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Abstract: The expression of inflammation-related miRs bound to high-density lipoproteins (HDLs),
the anti-inflammatory activity of HDLs isolated from individuals with breast cancer, and controls
were determined. Forty newly diagnosed women with breast cancer naïve of treatment and 10 control
participants were included. Cholesterol-loaded bone-marrow-derived macrophages were incubated
with HDL from both groups and challenged with lipopolysaccharide (LPS). Interleukin 6 (IL6) and
tumor necrosis factor (TNF) in the medium were quantified. The miRs in HDLs were determined
by RT-qPCR. Age, body mass index, menopausal status, plasma lipids, and HDL composition were
similar between groups. The ability of HDL to inhibit IL6 and TNF production was higher in breast
cancer compared to controls, especially in advanced stages of the disease. The miR-223-3p and 375-3p
were higher in the HDLs of breast cancer independent of the histological type of the tumor and had
a high discriminatory power between breast cancer and controls. The miR-375-3p was greater in
the advanced stages of the disease and was inversely correlated with the secretion of inflammatory
cytokines. Inflammation-related miRs and the anti-inflammatory role of HDLs may have a significant
impact on breast cancer pathophysiology.

Keywords: HDL; plasma lipids; breast cancer; microRNA; inflammation

1. Introduction

High-density lipoproteins (HDLs) are heterogenous particles varying from 7.5 to
10.5 nm in diameter, composed of lipids [(free and esterified cholesterol (20%), phospho-
lipids (15%), and triglycerides (5%)] and apolipoproteins (50%, mostly apoA-I, followed by
apoA-II, apo AIV, and others) [1]. HDLs encompass a broad range of particles that have
been extensively investigated for their role in preventing cardiovascular disease (CVD).
Nascent HDL (pre-beta HDL) is produced by the liver and intestine, but predominantly
through the activity of lipoprotein lipase during the hydrolysis of triglyceride-enriched
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lipoproteins in the bloodstream. Pre-beta HDL acts as an excellent acceptor of excess cell
cholesterol via ATP-binding cassette transporter A1 (ABCA-1) and as the precursor to
mature and larger forms of HDLs, namely HDL3, and HDL2. The functionality of these
mature particles is also linked to their ability to mediate reverse cholesterol transport,
removing cell cholesterol and oxysterols through the ATP-binding cassette transporter G1
(ABCG-1). Finally, HDL2 delivers cholesterol to the liver allowing for its secretion into bile
and excretion in feces. Moreover, HDL subfractions inhibit oxidation, inflammation, and
platelet aggregation, and enhance vasodilation, pancreatic insulin secretion, and insulin
sensitivity in peripheral organs. The functionality of HDLs is determined by their composi-
tion and chemical alterations but also by the proteome and lipidomics of these lipoproteins.
Considering all these activities, HDLs have been implicated not only in CVD but also in
the development and evolution of other chronic diseases, including breast cancer [2,3].

Breast cancer is one of the leading causes of cancer-related death in women [4], and ex-
ploring risk factors and modulators helps in the prevention and management of the disease.
As a heterogenous disease, breast cancer classification according to the molecular type
of tumor is based on the immunohistochemical expression of estrogen and progesterone
receptors together with the ki67 index [(luminal A (LA) and luminal B (LB)], the expression
of human epidermal growth factor receptor 2 (HER2), or the absence of these receptors,
known as triple-negative (TN). This classification serves as the basis for therapeutic choices
and clinical outcomes prediction [5,6]. Triple-negative is further classified as basal-like (BL1
and BL2), claudin-low, mesenchymal, luminal androgen receptor, and immunomodulatory.

