression of the rib number.
Some genes associated with specific traits related to meat quality were detected: MiR-133
repressed ERK1/2 activity by targeting FGFR1 and PP2AC to repress myoblast prolifera-
tion and promote its differentiation [38]. PLEKHO1 depletion drastically impairs C2C12
myoblast fusion in vitro and in vivo during zebrafish muscle development [39]. LPIN2 is
one member of the lipid gene family associated with backfat thickness in pigs [40]. This
gene is located in the genomic region of the high frequency ROH gene in the American
line in this study, suggesting that it is related to the growth performance related to backfat
thickness.
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4. Materials and Methods
4.1. Ethics Statement

The Animal Welfare Committee of Nanjing Agricultural University conducted a review
of all animal testing and sample collection techniques used in this research. This review
process included a careful examination of the ethical considerations of the research, as
well as the methods and procedures used to ensure the safety and welfare of the animals
involved. The Committee approved the animal testing and sample collection techniques in
this research, ensuring that the animals were treated humanely, and that the data collected
were accurate and reliable. (Permit number: DK652).

4.2. DNA Sampling and Sequencing of DNA

This study utilized three distinct populations of Large White pigs, including 500 Canadian
(CLW, which were from Chongming county in Shanghai), 295 Danish (DLW, which were
from Huaibei city in Anhui), and 1500 American (ALW, which were from Lixin county in
Anhui) Large White pigs, as experimental materials. Genomic DNA was extracted from ear
tissue and genotyped with the GeneSeek 50K GGP porcine HD array. The software PLINK
(V1.90) (http://www.cog-genomics.org/; accessed on 16 March 2023) [41] was used for
quality control of the data and the following standards were set: (i) removal of SNP loci
with a call rate of less than 0.95 and unknown positions; (ii) removal of SNP loci with a
minor allele frequency (MAF) of less than 0.05; and (iii) discarding of individuals with
a call rate of less than 0.95. SNP genome coordinates were obtained from the Sus scrofa
11.1 porcine genome reference assembly.

4.3. Population Structure

Principal component analysis (PCA) was performed using PLINK1.9 [41], and the
results of structure and PCA were visualized using the R package “barplot” and “ggplot2”,
respectively [42].

4.4. Partitioning Heritabilities of Complex Traits Based on Selection Signatures

The FST method based on population differentiation was used to analyse the selection
signature of the data of the three pig populations. The FST was calculated with VCFtools [43]
(—fst-window-size 50,000—fst-window-step 10,000). LSBL (LCLW, LDLW, LALW) were
calculated from single locus pairwise FST distances, where LCLW = (CLW-DLW FST + CLW-
ALW FST − DLW-ALW FST)/2, LDLW = (CLW-DLW FST + DLW-ALW FST − CLW-ALW
FST)/2 and LALW = (CLW-ALW FST + DLW-ALW FST − CLW-DLW FST)/2 [44]. Based on
the annotation file of the reference genome, the top 1% of the selected loci were screened.

4.5. Runs of Homozygosity Detection

ROH were detected with the detect RUNS package of R software version 4.0.5; we
defined ROH according to the following criteria: (i) the minimum number of SNPs in a
sliding window was 50; (ii) one heterozygous genotype and no more than two missing SNPs
were allowed per window; (iii) the minimum ROH length was set to 1 Mb to eliminate
the impact of strong linkage disequilibrium (LD); (iv) the minimum SNP density was
1 SNP every 500 kb and the maximum gap between consecutive SNPs was set to 1 Mb
to avoid affecting the length of ROH with a low SNP density; and (v) to minimize the
number of the false-positive ROH, the minimum number of SNPs that constituted the ROH
(l) was calculated with the method proposed by [45], I = lnα/(ns × ni)

ln(1−het) , where α is the
percentage of false-positive ROH, ns is the number of SNPs per individual, ni is the number
of individuals and het is the proportion of heterozygosity across all SNPs.

In this study, the detected ROHs were divided into three categories for further analysis:
1–5, 5–10, and >10 Mb. We computed the frequency of ROH numbers and the average
length of an ROH per breed.

http://www.cog-genomics.org/
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4.6. Detection of Common Runs of Homozygosity

We calculated the frequency of occurrences within the ROH regions of each SNP across
the individuals and made a Manhattan figure by plotting these values in conformity with
the position of each SNP on chromosomes. The SNPs in the top 1% of the frequency of
occurrence were selected as a hint of a potential ROH.

4.7. Pathway and Functional Analysis

Candidate genes were annotated via the Ensembl database (Sus scrofa 11.1, http://
www.ensemble.org/; accessed on 16 March 2023) at 100-kb regions (upstream 50 kb and
downstream 50 kb) flanking the SNPs of ROH hotspots. The Gene Ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analysed for
all candidate genes by the Metascape database (https://metascape.org/; accessed on
16 March 2023).

4.8. Gene Annotation

To determine positional candidate genes, we utilized the BioMart database (http://www.
ensembl.org/) for annotating significant SNPs loci. In our study, candidate genes were
identified within a 500-kb genomic region upstream and downstream of the significant
SNPs. Furthermore, functional annotation of genes within the regions of interest was
conducted using the R package WebGestaltR [14]. Additionally, an extensive literature
review was performed to gather pertinent information on gene functions for exploratory
investigations.

5. Conclusions

In this study, we investigated the selection signatures and runs of homozygosity
(ROH) in three Large White pig populations (Canadian, Danish and American) from the
porcine 50 K SNPs chip. Our analysis revealed several candidate genes associated with
reproductive traits (ADCYAP1, U2, U6, CETN1, Thoc1, Usp14, GREB1L, FGF12) and meat
quality traits (MiR-133, PLEKHO1, LPIN2, SHANK2, FLVCR1, MYL4, SFRP1, miR-486,
MYH3, STYX) located within genomic regions exhibiting a high frequency of ROH and
selection signatures. Our findings suggest that GREB1L may play a role in controlling
the expression of rib numbers. These results provide valuable insights into the genetic
basis of reproductive and meat quality traits in Large White pigs and contribute to our
understanding of the molecular mechanisms underlying these economically important
traits.
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