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Abstract: The liver, as a central metabolic organ, is systemically linked to metabolic–inflammatory
diseases. In the pathogenesis of the metabolic syndrome, inflammatory and metabolic interactions
between the intestine, liver, and adipose tissue lead to the progression of hepatic steatosis to metabolic-
dysfunction-associated steatohepatitis (MASH) and consecutive MASH-induced fibrosis. Clinical
and animal studies revealed that IL-13 might be protective in the development of MASH through
both the preservation of metabolic functions and Th2-polarized inflammation in the liver and the
adipose tissue. In contrast, IL-13-associated loss of mucosal gut barrier function and IL-13-associated
enhanced hepatic fibrosis may contribute to the progression of MASH. However, there are only a
few publications on the effect of IL-13 on metabolic diseases and possible therapies to influence
them. In this review article, different aspects of IL-13-associated effects on the liver and metabolic
liver diseases, which are partly contradictory, are summarized and discussed on the basis of the
recent literature.
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1. Introduction

This review article uses the new nomenclature for steatotic liver disease (SLD) an-
nounced by the AASLD and EASL, including MASLD (formerly NAFLD), MASH (NASH),
and MASH fibrosis [1]. In many diseases that are primarily classified as chronic inflamma-
tory (e.g., asthma, arthritis, autoimmune skin diseases, type-2-diabetes, non-alcoholic liver
disease), sub-types which are characterized by metabolic comorbidities have been described
in recent years. These comorbidities include, in particular, metabolic syndrome, dysreg-
ulation of fat and carbohydrate metabolism, and/or associated cardio-vascular diseases.
Prominent examples include obese asthmatics and obese patients with fatty liver, inflam-
matory bowel disease, or patients with allergic contact dermatitis and obesity [2–4]. These
associations between chronic inflammatory disease processes and metabolic dysregulation
have led to the introduction of the term “metaflammation” [5,6]. In this context, “metaflam-
mation” should be understood as the link between metabolism and inflammation [7].
Metabolic–immunological interactions in chronic and acute inflammation and infectious
diseases, as well as immune–metabolic and peri-tumoral interactions in malignant diseases,
are to be distinguished from this.

The prevalence of metabolic-dysfunction-associated steatotic liver disease (MASLD)
has risen sharply [8–10]. The highest prevalence is currently found in Latin America, at
44.4%. In Western Europe, 25.1% of the population suffers from MASLD [10]. Overall,
the worldwide prevalence of steatotic liver disease is estimated at about 30% [10]. But
currently, there is no approved pharmacotherapy for metabolic-dysfunction-associated
steatohepatitis (MASH), the most common liver disease in the Western world and devel-
oping countries [11,12]. Patients with MASLD can develop metabolic-disease-associated
steatohepatitis (MASH) and progression to MASH-fibrosis and -cirrhosis. Liver trans-
plantation is limited by the small number of available donor organs, the risk of surgical
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intervention, and the risk of immune rejection post-transplantation. Consequently, the de-
velopment of alternative strategies for anti-fibrotic and anti-inflammatory liver regeneration
is urgently needed with a view to clinical application [13,14].

Interleukin-13, a cytokine with various functions in the immune system, has structural
and functional similarities with interleukin-4. IL-13 acts a messenger substance that is
involved in processes of the immune system, especially in the triggering of allergic reac-
tions [15]. The proinflammatory cytokine IL-13, which was identified in 1989, has a very
broad spectrum of action. A recent review [16] explains the importance and function of
IL-13 for the regulation of immunoglobulins (Ig), inflammation, anti-parasitic reactions,
fibrogenesis, and allergic reactions. IL-13 can also be released as a preform by granulocytes
such as basophils, mast cells, or eosinophils, a process in which IgE plays an important
role [16,17]. IL-13 binds to the IL-13Rα1 receptor, which then recruits the IL-4Rα to the
type 2 receptor complex. Any blockade of IL-13 signal transduction is thus possible either
by preventing binding to the IL-13Rα1 receptor or the IL-4Rα receptor [16,18,19]. Figure 1
illustrates the several receptors and signaling pathways of IL-13 according to [20].
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largely unknown. IL-13 signaling through IL-13Rα2 can lead to STAT6-independent phosphoryla-
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subsequently migrates into the nucleus. 