Plasma lipids are considered modulators of breast cancer development and progres-
sion and present a particular profile in TN tumors, possibly helping to drive more lipids
for tumor progression [7]. Elevated plasma levels of HDL cholesterol (HDLc) seem to
have a protective role against breast cancer [8–11], although there are still controversial
data, and a positive [12–14], modest [15], or even lack of association [3,16,17] has also
been demonstrated between HDLc and breast cancer development and outcomes. It is
possible to consider that in resemblance to CVD, classical metrics of HDLs, including
plasma HDLc and apolipoprotein A-I, do not reflect the functional properties of HDLs
in breast cancer that may have the contribution of other components of HDLs including
bioactive lipids, antioxidant enzymes, and microRNAs (miRs) [1]. By removing excess cell
cholesterol, HDLs limit the bioavailability of sterols necessary for cell replication and tumor
metastasis. In addition, HDLs reduce oxidative and inflammatory stress modulating the
tumor microenvironment.

MicroRNAs (miRs) are highly conserved small, single-stranded, non-coding RNA
capable of interacting with target mRNA, impairing translation and protein expression.
In circulation, miRs are transported in association with ribonucleoproteins (argonaute,
nucleophosmin), exosomes, vesicles, and HDLs [18]. The transportation of miRs carried
by HDL favors stability and delivery to recipient cells through the scavenger receptor
class B type 1 (SR-B1) regulating several physiological and pathological processes, such as
lipid metabolism, inflammation, angiogenesis, and apoptosis [19,20]. The identification of
miRs associated with breast cancer is providing a new perspective on the heterogeneity
of the disease and has the potential to contribute to the development of novel treatment
strategies. MicroRNAs over or under-expressed in the circulation and interstitial fluid are
demonstrated in breast cancer as having a regulatory role in multiple pathways related to
cell proliferation and the cell cycle [21], although there are no data on the HDL-bounded
miRs. In HDL particles isolated from women newly diagnosed with breast cancer and
control subjects, we investigated three aspects: (1) the composition in lipids and apoA-I;
(2) the differential expression of miRs related to inflammation; and (3) the ability to in-
hibit the inflammatory response in macrophages. Among the selected 10 miRs related to
inflammation in breast cancer and HDLs, a significant and discriminatory upregulation
of miR-223-3p and 375-3p in the HDLs of breast cancer women compared to controls was
observed, irrespective of the histological type and clinical stage of the disease. Particularly,
the expression of miR-375-3p exhibited a strong and positive correlation with HDLs’ capa-
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bility to inhibit the production of inflammatory cytokines, indicating the potential role of
HDL-bound miRs in breast cancer progression and outcomes.

2. Results

Anthropometric and clinical data of control and breast cancer groups are depicted
in Table 1. The breast cancer group was similar to the control regarding age, body mass
index (BMI), and menopausal status. In addition, groups presented similar levels of plasma
total cholesterol (TC), triglycerides (TG), apolipoprotein B (apoB), HDLc, LDLc, non-HDLc,
and lipid ratios (CT/apoB and TG/HDLc) indicative of small dense LDL formation. No
differences were found in these clinical and biochemical parameters when the breast cancer
group was subdivided according to the molecular classification of the tumor—LA, LB,
HER2, and TN. The composition of isolated HDLs in lipids and apoA-I was similar between
the control and breast cancer cases (Table 2).

Table 1. Anthropometric and clinical data of controls and breast cancer women.

Control Breast Cancer p

n 10 40

Age (year) 54
(42–60)

53
(45–59) 0.9709

BMI (Kg/m2)
28

(25–31)
27

(24–31) 0.6105

Pre-menopause
%

4
40

6
60 -

Post-menopause
%

19
47.5

21
52.5 -

TC (mg/dL) 172
(158–193)

180
(155–200) 0.7606

TG (mg/dL) 88
(65–110)

99
(79–129) 0.3810

apoB (mg/dL) 135
(117–146)

116
(83–143) 0.1479

HDLc (mg/dL) 41
(31–62)

39
(31–45) 0.4691

LDLc (mg/dL) 109
(102–114)

114
(94–139) 0.5593

TC/apoB 1.2
(1.1–1.4)

1.5
(1.2–1.9) 0.0569

TG/HDLc 1.9
(1.2–3.3)

2.6
(1.5–3.5) 0.3099

BMI = body mass index; TC = total cholesterol; TG = triglycerides; apoB = apolipoprotein B; HDLc = HDL
cholesterol; LDLc = LDL cholesterol. Comparisons were performed using the Mann–Whitney test.

