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Piątek-Bajan, K.; Synakiewicz, A.;

Jankowska, A.; et al. Cancer Stem

Cell Markers—Clinical Relevance

and Prognostic Value in High-Grade

Serous Ovarian Cancer (HGSOC)

Based on The Cancer Genome Atlas

Analysis. Int. J. Mol. Sci. 2023, 24,

12746. https://doi.org/10.3390/

ijms241612746

Academic Editor: Alvaro Galli

Received: 5 July 2023

Revised: 5 August 2023

Accepted: 9 August 2023

Published: 13 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Cancer Stem Cell Markers—Clinical Relevance and Prognostic
Value in High-Grade Serous Ovarian Cancer (HGSOC) Based
on The Cancer Genome Atlas Analysis
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Abstract: Cancer stem cells (CSCs) may contribute to an increased risk of recurrence in ovarian
cancer (OC). Further research is needed to identify associations between CSC markers and OC
patients’ clinical outcomes with greater certainty. If they prove to be correct, in the future, the
CSC markers can be used to help predict survival and indicate new therapeutic targets. This study
aimed to determine the CSC markers at mRNA and protein levels and their association with clinical
presentation, outcome, and risk of recurrence in HGSOC (High-Grade Serous Ovarian Cancer).
TCGA (The Cancer Genome Atlas) database with 558 ovarian cancer tumor samples was used for
the evaluation of 13 CSC markers (ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1,
PROM1, PTTG1, ROR1, SOX9, and THY1). Data on mRNA and protein levels assessed by microarray
and mass spectrometry were retrieved from TCGA. Models to predict chemotherapy response and
survival were built using multiple variables, including epidemiological data, expression levels,
and machine learning methodology. ALDH1A1 and LGR5 mRNA expressions indicated a higher
platinum sensitivity (p = 3.50 × 10−3; p = 0.01, respectively). POU5F1 mRNA expression marked
platinum-resistant tumors (p = 9.43 × 10−3). CD44 and EPCAM mRNA expression correlated with
longer overall survival (OS) (p = 0.043; p = 0.039, respectively). THY1 mRNA and protein levels
were associated with worse OS (p = 0.019; p = 0.015, respectively). Disease-free survival (DFS) was
positively affected by EPCAM (p = 0.004), LGR5 (p = 0.018), and CD44 (p = 0.012). In the multivariate
model based on CSC marker expression, the high-risk group had 9.1 months longer median overall
survival than the low-risk group (p < 0.001). ALDH1A1, CD44, EPCAM, LGR5, POU5F1, and
THY1 levels in OC may be used as prognostic factors for the primary outcome and help predict the
treatment response.

Keywords: epithelial ovarian cancer; HGSOC; TCGA; ovarian cancer prognosis; cancer stem cells;
markers; multi-omics; multi-omics data

1. Introduction

High-grade serous ovarian cancer (HGSOC) is a heterogenous malignancy and one of
the leading causes of cancer-related deaths in women worldwide [1].

The cancer cell populations derived from a single patient are highly diverse [2,3]. Can-
cer stem cells (CSCs), the subpopulation of neoplastic cancer cells able to self-renew [4,5],
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contribute to chemotherapy resistance [2,5–7]. CSCs have been detected in OC tumors in the
early and advanced stages before and after the conventional treatment [8–10]. The presence
of CSCs appears to be a feature of all types of OC, including the most heterogenous type—
primary HGSOC—independent of its molecular subtypes (mesenchymal, immunoreactive,
differentiated, and proliferative) [9,11–14].

Despite treatment, around 70% of patients experience cancer recurrence [5]. Due to
the potential for self-renewal after a long dormancy, CSCs are perceived as the origin of
recurrent tumors. Surgery and chemotherapy may eradicate most cancer cells but not the
residual population of CSCs [1]. Their self-protection is caused mainly by the slow cell
cycle progression, resulting in decelerated metabolism [2,5], which may induce multiple
drug resistance mechanisms [3,15]. The persistence of CSCs in tumor tissue and their drug
resistance acquired during primary treatment are important factors in tumor relapse after
chemotherapy [3,5]. The presence of CSCs has been associated with a worse prognosis
in OC [5].