IL-13 is suspected of being the main mediator for triggering asthma attacks [16,21]. 
At the cellular level, IL-13 is a mediator of the humoral immune reaction (antibody pro-
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Figure 1. Signaling pathways for IL-13 in various scenarios. Illustration of the three cell membrane
receptors that bind IL-4, IL-13, or both according to [20]. IL-4-type I receptor consists of the IL-4Rα
subunit and γc. This receptor, which is mainly expressed on hematopoietic cells, binds to IL-4. This
binding leads to the activation of JAK1, JAK2, and JAK3 and the subsequent phosphorylation of
STAT6. The type II receptor consists of IL-4Rα and IL-13Rα1 (it is found, for example, on smooth
muscle cells, fibroblasts, and keratinocytes). Ligand binding of the type II receptor complex leads
to activation of JAK1, JAK2, and TYK2 and the subsequent phosphorylation of STAT6 and STAT3.
Activated STAT dimers migrate into the nucleus and trigger the activation of downstream genes.
IL-13 signals only via the type II receptor. IL-13 also binds to an IL-13Rα2 receptor, whose functions
are largely unknown. IL-13 signaling through IL-13Rα2 can lead to STAT6-independent phosphoryla-
tion of ERK1/2 and formation of the dimeric transcription factor AP-1. The phosphorylated AP-1
subsequently migrates into the nucleus.

IL-13 is suspected of being the main mediator for triggering asthma attacks [16,21].
At the cellular level, IL-13 is a mediator of the humoral immune reaction (antibody pro-
duction by B cells). In this process, it is produced by TH2 helper cells and stimulates the
differentiation of B lymphocytes [22]. IL-13 also inhibits the activation of macrophages
and induces matrix metallo-proteinases (MMPs), e.g., in the respiratory tract and gingival
fibroblasts [16,23,24]. IL-13 acts as a pleiotropic cytokine. On the one hand, increased IL-13
expression can elicit several proinflammatory effects [16,25,26]. On the other hand, IL-13
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functions as a mediator of the humoral immune response, is produced by TH2 helper
cells, and stimulates the differentiation of B lymphocytes [27]. Thus, IL-13 stimulates a
wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to
coordinate various functions, including immune regulation, antibody production, and
fibrosis [16,26]. In a murine sepsis model, IL-13 protected mice from lethality, and an IL-13
blockade decreased survival from peritonitis [25].

In schistosomiasis, IL-13 has emerged as a central mediator of chronic-infection-
induced liver fibrosis and portal hypertension, and IL-13 was identified as a primary medi-
ator of liver fibrosis [28,29]. However, in the studies performed on female C57BL/6 mice,
TGFβ as well as IL-17 and IL-13 were elevated in the murine serum [29]. The neutralization
of IL-17 alone also led to a decrease in IL-13 and TGFβ. It thus remains largely unclear in
these animal studies what effect IL-13 alone has on fibrosis induction by schistosomiasis.
Intrahepatic innate lymphoid cells are involved in the modulation of homeostatic and
inflammatory processes in various tissues. Recently, IL-13-producing ILC3-like cells that
were enriched in the human liver were shown to be involved in the modulation of chronic
liver disease [26]. For this exciting work, tissue material from liver resections was used
as well as explanted organs from patients with viral hepatitis, alcohol toxic liver cirrhosis,
MASLD, primary biliary cholangitis, and primary sclerosing cholangitis. The authors
did not use organs from patients with schistosomiasis. It thus remains unclear and to be
evaluated whether this particular subgroup of IL-13-producing ILC3-like cells also occurs
in the context of S. mansoni-induced liver fibrosis. Fibroblasts were recently identified to
be an IL-13-responsive cell type [30]. But, in this context, IL-13 acts more or less indirectly
with the help of IL-33 [31]. In IL-33-receptor knockout mice, e.g., the serum levels of IL-13
and IL-17, both profibrotic cytokines, were significantly lower than in wild-type mice. Also,
the α-smooth muscle actin expression was lower in chronic schistosomiasis in mice lacking
IL-33 signaling compared to the controls [32]. The question arises whether IL-13 plays a
key role in linking inflammation and metabolism especially in metabolic liver diseases, e.g.,
MASLD. This pleiotropic cytokine is involved in the progression of steatosis to MASH but
also has anti-inflammatory effects. Obesity-associated inflammation in adipose tissue, for
example, can be normalized by IL-13 [33]. The hydrodynamic injection of the IL-13 gene
was able to completely prevent Western-diet-induced obesity in the experiments conducted
here. The side effects of obesity, such as insulin resistance or hepatic steatosis, were also
prevented [33]. However, the gene therapy approach used here is unsuitable in the transla-
tional setting and limits clinical applicability. The mechanistic effects of IL-13 on energy
metabolism at the cellular and molecular level need further evaluation. On the other hand,
IL-13 was associated with biliary fibrosis, diarrhea, and perianal inflammation in a genetic
model of cholestasis, ABCB4-knockout mice [34]. These results seem to be contradictory
or at least need clarification. The main question here is whether different fibrosis models
(metabolic versus biliary-induced fibrogenesis), the age or sex of the animals, and different
mouse strains exert an influence on IL-13 effects.