HDL particles were analyzed for their ability to inhibit the secretion of inflamma-
tory cytokines by macrophages challenged by lipopolysaccharide (LPS). As shown in
Figure 1A,B, HDLs isolated from breast cancer women inhibited 47% and 34% of the se-
cretion of, respectively, IL6 and TNF, as compared to HDLs from the control group. HDLs
from breast cancer cases in stage IV presented a great ability to reduce IL6 production as
compared to controls and other stages of the disease (Figure 1C). When clinical stages were
grouped, a lower secretion of IL6 in advanced stages (III and IV) was observed as compared
to early stages (I and II) and controls (Figure 1D). Similar results were observed for TNF
with the stage IV individually analyzed, presenting a greater reduction in inflammatory
cytokine secretion in comparison to controls and early stages of breast cancer (Figure 1E,F).
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Table 2. Composition of HDLs isolated from control and breast cancer women.

Control Breast Cancer p

n 10 40

TC (mg/dL) 40
(28–58)

36
(27–46) 0.3892

TG (mg/dL) 15
(11–25)

13
(10–16) 0.1667

PL (mg/dL) 76
(60–89)

84
(71–118) 0.3504

apoA-I (mg/dL) 85
(66–119)

110
(74–127) 0.3381

TC = total cholesterol; TG = triglycerides; PL = phospholipids; apoA-I = apolipoprotein A-I. Comparisons were
performed using the Mann–Whitney test.
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Figure 1. HDL anti-inflammatory activity in controls and breast cancer cases. Cholesterol-overloaded
bone-marrow-derived macrophages were incubated with HDL (50 µg/mL) isolated from controls
and breast cancer cases for 24 h. After washing, cells were challenged with LPS (1 µg/mL) for 24 h;
medium was collected for the measurement of IL6 (A) and TNF (B) by ELISA. Comparisons were
performed using the Mann–Whitney test (controls vs. breast cancer, (A,B) or the Kruskal–Wallis test
for isolated clinical stages (C,E) or combined early and advanced stages of breast cancer (D,F).
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Among the 10 miRs selected by the miRDB, only four were found in association with
the HDLs of controls and breast cancer subjects (miR-17-5p, miR-138-1-3p; miR-223-3p, and
miR-375-3p; Figure 2A–D) and only miR-223-3p and miR-375-3p were differently expressed
in HDLs of breast cancer cases in comparison to the controls (Figure 2C,D). Both miR-223-3p
and miR-375-3p had a powerful discriminatory capacity between controls and breast cancer
groups according to the ROC curves (Figure 2E,F).
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Figure 2. Inflammation-related miRs bound to HDL in controls and breast cancer cases. The expres-
sion of miRs associated with HDL isolated from controls and breast cancer cases was determined by
RT-qPCR (A–D). Comparisons were performed using the Mann–Whitney test. The ROC curves (E,F)
showed a higher discriminatory power for miR-233-3p and miR-375-3p between controls and breast
cancer groups.

The enhanced expression of miR-223-3p was observed in all stages of the disease
individually analyzed in comparison to the control group and when stages I, II, III, and IV
were grouped (Figure 3A,B). On the other hand, the expression of miR-375-3p was only
increased in stages III and IV individually compared with the control group. Grouped
stages III and IV presented a higher expression of HDL-bound miR-375-3p in comparison
to controls and stages I and II grouped (Figure 3C,D). Interestingly, the expression of both
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miR-223-3p and mir-375-3p was independent of the molecular classification of the tumor
being similar in controls, luminal types (A and B), HER2, and TN (Figure 3E,F).
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Figure 3. Inflammation-related miRs bound to HDL in controls and breast cancer according to
the clinical stage and molecular type of the disease. The expression of miRs associated with HDL
isolated from controls and breast cancer cases was determined by RT-qPCR and compared according
to the stage of the disease (A–D) and to the molecular classification of the tumor (E,F) by the
Kruskal-Wallis test.