Thus, CSC markers may be valuable prognostic tools in clinical practice [2].
Several CSC markers have been suggested to date. The most often proposed and

best-characterized are CD44, CD24, CD117, CD133, and ALDH1A [6]. Their main functions
and roles as CSC markers are described in the table below.

In this study, we aimed to determine the relationships between the clinical features
of HGSOC and the expression of selected CSC markers. Besides the well-established CSC
markers described above (CD44, CD24, CD117, CD133, and ALDH1A), other proteins
might belong to this population. To identify them, we searched for the proteins that
were previously mentioned in the literature as potentially related to CSCs in various
malignancies, including OC (Table 1). We retrieved proteomic and transcriptomic data
and clinical characterizations of 551 HGSOC patients from The Cancer Genome Atlas
Database (TCGA). We evaluated the expression levels of the above-defined set of CSC
markers (Table 1) in HGSOC (Figure 1). Next, we investigated the relationship of the
CSC marker levels with patients’ clinical and pathological features, such as clinical stage,
grade of the disease, size of residual disease, following surgery, and responsiveness to
chemotherapy. Finally, we assessed the relationship between the analyzed markers and the
time to progression and OS (Overall Survival).
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A G-actin-sequestering peptide associated with the metastatic 
potential of tumor cells by stimulating cell migration. Tβ4 expres-
sion is strongly associated with CD133 expression and is charac-
teristic of CSCs. 
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Table 1. CSC markers selected based on a review of the literature. The function and potential
contribution to the phenotype of cancer stem cells are described following the given reference.

CSC Marker Full Name Function References

ALDH1A1 Aldehyde Dehydrogenase 1
Family Member A1

Enzyme belonging to the aldehyde dehydrogenase family of
proteins participating in the biosynthesis of retinoic acid and
allowing for the regulation of proper proliferation and
differentiation of cancer stem cells.

[16]
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Table 1. Cont.

CSC Marker Full Name Function References

CD44 CD44 molecule A cell-surface glycoprotein that promotes metastasis, stem
cell-like phenotypes, and chemoresistance. [17]

PROM1 (CD133) Prominin-1

Transmembrane protein that promotes stemness and
strengthens adhesion and clearance of mesothelial cells; it
causes an increase in peritoneal adhesion. It entails improved
adherence to the metastatic niche and infiltration of the
peritoneal tissue during metastases.

[18,19]

c-Kit (CD117) KIT proto-oncogene
receptor tyrosine kinase

This cytokine receptor is closely related to the
neovascularization of epithelial OC tissue and the formation
of vasculogenic mimicry. CSCs are associated with the
formation of vasculogenic mimicry, which therefore acts as a
molecular CSC marker.

[20]

POU5F1 (OCT4)
POU class 5 homeobox 1
(octamer-binding
transcription factor 4)

It encodes embryonic transcription factors that are vital for
quiescence, pluripotency, and long-term
self-renewal—properties that are characteristic of CSCs.

[21]

NOTCH3 Notch Receptor 3 A protein whose activation increases the adhesion between
ovarian tumor cells and collagen-rich peritoneal surfaces. [22]

SOX9 SRY-box transcription factor
9

A protein that regulates apoptotic and proliferative properties.
It allows OC to survive in hypoxic conditions. [23]

SNORD89 Small nucleolar RNA, C/D
box 89 A small nucleolar RNA that promotes stem-cell-like

characteristics via the Notch1/c-Myc pathway. [23–25]
SNORA72 Small nucleolar RNA,

H/ACA box 72

Thy-1 (CD90) Thy-1 cell surface antigen

GPI-anchored protein located on the cell surface correlated
with increased self-renewal and proliferative ability of OC
cells. It acts as a tumor suppressor in OC. Thy-1 is
overexpressed in CSCs.

[23–25]

EpCAM Epithelial cell adhesion
molecule

Transmembrane glycoprotein mediating Ca2+-independent
homotypic cell–cell adhesion in epithelia. EpCAM regulates
chemoresistance by activating the PI3K/Akt/mTOR
signaling pathway.

[26]

LGR5
Leucine-rich repeat
containing G
protein-coupled receptor 5

Protein that may promote epithelial OC development through
regulation of the Notch1 signaling pathway, which is
associated with CSC self-renewal and drug resistance.