2. IL-13 in Wound Healing Processes

A few decades ago, Ahdieh et al. examined the barrier function in lung epithelial
cells. Using wound healing assays, they showed that IL-13 reduced wound healing and the
maintenance of barrier function [35]. A disadvantage of this older work is the restriction of
the investigations to a human adenocarcinoma cell line from a lung tumor. Only the direct
effects of cytokines and interferons on growth behavior in vitro could be investigated [35].
The innate or adapted immune system was completely left out of this early work.

A recent review summarizes the information known so far about IL-13, signaling
pathways, and the functional effects of this pleiotropic cytokine [36]. The differences
between IL-4 and IL-13, which share transmembrane receptor molecules (illustrated in
Figure 1), were elaborated. In a schistosome model of liver fibrosis, IL-13 inhibition
led to granuloma formation and increased survival [37,38]. Similarly, in a pulmonary
fibrosis model, IL-13 antagonization reduced fibrosis and collagen deposition [39]. There
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are pronounced functional differences between IL-4 and IL-13 with regard to allergic
inflammation, worm infections, and fibrogenesis [36]. Granuloma-building eosinophils
seem to be a source of IL-13 [36,40]. By producing profibrotic mediators and polarizing
the Th2 response, eosinophils play an important role in schistosomiasis-induced liver
fibrosis [36,41]. Inhibiting eosinophils might thus be a player with regard to improving
chronic fibrotic diseases [36,42]. Evolutionarily conserved innate lymphoid cells (ILCs),
which include not only natural killer (NK) cells and lymphoid-tissue-inducer (LTi) cells but
also cells that produce IL-13, act as regulators of immunity and tissue remodeling [43]. In
this context, a new family of innate lymphoid cells (ILC) has been identified which has been
shown to produce IL-13 associated with T helper type 2 responses [43]. The ILC system is
probably an ancient system that predates the adaptive immune system [44].

For several years, it has been known that IL-13 is involved in cardiac wound healing
and remodeling after myocardial infarction (MI). Hofmann et al. demonstrated that IL-13
expression contributes not only to monocyte differentiation but improved survival after
experimental MI in mice. Interleukin-13 improved myocardial healing and remodeling at
least in male mice [45]. In airway epithelial cells, the IL-13 signals via IL-13Rα2 to mediate
repair, which depends on the HB-EGF-dependent activation of EGFR. On the other side,
dysregulated IL-13 signaling in the airways of asthmatics contributes to the epithelial barrier
dysfunction observed in asthma [46]. IL-13 acts on fibrotic skin diseases in a comparable
manner. For these entities, IL-13 might reveal a potential target for novel therapies with
regard to prevention or treatment [47]. Excessive wound reactions lead to so-called skin
fibrosis. The resulting scarring is extremely stressful and also functionally disturbing. The
serum levels of IL-13 were upregulated in patients with systemic scleroderma compared
with healthy controls. In addition, the immunoregulatory Th2 cytokine IL-13 also mediates
important profibrotic effects in the skin. IL-13 induces, e.g., the proliferation of dermal
fibroblasts and collagen synthesis in skin cells [47].

Recently, using a statistical approach, it has been shown that IL-13 in combination with
matrix stiffness is able to regulate macrophage morphology, M2 polarization profile, and
reduced phagocytosis, as well as efferocytosis at least in pulmonary fibrosis [48]. Matrix
stiffness and profibrotic IL-13 influenced alveolar macrophages independently of each other,
partly synergistically [48]. For this work, an immortalized murine alveolar macrophage
cell line has been used in addition to a hydrogel preparation with different rigidities.