The expression of miR-223-3p was not associated with the secretion of inflammatory
cytokines (Figure 4A,B). On the other hand, the expression of miR-375-3p in HDLs was
inversely correlated with the secretion of both IL6 and TNF (Figure 4C,D).
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Figure 4. Association between miR-223-3p and miR-375-3p with the secretion of inflammatory
cytokines. The expression of miRs associated with HDLs was correlated with the secretion of
inflammatory cytokines produced by bone-marrow-derived macrophages challenged by LPS after
being incubated with HDLs from controls and breast cancer cases analysis were, performed using the
Spearman test. (A,B): miR-375-3p with IL-6 and TNF, respectively; (C,D): miR233-3p with IL-6 and
TNF, respectively.

After exploratory analysis using in-silico strategies, the target genes of miR-223-3p
and miR-375-3p were determined using the miRDB platform. Associations were assessed
between inflammatory genes (C0021368), mammary inflammation (C0024894), and genes
associated with HDLs (C0392885) according to the DisGeNET 7.0 platform [22], which were
visualized through a Venn diagram constructed using the interactivenn.net website [23].
For miR-223-3p, the analysis between the groups revealed an association with the ICAM1
gene, which encodes for intercellular adhesion molecule 1 (ICAM1), and the TP53 gene,
which encodes for the tumor suppressor gene, p53 protein (Figure 5A). As for miR-375-3p,
it showed an association with the JAK2 gene, which encodes for Janus kinase 2 (Figure 5B).
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3. Discussion

The contribution of HDLs to breast cancer development and outcomes remains a
subject of controversy. This is because the conventional metrics used to assess HDL plasma
levels may not accurately reflect the diverse composition and functionality of HDL particles
in different tissues. Additionally, breast cancer is a heterogeneous disease with varied
pathophysiological mechanisms and factors that influence the outcomes. HDL-bound
miRs, differentially expressed in breast cancer, could play a significant role in tumor
initiation and progression. In this study, a distinct pattern of miR expression was observed,
specifically miR-223-3p and miR-375-3p increased in breast cancer cases. Notably, the
higher expression of miR-375-3p was positively associated with the HDL’s ability to inhibit
the secretion of inflammatory cytokines by LPS-challenged macrophages. Furthermore, the
anti-inflammatory activity of HDLs was more prominent in the advanced stages of breast
cancer in comparison to early stages and to controls.

The removal of cell cholesterol and oxysterols appears to play a detrimental role in
cell proliferation and metastasis. Recent research has demonstrated that HDLs isolated
from individuals with advanced-stage breast cancer exhibit a reduced ability to remove cell
cholesterol, potentially compromising lipid homeostasis and favoring tumor development.
In this particular case, the majority of advanced-stage breast cancer cases were of the TN
molecular type. Furthermore, TN cases exhibited higher levels of plasma lipids, which
facilitated the channeling of metabolites necessary for cell replication [24]. On the other
hand, HDLs in TN breast cancer demonstrated an enhanced ability to delay the oxidation
of LDL in vitro compared to HDLs from control subjects, even without alterations in HDL
particle composition [25].

In the current investigation, HDL isolated from women with breast cancer exhib-
ited a higher capacity to inhibit the secretion of inflammatory cytokines by LPS-treated
macrophages. Remarkably, this property of HDL was consistently demonstrated even after
HDLs were removed from the cell culture medium. In other words, HDLs are capable
of eliciting a previous protective status in macrophages, thereby preventing an excessive
inflammatory response triggered by a potent inflammatory agent. Interestingly, in breast
cancer, the anti-inflammatory capacity of HDL was evident across all molecular types of
the disease but was more pronounced in the advanced stages of the disease.