[27]

PTTG1 (Securin)
PTTG1 regulator of sister
chromatid separation,
securin

Protein with the ability to regulate CSC-associated
self-renewal and epithelial–mesenchymal
transition pathways.

[28]

ROR1 Receptor tyrosine kinase like
orphan receptor 1

A surface antigen playing an important role in the Wnt
signaling pathway. ROR1 increases tumor cell proliferation,
migration, invasion, and oncogenicity and triggers the
formation of spheroids, the invasion of the extracellular
matrix, or the development of tumor xenografts, which are
functional features associated with CSC.

[29,30]

NES (Nestin) Neuroepithelial stem
cell protein

Intermediate filament protein involved in ne ovascularization
and CSCs and closely related to vasculogenic
mimicry formation.

[31]

TMSB4X (Tβ4) Thymosin β4

A G-actin-sequestering peptide associated with the metastatic
potential of tumor cells by stimulating cell migration. Tβ4
expression is strongly associated with CD133 expression and
is characteristic of CSCs.

[32]
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2. Results

There were 489 patients with complete data for mRNA measured by microarray
for 13 CSC markers: ALDH1A1, CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1,
PROM1, PTTG1, ROR1, SOX9, and THY1. Among the analyzed CSC markers, the mass
spectrometry data for five proteins (EPCAM, ALDH1A1, CD44, NES, and THY1) were
available for 174 patients.

2.1. Clinical and Pathological Features

The characteristics of the studied group correspond well to the mean clinical features
observed in OC. All the analyzed samples were retrieved from patients suffering from
HGSOC. Most patients (71%) in the database labeled “ov_tcga” were at stage IIIC. The
mean age at diagnosis was 59.5–60 (interquartile range (IQR): 51–68 amd 51–71 for mRNA
and protein samples, respectively). Most OC tissues were characterized as grade 3 (mRNA
samples = 82.3%, protein samples = 81.6%). There were no grade 1 tumors.

The expression of two CSC marker genes was associated with the tumor grade. We found
that EPCAM and PTTG1 mRNA levels were higher in grade 3 as compared to grade 2 tumors
(“ov_tcga” dataset, n = 537, p = 0.02; p = 0.03, respectively) (Figures A1A and A1B, respectively).

The expression of two CSC marker genes was associated with FIGO staging. We
found that the CD44 mRNA level was elevated in tumors with FIGO I/II as compared
to FIGO III/IV stages (“ov_tcga” dataset, n = 552, p = 0.02, Figure 2A). At the same time,
THY1 mRNA expression was higher in the FIGO III and FIGO IV stages (“ov_tcga” dataset,
n = 552, p = 1.43 × 10−4) (Figure 2B).

Furthermore, the expression of CSC genes was linked to the tumor’s platinum sen-
sitivity. We found that higher ALDH1A1 and LGR5 mRNA levels have indicated plat-
inum sensitivity (“ov_tcga_pub” dataset, n = 287, p = 3.50 × 10−3; p = 0.01, respectively)
(Figures 2C and 2D, respectively). Conversely, mRNA of POU5F1 showed a higher level in
platinum-resistant tumors (“ov_tcga_pub” dataset, n = 287, p = 9.43 × 10−3) (Figure 2E).

We also demonstrated that level of one of the CSC markers indicates a chance for com-
plete cytoreduction. The EPCAM level (mRNA) was higher in tumors with no macroscopic
residual disease (“ov_tcga_pub” dataset, n = 179, p = 0.03) (Figure 2F).

2.2. CSC Expression Profiles

Four molecular subtypes of OC are distinguished based on the gene expression pat-
tern [9]. We found that specific CSC markers were linked to OC expression profiles.
(Figure 3A). High amounts of EPCAM, NES, NOTCH3, ROR1, and LGR5 transcripts were
associated with proliferative profile (“ov_tcga_pub” dataset, Figure A2A–D and Figure 3B,
respectively). The mesenchymal profile was characterized by upregulation in ALDH1A1,
KIT, and THY1 mRNA (Figure 3C, Figure A2E, and Figure 3D, respectively). The immunore-
active profile was marked by high CD44 and PTTG1 expression (Figures 3E and A2F, re-
spectively). POU5F1, PROM1, and SOX9 gene expressions were more prevalent in the
fallopian profile (Figure A2G, Figure 3F, and Figure A2H, respectively).