The detailed pathogenesis of biliary atresia (BA) remains unclear so far but represents
a kind of inflammatory fibrosis of intra- and extrahepatic bile ducts. In surgically resected
tissues from BA patients, IL-13 was visible in 93% of large and micro-bile ducts from human
patients—in most of the cases in co-staining with CD45 [49]. Immunohistochemical analyses
on this human material suggested an association between IL-13, αSMA, and periostin.
Periostin originally detected in mesenchymal cells is secreted into the extracellular matrix.
In cultured fibroblasts, periostin expression was enhanced by IL-13 stimulation. Thus,
the authors concluded that IL-13 might play a significant role in the fibrotic process of
extrahepatic cholestasis, like BA [49].

IL-13 also plays an essential role in the pathophysiology of ulcerative colitis [50]. It is
known that IL-13 can disrupt intestinal barrier function by inducing apoptosis and altering
the protein composition of tight junctions [34,51]. The activation of the IL-13 receptor a1
by IL-13 increased claudin-2 expression and thus directly or indirectly enhanced intestinal
barrier disruption [51]. Since the IL-13 receptor α2 influences other molecules of the tight
junctions, the mode of action of IL-13 in inflammatory bowel diseases is very complex [52].

3. IL-13 and MASH (Metabolic-Dysfunction-Associated Steatohepatitis)

In the context of S. japonicum, a single nucleotide polymorphism (rs1800925T) of the
IL13 promoter has already been revealed with increased IL13 gene expression in the liver
and an increased risk of pathological liver fibrosis [53]. The authors initially demonstrated
that the IL-13 protein was upregulated in fibrotic liver tissue from patients with S. japonicum
infections. Both in acute infections and in the chronic stage, the functional IL13 promoter
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polymorphism represented an increased risk for advanced schistosomiasis [53]. The pro-
tective properties of this locus with respect to S. mansoni and S. haematobium could not
be confirmed. Different population groups and different stages of infection compared to
previous work seem to play a role here [54]. It is still completely unclear why some patients
develop severe hepatic complications during schistosomiasis and others living in the same
region do not [55].

The impact of IL-13 inhibition on inflammation, fibrosis, metabolism, and tissue repair
varies depending on the specific disease context [56]. IL-13 administration activates STAT6,
MAPK, and growth factor cascades, leading to fibrosis, allergic inflammation, prolifera-
tion, and M2 macrophage polarization based on the specific cell and tissue context [57].
However, IL-13 can also suppress hepatic gluconeogenesis via STAT3 activation [58,59]. In
fatty liver disease models, inhibiting IL-13 might worsen insulin resistance, inflammation,
and metabolic dysfunction [33]. It disrupts the suppression of gluconeogenesis by blocking
STAT3 signaling in hepatocytes. On the other hand, administering IL-13 in these models
improves metabolic function by suppressing hepatic gluconeogenesis and lowering glucose
production [33]. In adipose tissue, inhibiting IL-13 blocks the polarization of alternatively
activated M2 macrophages, worsening inflammation. This occurs through the disruption
of STAT6 and PPAR gamma signaling [60]. Conversely, administering IL-13 reduces in-
flammation by polarizing macrophages to an M2 phenotype via STAT6 activation [60,61].
Compared to wild-type mice, obese mice showed significantly more IL-13 and IL-13 re-
ceptors in the normal intestinal mucosa [62]. The addition of IL-13 to colorectal tumor cell
lines changed the phenotype of these cells. By means of knockout, the research group was
able to work out that IL-13Rα1 was responsible for mucosal proliferation. Thus, a connec-
tion between obesity-induced inflammation, the anti-inflammatory IL-13, and colorectal
carcinogenesis was established [62].