The use of monoclonal antibodies that target the programmed cell death-1 receptor
(PD-1) and its ligand PD-L1, known as immune checkpoint inhibitors, has been extensively
validated as a highly effective treatment for various types of cancer. By inhibiting the PD-
L1/PD-1 axis, these antibodies enhance the immune response against tumor cells. In the
case of metastatic TN breast cancer, a favorable response to PD-1 or PD-L1 blockade with
pembrolizumab or atezolizumab has been demonstrated [26]. In this sense, considering the
increased antioxidant and anti-inflammatory roles of HDLs in breast cancer, it is possible
that HDLs, by mitigating oxidative and inflammatory stress, might contribute to a worse
prognosis for breast cancer rather than improving tumor progression. As of now, it is
not possible to confirm this possibility with the design of the present investigation. A
long-term follow-up of the subjects included in the present study will provide us with
stronger evidence regarding the role of HDLs in breast cancer survival.

It is also possible to consider that HDLs are modified by tumor cells or by the tumor
microenvironment leading to a dissociation of HDLs as predictors of tumor risk. In this
sense, HDLs would function more as markers rather than as determinant factors for tumor
development and prognosis. It is possible that the miRs in HDLs represent what was
produced by the tumor and the modulation of signaling pathways associated with them.

In addition to the components traditionally associated with the lipoprotein structure,
HDLs carry various other substances. Reconstituted HDL has been employed as a delivery
vehicle for treating TN breast cancer [27]. Moreover, miRs delivered by HDLs to target cells
have been shown to have crucial roles in the pathophysiology of various diseases. Solid
tumors, including breast cancer, exhibit an elevated expression of SR-B1, an HDL receptor
responsible for selectively removing esterified cholesterol and miRs, and is associated with
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the poor prognosis of breast cancer [20,28]. Therefore, the delivery of miRs associated with
HDLs may contribute to modulating tumor growth. The differential expression of miRs in
HDLs could help to explain how HDLs prevent inflammation in breast cancer.

Tumor cells produce various miRs, and specifically for breast cancer, several of
them have already been identified as contributors to tumor differentiation, proliferation,
epithelial–mesenchymal transition, invasion, reprogramming, and metastasis. The action
of miRs occurs in the tumor microenvironment, as well as between tumor and non-tumor
cells. MicroRNAs secreted in the tumor interstitial fluid have been detected and classi-
fied into families, serving as functional validation in tumor tissue through the analysis of
transcriptome alteration and signaling pathways, particularly in TN tumors [21].

Particularly miR-375-3p expression in HDLs was positively correlated with the anti-
inflammatory role of HDLs. In this initial exploratory study, we assessed the capacity
of HDLs to inhibit inflammation in cholesterol-overloaded macrophages, rather than
specifically focusing on tumor cells. Nevertheless, macrophages play a role in promoting
tumor development by contributing to the creation of an inflammatory microenvironment
and facilitating cross-talk between cells that regulate tumor growth [29].

The increased expression of miR-375-3p in estrogen-receptor-positive breast tumors
has been associated with a higher tumor proliferative profile, based on the action of this
miR on the target gene RAS, dexamethasone-induced 1 (RASD1), which encodes a member
of the small GTPase superfamily induced by dexamethasone [30]. Chekhun et al. (2020)
did not find any alteration in the expression of miR-375 in the plasma of women with stage
II and III breast cancer. However, its content was higher in patients with LA compared to
LB tumors [31,32].

Fabris et al. (2016) demonstrated that miR-223 targets epidermal growth factor (EGF),
leading to a decrease in EGF signaling, which is crucial for normal mammary gland
development and breast cancer. A study conducted on individuals before and after surgery
and intraoperative radiotherapy (IORT) showed a positive regulation of miR-223 expression
in the mammary gland after IORT, resulting in local EGF release and a decreased survival
of cancer cells. As a response to this, a reduction in circulating miR-223 concentration was
observed after surgery [33].