2.3. Overall Survival

We found that the expression of CSC marker genes was associated with OS. In the
microarray-assessed dataset, CD44 mRNA levels were associated with longer OS (dataset
“ov_tcga_pub”, HR = 0.88, 95%, 0.79–1.00; p = 0.043) (Figure 4A). The beneficial effect
was also observed in the “ov_tcga” dataset, where EPCAM mRNA expression predicted
longer OS (HR = 0.89, 95%, 0.80–0.99; p = 0.039, Figure 4B), while THY1 mRNA level was
associated with poorer OS (HR = 1.14, 95%, 1.02–1.28; p = 0.019) (Figure 4B). Consistently,
the level of THY1 protein was also associated with shortened OS (“ov_tcga” protein dataset,
HR = 1.26, 95%, 1.05–1.51; p = 0.015) (Figure 4C).
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Figure 2. Clinical and pathological features of OC tumors. The expression of CSC markers depending
on (A,B) tumor stage ((A) Welch test; (B) Kruskal–Wallis test), responsiveness to platinum compounds
((C–E); Mann–Whitney test), and tumor residual disease following cytoreductive surgery ((F); Mann–
Whitney test). Values on the Y axis represent mRNA expression as Z scores. Statistical significance
and the of statistics used for analysis are described at the top of each plot. The total number of
samples is described at the top of each plot. The number of samples in each subgroup is given as “N”
(“ov_tcga_pub”—DATASET1 and “ov_tcga”—DATASET2).

2.4. Disease-Free Survival

The expression of the EPCAM gene was associated with longer DFS (“ov_tcga_pub”
dataset, HR = 0.87, 95%, 0.79–0.96; p = 0.004), LGR5 (HR = 0.86 95%, 0.77–0.97; p = 0.018)
and CD44 (HR = 0.86, 95%, 0.77–0.97; p = 0.012) (Figure 4D). Consistently, a higher amount
of CD44 transcripts was associated with longer DFS (dataset “ov_tcga”, HR = 0.87, 95%,
0.80–1.01; p = 0.013) (Figure 4E). In contrast, THY1 expression predicted reduced DFS
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(HR = 1.19, 95%, 1.07–1.33; p = 0.002) (Figure 4E). In agreement, the levels of THY1
(“ov_tcga” dataset, HR = 1.32, 95%, 1.09–1.58; p = 0.004) and NES (“ov_tcga” dataset,
HR = 1.19, 95%, 1.01–1.41; p = 0.039) proteins were associated with poorer DFS (Figure 4F).
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Figure 3. OC expression profiles (“ov_tcga_pub”—DATASET1 and “ov_tcga”—DATASET2). (A) nor-
malized expression of CSC markers depending on molecular subtypes of OC (mesenchymal, prolif-
erative, fallopian, and immunoreactive). The colors represent the intensity of expression according
to the scale in the top right of the figure. Markers are clustered in order of similarity across their
subtypes. (B–F) mRNA levels represented as Z scores in subgroups according to OC expression
profiles. Statistics used: (B,C,E,F)—Kruskal–Wallis test; (D)—Welch test.
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Figure 4. The OS and DFS (“ov_tcga” and “ov_tcga_pub” datasets). Relationship between CSC
markers and patient survival. Association between mRNA (miRNA) expression of CSC markers
and (A,B) OS, as well as between DFS (D,E) based on the “ov_tcga_pub” and “ov_tcga” datasets.
Association between protein expression of CSC markers (mass spectrometry) and (C) OS and (F) DFS
based on “ov_tcga” datasets. Panels represent only statistically significant (p < 0.05) relationships.
Beta coefficient and p values of univariate Cox proportional hazard regression models are given in
the panels.

2.5. Correlation Analysis

In both datasets, we found significant positive correlations between ALDH1A1 and
KIT mRNA levels (r = 0.34; r = 0.36, n = 489; n = 558, p < 0.05, “ov_tcga_pub” and “ov_tcga”
datasets, respectively; Figures A1C and A1D, respectively) and between ROR1 and SOX9
(r = 0.31; r = 0.31, n = 489; n = 558, p < 0.05, “ov_tcga_pub” and “ov_tcga” datasets,
respectively (Figures A1C and A1D, respectively). Furthermore, in the “ov_tcga_pub”
dataset, NOTCH3 expression correlated well with NES (“ov_tcga_pub”, r = 0.35, n = 489,
p < 0.05, Figure A1C).