The question arises whether IL-13 plays a key role in linking inflammation and
metabolism. As already stated, this pleiotropic cytokine is involved in the progression
from simple steatosis to MASH but also has anti-inflammatory effects. Obesity-associated
inflammation in adipose tissue, for example, can be normalized by IL-13. As mentioned,
IL-13 is associated with fibrosis, diarrhea, and perianal inflammation in a cholestasis model,
and IL13 knockout improves liver function and liver structure, as well as the enteric barrier
in mice [34]. From Malaysian hepatitis B cohorts, we know that the serum concentrations
of IL-13 were positively correlated with the controlled attenuation parameter (CAP), an
ultrasound-based technique for measuring hepatic fat content independently from the
presence of fibrosis [63]. In that retrospective analysis, initially a relationship between
hepatitis B and liver fibrosis was detected. The liver fat content was measured with the
CAP, and the degree of hepatic fibrosis was determined with liver stiffness measurements.
The plasma levels of IL-13 were associated with the hepatic fat content independently
of other factors. As an incidental finding, hepatitis B patients often suffered from fatty
liver [64]. As a conclusion, the authors suggested that IL-13 plays a key role in linking the
metabolism and hepatic inflammation [63]. In rats which were fed a special Western diet,
the development of MASH was associated with an increase in hepatic IL-13 expression.
Exercise treatment, however, reduced this MASH-related IL-13 expression in rats fed a
high-fat high-fructose diet [65].

All these results suggest a rather close association between IL-13, MASH, and liver
fibrosis. However, the causal relationships remain unclear. Moreover, studies have not
yet clarified which hepatic cells react to IL-13 release, induce higher IL-13 expression, and
to what extent this occurs. To test whether a cell-specific inhibition of the IL-13 pathway
reduces the development of MASLD/MASH, cell-specific knockout mice and mechanistic
experiments are necessary. For an illustration, see also Figure 2.
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4. Different Cells React in Different Ways

As can be seen in Figure 1, IL-13 signaling starts on the cell surface with a multi-
subunit receptor through which IL-4 also triggers cellular signaling. This is a heterodimeric
receptor complex of the alpha IL-4 receptor (IL-4Rα) and the alpha interleukin-13 receptor
(IL-13R1) [66]. The high affinity of IL-13 for IL-13R1 leads to a binding, which increases
the likelihood of heterodimer formation with the IL-4R1 [66]. Heterodimerization activates
both STAT6 and IRS [67]. STAT6 signaling is important, for example, in the context of
the allergic response [20]. Most of the biological effects of IL-13, like those of IL-4, are
associated with a single transcription factor, the Signal Transducer and Activator of Tran-
scription 6 (STAT6) [67]. Interleukin-13 and its receptors associated with the α-subunit of
the IL-4 receptor (IL-4Rα) facilitate the downstream activation of STAT6 [20,66,67]. In an
Egyptian study of 134 male patients with either MASH or MASH-HCC, both high AFP
levels and high IL-13 serum levels were measured. The association between IL-13 and
a programmed death-ligand 2 polymorphism was predictive of advanced liver fibrosis.
High IL-13 levels, however, improved the predictive potential of AFP with regard to car-
cinogenesis [66]. In patients with MASH, a high expression of IL-13R alpha 2, initially
considered as a decoy receptor, seems to be a relevant player in carcinogenesis. IL-13Rα2
was detected in hepatic stellate cells, whereas patients without fatty liver disease did not
express this receptor type [68]. The research group also established a MASH model in rats.
The treatment of rats with an IL-13 cytotoxin improved dietary-induced MASH fibrosis and
associated liver enzymes [68]. Twenty years ago, work was published showing that IL-13
suppresses macrophage production and proinflammatory mediators. The administration of
the cytokine IL-13 suppresses the recruitment of neutrophils into the liver and thus hepatic
damage, e.g., in the context of ischemia and reperfusion [69]. Furthermore, it has been
shown that the IL-13 effect is most likely the result of STAT6 activation [69]. Type 2 innate
lymphoid cells regulate epithelial proliferation and tissue repair, whereas inflammatory
ILC2s (iILC2s) drive tissue inflammation and injury [70]. The IL-13/IL-4Rα/STAT6 path-
way is able to regulate the plasticity of iILC2s, thus affecting and ameliorating epithelial
homeostasis and repair, e.g., in experimental biliary atresia [70]. Raabe et al. described
a rather new and interesting subset of IL-13-producing ILC3-like cells, which seem to be
enriched in human liver and may be involved in the modulation of chronic liver disease [26].