Yoshikawa et al. (2018) evaluated circulating exosomes from 185 patients with invasive
ductal carcinoma, revealing a higher expression of miR-223-3p compared to the control
group in the microarray analysis. Moreover, in MCF-7 cells transfected with miR-223-3p, an
increase in proliferation and invasive capacity was observed [34]. On the other hand, Citron
et al. (2020) demonstrated that miR-223 expression is negatively regulated in different
molecular types of breast cancer, particularly in luminal and HER2-positive types. When
evaluating breast cancer cells (MCF-7, SJBR3, MDA-MB-231, and MDA+MB-435), it was
observed that miR-223 expression was downregulated in all cell lines compared to control
cells [35].

In vitro studies using inflammatory breast cancer cell lines have demonstrated that
HDL enhances cellular sensitivity to radiation, primarily through the modulation of in-
tracellular cholesterol levels. However, this effect is counteracted by the overexpression
of miR-33, which reduces the expression of ABCA-1. Interestingly, a high expression of
miR-33a, known to decrease HDL levels, has been associated with shorter overall survival
in breast cancer patients undergoing radiotherapy [36].

The in-silico analysis revealed the association of miR-223-3p with ICAM and TP53
genes. The expression of ICAM is positively regulated in response to a variety of inflamma-
tory mediators [37]. Additionally, ICAM1 shows an increased expression in various types
of cancer, being associated with advanced disease stages of the disease, chemotherapy re-
sistance, and lower survival [38]. Guo et al. (2014) demonstrated that ICAM1 is a potential
molecular target and biomarker for therapy and diagnosis in women with TN tumors [39].
The TP53 gene encodes the p53 tumor protein, which acts by regulating cell division and
preventing cell proliferation [40]. Mutations in this gene are present in approximately
50% of human cancers, making it the most common target for genetic alterations in the
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neoplastic process [40], although in breast cancer, the frequency of TP53 gene mutations
is not very high (20–30%). Nevertheless, identifying the type of mutation can lead to
a potential therapeutic target and the prediction of survival in these patients [41]. The
association analysis for miR-375-3p pointed to the JAK2 gene, which encodes for Janus
kinase 2, a tyrosine kinase that is phosphorylated in response to the action of various cy-
tokines [42]. The JAK2 signaling transduction pathway phosphorylates STAT3, triggering
the activation of pathways related to the production of chemokines released in the tumor
microenvironment, promoting the attraction of macrophages [43]. In untreated women
with TN breast cancer, an increase in JAK2 gene amplification has been reported and linked
with chemotherapy resistance [44].

To the best of our knowledge, this is the first demonstration of a distinct pattern of
miR bound to HDL in breast cancer, which is correlated with the enhanced ability of HDLs
in reducing inflammation, although causality needs to be proven. Given the scarcity of
investigations into the molecular mechanisms connecting HDLc and breast cancer, these
findings underscore the notion that alterations in HDL functionality, regardless of HDLc
and lipoprotein composition, may have implications for the pathophysiology of breast
cancer. Further studies are imperative to gain a comprehensive understanding of the HDL
contribution to long-term clinical outcomes in breast cancer.

4. Material and Methods

Forty participants were selected from a large group of 201 women newly diagnosed
with breast cancer between 18 and 80 years old in any clinical stage and with the molecular
classification of the tumor recruited at Hospital Pérola Byington, Sao Paulo, Brazil. The
control group consisted of ten women without any type of cancer recruited at the Universi-
dade de São Paulo and at the Unidade Básica de Saúde Dra. Ilza Weltman Hutzler. Women
with a previous history of any cancer, in situ breast disease, with diabetes mellitus, chronic
kidney disease (estimated glomerular filtration rate <60 mL/min/1.73 m2), autoimmune
diseases, or who were smokers, alcoholics, or in use of contraceptives, or on hormone
replacement therapy or pregnant were not included. Participants were informed about the
study and signed an informed written consent previously approved by institutional Ethics
Committees, including approval for publication (Universidade Nove de Julho, # 3.139.460;
Centro de Referência da Saúde da Mulher, Hospital Pérola Byington, #3.225.220; and Hos-
pital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, #3.317.909), in
accordance with the Declaration of Helsinki.