We found a negative correlation between the EPCAM and THY1 proteins and between
the EPCAM and CD44 proteins (dataset “ov_tcga”, r = −0.32; r = −0.35, n = 174, p < 0.05)
(Figure A1E). We also demonstrated that the THY1 protein level was increased in association
with NES protein (“ov_tcga”, r = 0.31, n = 174, p < 0.05) (Figure A1E).

2.6. Multivariate Predictive Analysis

To verify the collectively predictive power of 13 CSC markers with respect to the
carboplatin treatment outcome and patients survival, we performed multivariate predictive
analysis using machine learning (ML) methods. The importance of the CSC markers for the
ML models’ prediction was assessed jointly with the clinical and pathological features. We
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estimated the performance of each ML model to verify whether they learn from the data
that might be useful for prospective studies.

For the predictive analysis of carboplatin treatment outcome, the random forest classi-
fier performance on the “ov_tcga_pub” microarray dataset (n = 287) was estimated using
the repeated fivefold cross-validation method (CV) and the AUC (area under the ROC
curve) score. The expected performance of the model is significantly higher than the
efficacy of a random guess (t-test(µ0 = 0.5) = 22.964, p < 0.001), with a median estimated
AUC = 0.61, 95%, 0.601–0.63 (Figure 5A). We also calculated additional model performance
scores with the following median values: accuracy = 0.71, 95%, 0.702–0.714, F1 = 0.53, 95%,
0.525–0.545, and MCC = 0.28, 95%, 0.266–0.293 (Figure A3).
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Figure 5. Results of the carboplatin therapy outcome predictive analysis. (A) Expected outcome
prediction performance of the random forest classifier trained on the “ov_tcga_pub” dataset. The
performance was estimated using repeated fivefold cross-validation (CV) and the AUC score. The me-
dian AUC = 0.61 95%, 0.601–0.63, which is greater than a random guess with t-test(µ0 = 0.5) = 22.087,
p < 0.001. (B) Importance of the “ov_tcga_pub” dataset features for therapy outcome classification
was estimated using the permutation feature importance score measured using the AUC score and the
classifiers obtained from the CV. (*) The significance of the importance measurements was tested with a
one-sample Wilcoxon test under the alternative hypothesis, i.e., that the importance mean > 1.0, p ≤ 0.001.

For the DFS and OS analysis, we estimated the performance of Cox proportional
hazards models trained on the “ov_tcga_pub” microarray dataset (n = 487) with ridge
regularization. The performance was assessed using the c-index score measured during
repeated fivefold cross validation. The median equated c index = 0.59, 95%, 0.585–0.59
(t-test(µ0 = 0.5) = 73.94, p < 0.001) for the DFS, and c index = 0.56, 95%, 0.555–0.56 (t-test
(µ0 = 0.5) = 36.76, p < 0.001) for OS (Figure A4). Additionally, the stratification capabilities
of the models were estimated by dividing patients into low- and high-risk groups using
the calculated median hazard risks of recurrence or death of the patients based on CSC
markers. For DFS, the low- and high-risk groups were determined to be significantly
divergent (p < 0.002), with 4.72 months of difference between the times of the strata median
survival probabilities. In the case of OS, the low- and high-risk groups were separated
(p < 0.001) by 9.12 months in median survival times (Figure 6A).
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fication capability of the Cox proportional hazards models with ridge regularization fitted to the
“ov_tcga_pub” dataset. The stratification performance was estimated using repeated fivefold cross-
validation (CV) and c-index score. The null hypothesis of the log-rank test that the low-risk and
high-risk strata have identical hazard functions was rejected, with p < 0.0023 and p < 0.0085 for the
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features for which an estimated importance mean is >1.0 with p ≤ 0.001.