In summary, it seems relatively certain that IL-13 is at least associated with MASH,
MASH fibrosis, and MASH-HCC, independently of other variables. Since IL-13 affects
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hepatic stellate cells, IL-13 inhibition would be associated with a reduction in hepatic fibro-
sis. A reduction in the matrix build-up inevitably leads to a reduction in the extracellular
matrix, i.e., a fibrosis reduction. However, it remains unclear whether IL-13 increases as a
consequence of MASH, i.e., as a counter-regulation, or whether it transports the pathogen-
esis of MASH. Functional studies are therefore needed to investigate the mechanisms of
IL-13/STAT6 in MASH, MASH fibrosis progression, and HCC development. Table 1 gives
an overview of the variety of IL-13-induced cellular responses with reference to liver cells
and fibrosis. Figure 2 gives an overview of the complex interactions of IL-13 in different
organs and different cells and possible ways of interaction according to the recent literature.

Table 1. IL-13 is able to induce distinct cellular functions depending on cell type, organ, and signal
transduction pathways.

Function of IL-13 Cells Organ Literature

Suppressing gluconeogenesis
in hepatocytes via STAT3

Group 2 innate lymphoid
cells (ILC2s)

Liver
pancreas Fujimoto, Nat Commun, 2022 [71]

Induction of hypercholesterolemia
No induction of fibrosis

Hepatocytes
Hepatocytes

Liver
Liver

Low, Clin Sci, 2020 [72]
Gieseck, Immunity, 2016 [73]

Polarization of M2-macrophages
inducing white adipose tissue fibrosis

M2-macrophages
Macrophages

Oral tissue
Adipose

tissue

Wang, J Cell Mol Med, 2023 [74]
Arndt, Int J Mol Sci, 2023 [75]

Induction of keloid fibrosis via
JAK/STAT6 activation

Eosinophil recruitment, liver fibrosis

(Keloid) fibroblasts
Liver fibroblasts

Skin
Liver

Chao, JCI Insight, 2023 [76]
Gieseck, Immunity, 2016 [73]

Induction of ductular
reaction/cholestasis, cholangiocyte
differentiation, biliary regeneration

Cholangiocytes
Biliary cells Liver Gieseck, Immunity, 2016 [73]

Intestinal barrier disruption Mucosal cells Bowel Heller, Gastroenterol, 2005 [50]
Hahn, Cells, 2020 [34]

IL-13 is able to target distinct cells, thus driving distinct cellular reactions (left column). IL-13-reacting cells are
depicted in the second column, the target organ in the third column, and the references on the right side. The
corresponding references are given in square brackets.

5. Therapeutic Implications

The release of high levels of IL-13 from innate lymphoid type 2 cells promotes cholan-
giocyte hyperplasia [77]. Beyond cytokine dysfunction in the initial damage of the bile
duct epithelium, a disturbed balance of Th1- and Th2-mediated signaling determines the
development of chronic liver disease. IL-13 is capable of promoting hepatic fibrogenesis of
various etiologies, as shown before, and has been identified as a major pathogenic cytokine
in helminth (schistosome)-induced liver disease [53,78]. IL-13 induces alternative activa-
tion of macrophages, thereby counteracting Th1-driven inflammatory processes, and is
involved, together with galectin-3, in the transition from simple steatosis to MASH [79,80].
Obesity-associated inflammation in adipose tissue and the associated release of inflam-
matory cytokines can be normalized, for example, by the administration of IL-13. This
approach has already been shown to improve the metabolic profile in murine high-fat-diet
models (Western diet) [33]. However, high levels of IL-13 are accompanied by negative
effects such as fibrosis, diarrhea, and perianal inflammation, the latter being due to a weak-
ening of the intestinal barrier [34,50,73]. IL-13 also plays an important role in metabolic
processes in hepatocytes, such as gluconeogenesis [59]. While IL-13 inhibits gluconeo-
genesis in mouse experiments, a global IL13 knockout produces hyperglycemia, hepatic
insulin resistance, and systemic metabolic dysfunction in mice of a C57BL/6 genetic back-
ground [59]. These effects were not observed in BALB/c-IL13 knockout mice on a normal
diet, as this genetic background is less susceptible to the development of metabolic disease.
Hyperglycemia—but not insulin resistance or metabolic dysfunction—was only observed
in BALB/c-IL13-knockout mice on a Western diet [59]. Patients with insulin resistance also
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have elevated serum IL-13 levels, although the level does not correlate with markers of
systemic inflammation [81]. The therapeutic application of IL-13 improves post-ischemic
gluconeogenesis and hyperglycemia in a rat model [58]. IL-13 is consequently one of the
regulators of glucose metabolism that directly inhibits the transcription of hepatic genes
encoding enzymes of gluconeogenesis. Anti-inflammatory cytokines such as IL-13 and IL-4
are as important for glucose homeostasis as the proinflammatory cytokines (e.g., TNF-α).
According to [59], the pathogenesis of insulin resistance and type 2 diabetes results from a
primary defect in the anti-inflammatory arm of the immune system. This defect prevents
sufficient hepatic production of IL-13, which is directly required to suppress postprandial
hepatic glucose production. However, the overproduction of IL-13 could be detrimental to
the liver, as IL-13 promotes the transdifferentiation of hepatic stellate cells to a fibrogenic
phenotype [82].