In the breast cancer group, women were selected according to the molecular classifica-
tion of tumors obtained from medical records. In accordance with the American College of
Pathologists [45,46], tumors were classified as positive for hormone receptors (estrogen and
progesterone) in which >1% of the tumor cells showed positive nuclear staining of moderate
to strong intensity on immunohistochemistry with Ki67 < 14% (LA; n = 10) or Ki67 > 14%
(LB; n = 10). Samples with > 10% of invasive tumor cells with strong staining in the plasma
membrane for HER2 were considered HER2 positive (n = 10). In case of moderate staining
in >10% of the cells or strong in < 10% of the cells, the sample was re-evaluated by in situ
hybridization and was considered positive if it had an HER2/centromere ratio > 2.0; or a
HER2/centromere ratio < 2.0 with mean HER2 > 6 signals per cell (greater than 120 signals
in 20 nuclei). Tumor samples without the expression of hormone receptors and HER2 were
categorized as TN (n = 10).

4.1. Blood Collection

Venous blood was drawn after 12 h of fasting and plasma was immediately isolated af-
ter centrifugation (3000 rpm, 4 ◦C, 15 min). Plasma lipids (TC, TG, HDLc) were determined
by enzymatic techniques. HDLc was measured after the precipitation of apoB-containing
lipoproteins in plasma treated with dextran sulfate and magnesium chloride. Low-density
lipoprotein cholesterol (LDLc) was determined by the Friedewald formula [47]. ApoB
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was quantified by immunoturbidimetry (Randox Lab. Ltd. Crumlin, UK). Body mass and
height were obtained from all subjects.

4.2. Isolation of Plasma Lipoproteins

Plasma from all participants was submitted to discontinuous density ultracentrifuga-
tion to isolate HDL (D = 1.063–1.21 g/mL). The lipoprotein fraction was immediately frozen
at −80 ◦C in a 5% saccharose solution. HDL composition in lipids (TC, TG, and phospho-
lipids (PL) was determined by enzymatic techniques, and apoA-I by immunoturbidimetry
(Randox Lab. Ltd., Crumlin, UK). Low-density lipoprotein (LDL; D = 1.019–1.063 g/mL)
was obtained by the sequential ultracentrifugation of plasma from healthy volunteers and
was purified by discontinuous density ultracentrifugation. Acetylated LDL was produced
by incubation with acetic anhydride as previously described [48] following extensive dialy-
sis against phosphate-buffered saline. The protein concentration was determined using the
Lowry technique [49].

4.3. Determination of the Anti-Inflammatory Activity of HDL from Controls and Breast
Cancer Cases

The study was approved by the Institutional Animal Care and Research Advisory
Committee (Universidade de Sao Paulo # 1612/2021) according to the U.S. National Insti-
tutes of the Health Guide for the Care and Use of Laboratory Animals. C57BL/6 J mice,
aged 2–48 weeks, were housed in a conventional animal facility at 22 ± 2 ◦C under a 12-h
light/dark cycle with free access to commercial chow (Nuvilab CR1, São Paulo, Brazil) and
drinking water. Animals were euthanized with an intraperitoneal overdose of ketamine
hydrochloride (Ketalar) (300 mg/kg of body weight) and xylazine hydrochloride (Rompun)
(30 mg/kg of body weight), in accordance with the norms of the National Council for the
Control of Animal Experimentation (CONCEA) of the Ministry of Science, Technology, and
Innovation (MCTI). Undifferentiated bone-marrow cells were obtained from animals’ tibias
and femurs and cells were differentiated into macrophages as previously described [50].
Macrophages were overloaded with acetylated LDL (50 µg/mL) for 24 h, and after washing
they were treated with the HDLs (50 µg/mL; 24 h) of controls and breast cancer subjects.
Then, cells were challenged with LPS (1 µg/mL) for 24 h. The medium was collected to
determine the concentration of inflammatory cytokines, interleukin 6 (IL6), and tumor
necrosis factor (TNF) by ELISA (R&D System).