Knowing that all the trained models are expected to be relevant, we assessed the
importance of the “ov_tcga_pub” dataset features using the permutation feature importance
(PFI) score (Figures 5B and 6B). The most important predictive factor of the carboplatin
therapy outcome, DFS, and OS was the presence of residual disease, which increases
the risk of both disease recurrence and patient death (p < 0.001). Another significant
pathological feature was the immunoreactive profile of gene expression, which was also
meaningful for carboplatin outcome prediction and decreased the risks for both OS and
DFS. The pathological features important for predicting the DFS and OS hazard risks
included mesenchymal expression profile of gene expression, FIGO stage IV, tumor grade 3,
and MKI67 proliferation marker expression (p < 0.001).

We subsequently analyzed the PFI scores of the 13 considered CSC markers. We report
that the CD44, LGR5, NES, and EPCAM CSC markers were significantly important outcome
predictors (p < 0.01) in all multivariate analyses. Also, the POU5F1, THY-1, and ALDH1A1
markers were determined as important for both the carboplatin therapy outcome binary
classification and hazards risks assessment. Interestingly, only the POU5F1 and THY1
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markers were defined as the risk-increasing factors of DFS. The rest of the listed markers
were described as risk-decreasing factors.

3. Discussion

Among all the analyzed CSC markers, our study shows that the expression of
six genes—CD44, ALDH1A1, EpCAM, THY-1, POU5F1, and LGR5—is significant in OC in
terms of clinical outcome, including stage and grade of the disease, as well as the platinum
sensitivity and patient survival.

We found that the expression of the CD44 gene was associated with lower FIGO stage
and, hence, better OS and DFS of ovarian cancer patients. Moreover, we observed higher
levels of the CD44 gene in the immunoreactive subtype of OC. This type is characterized by
a more favorable prognosis and extensive intratumoral T-cell infiltration [17]. In fact, CD 44
might play an essential role in regulating the lymphocyte infiltration process in OC tumor
tissue, as it is a molecule known for its role in lymphocyte activation and homing [33]. Our
results are consistent with those of Sillanpaa S et al. [34] and Sosulski et al. [35] and show
the association between CD44 gene expression, lower FIGO stage, and better survival times
of OC patients. Still, the role played by CD44 in carcinogenesis is more complicated. In
some reports, the increase in CD44 gene expression was indicated as a prognostic factor
of both shorter OS and DFS of OC patients. Its correlation with higher FIGO stage and
grade was also demonstrated [36,37]. The observed differences in CD44 impact on OC
biology might be caused by many mRNA splice variants of CD44 and their various effects
on the tumor characteristics [35,37]. As a cell-surface glycoprotein, it undergoes numerous
post-translational modifications, which may distort its initial abundance and function.

Our results based on the analysis of ALDH1A1 gene expression in OC show that
it is highest in the mesenchymal type of OC, which is considered the most aggressive
subtype [38]. A negative correlation was demonstrated between an increased number
of ALDH1A1-positive cells and patient survival [39,40]. Given many discordant reports,
a meta-analysis of ALDH1A function was performed by Ruscito et al., revealing that
high levels of ALDH1A1 protein correlated with worse OS and DFS of OC patients [41].
However, our study also revealed that the accumulation of mRNA for ALDH1A1 in
tumor tissue is correlated with higher sensitivity to platinum-based chemotherapy, which
is usually an indicator of a better prognosis for OC patients. ALDH1A1 may have an
impact on chemoresistance. A broad analysis of multiple ovarian cancer cell lines revealed
significantly higher ALDH1A1 gene expression in taxane- and platinum-resistant cell
lines [42,43]. ALDH1A1 is also active in platinum-resistant cancer cells residing in hypoxic
regions [9,40]. In several studies in other cancer types, including breast cancer, stromal
ALDH1A1 protein level, as measured by immunohistochemistry, was associated with better
clinical outcomes [44].

Our detailed evaluation of TCGA data revealed that a higher level of EPCAM mRNA
was associated with a higher percentage of optimal debulking during primary surgery.
Furthermore, EPCAM is among the genes whose expression is associated with a positive
response to platinum compounds. It is also related to improving DFS and OS survival in
OC patients [45]. Thus, the data from the human protein [46], together with the results of
our study, indicate that EpCAM gene expression is associated with a favorable prognosis
of OC patients. Our univariate and multivariate analyses demonstrated that the EpCAM
mRNA level is associated with longer PFS and OS.