Recently, we analyzed the impact of an IL13 knockout on liver pathology and the
intestinal microbiome in Abcb4-knockout mice [34]. In this murine model of cholestasis,
we were able to achieve a significant improvement in liver integrity with a global IL13
knockout, at least in this specific animal model [34]. Our results indicate that the observed
hepatic effects were due to an improvement in bile duct integrity as well as in the intestinal
barrier (reduction in leaky gut syndrome). In addition to the reduction in systemic bile
acid concentrations, a reduction in bacterial enterohepatic translocation was shown by our
recent work [34]. Building on this basic work on the global IL13 knockout model, we now
try to analyze in a more differentiated manner the tissue- and organ-specific contributions
of MASH development by cell-type-specific knockouts of the IL-13-receptor with and
without the additional systemic application of recombinant IL-13 and IL-13 antibodies.

6. Future Directions

Tralokinumab, a biologic available since mid-2021, is an antibody that targets IL-13
specifically. Lebrikizumab (dual IL-4/IL-13 inhibition) is able to block IL-13 as well as
IL-4. The mechanism of action of tralokinumab does not include a blockade of IL-4 activity.
Whether this could have advantages or disadvantages in terms of therapy in the short or
long term is currently unclear. On the efficacy side, clinical studies have clearly shown that
this biologic is successfully used in the treatment of the moderate to severe forms of atopic
dermatitis [83]. It is also possible to neutralize IL-13 using monoclonal antibodies (mAbs)
by blocking IL-13 binding to IL-13 Rα1 and IL-13 Rα2, thus performing a specific inhibition
of IL-13.

The successful treatment of MASH in an appropriate mouse model will provide
the basis for a translational approach to the treatment of patients with fatty liver disease.
Pharmacologically active IL-13 inhibitors, such as pitrakinra (an IL-4 mutant), tralokinumab,
or the soluble IL-13Rα2, have already been clinically tested for the treatment of other
diseases, such as asthma or in tumor therapy. Further research is urgently needed to
address not only different cell types but also liver-derived and liver-migrating IL-13- and
IL-13-receptor-expressing cells. Testing whether the cell-specific inhibition of the IL-13
pathway reduces the development of MASLD/MASH in knockout mice is not as easy
as expected.

7. Conclusions

IL-13 is involved in the processes contributing to the transition from metabolic-
dysfunction-associated steatosis to MASH. IL-13 is a Th2-specific cytokine that induces
the alternative activation of macrophages, thereby counteracting Th1-driven inflammatory
processes. Obesity-associated inflammation in adipose tissue and the associated release of
inflammatory cytokines can be normalized, for example, by the administration of IL-13.
This approach actually led to an improved metabolic profile in murine high-fat diet models.
However, this is accompanied by negative effects, such as fibrosis, diarrhea, and perianal
inflammation, the latter side effects being due to a weakening of the intestinal barrier. In
the murine model of chronic cholestasis, we were able to achieve a significant improvement
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in liver function through a global IL13 knockout. Our results show that the observed effects
are due to an improvement in the intestinal barrier (reduction in leaky gut syndrome).
In addition to molecular biological assays, this was shown by a reduction in bacterial
enterohepatic translocation. IL-13 is able to induce distinct cellular functions depending on
cell type, organ, and signal transduction pathways.

Furthermore, an IL13 knockout improved/normalized the intestinal microbiome,
which is thought to be directly linked to improved barrier function and reduced cholestasis.
Thus, it might be speculated that an organ-specific modulation of the IL-13 signaling
pathway might be a useful therapeutic approach.
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