4.4. Determination of miR Expression in HDL from Controls and Breast Cancer Cases

Inflammation-related miRs associated with HDL were found using the DisGeNET 7.0
platform [22] and associations were evaluated between inflammatory genes (C0021368),
mammary inflammation (C0024894), and genes associated with HDLs (C0392885). These as-
sociations were visualized using a Venn diagram constructed through the interactivenn.net
website [23] (Figure 6). After an exploratory analysis using an in-silico approach, the target
genes of miRs differentially expressed in HDLs were determined by the miRDB (microRNA
target prediction database) platform.

The presence of free hemoglobin was determined by measuring the absorbance at
414 nm using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA).
All HDL samples exhibited absorbance values ≤ 0.2, thus confirming their suitability for to-
tal RNA, including miR, extraction. For total RNA extraction, the miRNeasy Serum/Plasma
Kit (Qiagen, Germany) was used following the manufacturer’s instructions. Briefly, 1000 µL
of Trizol was added to each tube containing 20 µL of the sample, vigorously homogenized
for 10 s, and incubated for 5 min at room temperature. The efficiency of total RNA extraction
was monitored by adding 2 µL of synthetic miRNA-39 (Caenorhabditis elegans—cel-miR-39)
spike-in at a concentration of 2.5 × 105 pmol (Thermo Phosphorylated). The reverse tran-
scription reaction was performed using specific kits (TaqMan® Advanced miRNA cDNA
Synthesis Kit; Applied Biosystems—Thermo Fisher Scientific, USA). Real-time quantitative
polymerase chain reaction (RT-qPCR) was performed using TaqMan MicroRNA Assays
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(Applied Biosystems, Foster City, CA, USA). The products of the reverse transcription reac-
tion were pre-amplified following the manufacturer’s protocol. The pre-amplified samples
were stored at −20 ◦C in a freezer for 24 h. For RT-qPCR, probes (A25576) specific to the
cDNA sequences of the target miRs were used. The cDNA was diluted 1:10, containing
5 µL of the pre-amplified product and 45 µL of TE buffer. In a 1.5-mL microtube, the PCR
reaction mixture was prepared, consisting of 10 µL of TaqMan Fast Advanced Master Mix
(2×), 1 µL of TaqMan Advanced miRNA Assay (20×), and 4 µL of nuclease-free water.
This mixture (15 µL) was added to each well of the plates (MicroAmp® Fast Optical 96-Well
Reaction Plate with barcode, 0.1 mL—Thermo Fisher Scientific, USA), along with 5 µL of the
diluted cDNA, resulting in a final volume of 20 µL in each well. The plate was then sealed
with adhesive tape (MicroAmp™ Optical Adhesive Film—Thermo Fisher Scientific, USA)
and centrifuged at room temperature to ensure even distribution of the samples within
each well. The RT-qPCR was performed on the StepOnePlus system with the following
cycling conditions: 95 ◦C for 20 s for 1 cycle, followed by 40 cycles of 95 ◦C for 1 s and
60 ◦C for 20 s, with a final step at 4 ◦C.
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4.5. Statistical Analysis

Sample normality was analyzed by the Shapiro–Wilk test and the Grubbs test was
applied to identify possible outliers. Non-parametric data were represented by the median
with lower (25%) and upper (75%) quartiles and compared by the Mann–Whitney or
Kruskal–Wallis test. Frequencies were compared using the Chi-square test. GraphPad
Prisma (version 5.04) for Windows, Microsoft® Excel for Mac (version 16.52), and IBM®

SPSS Statistics (version 27.0) software were used for data tabulation and analysis. A value
of p < 0.05 was considered statistically significant.
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