Interestingly, we revealed that improved patient survival times are correlated only with
increased EpCAM mRNA levels. Such a link was not observed at the protein level. Previous
studies showed [27,45] the correlation between EpCAM protein level and decreased OS and
higher FIGO stage and grade of the disease [27]. Thus, the EpCAM protein was proposed
as a significant factor contributing to the chemoresistance of OC cells. All this suggests that
EPCAM is an important marker of OC prognosis. However, further research is needed to
completely understand its role in the disease.
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Our analysis consistently demonstrated a correlation between THY-1 gene expression
and the unfavorable prognosis of OC patients. We have shown that THY-1 mRNA and
protein levels are considered an independent factor associated with poor OS, with higher
levels in FIGO stage III and IV and the mesenchymal subtype of OC. Moreover, THY-1
mRNA but not protein level was associated with platinum resistance and poor DFS in
OC. THY1 transcriptional activity was associated with the highly invasive and metastatic
potential of OC cells, and its correlations with significantly shorter median DFS and OS
in patients with HGSOC were previously demonstrated [26,47]. However, depending on
the cancer type, THY-1 might have ambivalent properties regarding its anti- or protumoral
activities. In some studies on OC, THY-1 was suggested to have a tumor-suppressive
role [24,48,49]. The mechanism by which the THY-1 gene may inhibit OC cell growth is still
unclear. Its ambivalent impact reported in many studies may be the result of its presence
in immune and cancer cells [50]. However, among all markers we have studied, THY-1
has a consistently unfavorable impact on the protein and mRNA levels. Therefore, it is an
interesting candidate for further studies.

Another cancer stem cell marker with a substantial impact on the platinum sensitivity
of OC cells was POU5F1. Our study revealed that its high expression at the mRNA level
was associated with platinum resistance and, therefore, worse DFS in OC patients. In
a study by Xie W et al. [51], the POU5F1 protein level was significantly correlated with
higher tumor grades and lymph node metastases. Therefore, it was suggested to promote
proliferation and metastasis in OC. It was also considered an independent predictor of poor
prognosis and progression of OC [51]. Moreover, a study by Ruan Z et al. [52] suggested
the significant role of POU5F1 in stemness and drug resistance of OC. It was also correlated
with a more aggressive phenotype of OC.

LGR5 is another CSC marker presented as a predictor of good response to platinum
therapy. Our multivariate and univariate analysis showed that LGR5 was associated with
longer DFS. We also observed that the LGR gene was associated with the proliferative type
of OC. The expression of LGR was previously shown to be associated with higher stages
of the disease, and its upregulation was associated with metastases in OC patients [28].
The increased expression of LGR5 markedly promotes the growth and the EMT of ovarian
cancer cells. Thus, it may promote tumorigenesis and the formation of metastases. Though
we observed higher expression in the proliferative subtype, samples more responsive
to platinum also had higher levels of LGR5 mRNA. Consistently with our results, Kim
and colleagues [53] revealed that in HGSOC, high LGR5 expression was associated with
improved PFS.

In this study, we analyzed data on the expression of a set of CSC markers in TCGA.
Thanks to this approach, we validated specific observations regarding well-known mark-
ers and studied proteins of unclear relevance. TCGA is a database containing a single
tumor sample that does not provide insight into the heterogeneity of HGSOC. It must
be considered as a limitation when interpreting the results. However, it may serve as a
valuable tool for screening and narrowing a set of CSC markers in terms of more detailed
analyses. Consequently, some proteins we included have well-established CSC marker
status, whereas others are still considered candidates.

4. Materials and Methods
4.1. Data Retrieval

Transcriptome (microarray and RNA sequencing) data were obtained from TCGA
using http://www.cbioportal.org/public-portal/ (accessed on 1 September 2022) as CGDS
object (mycgds) compatible with downstream analysis with R programming [54].

For analysis of microarray data from OC tumors, values provided in the genetic pro-
file “ov_tcga_pub_mrna_median_Zscores” in the study labeled as “ov_tcga_pub” were
selected [55]. We analyzed patients included in the “ov_tcga_pub_all” case list. Patients
with missing values or genes defined only in a subset of patients were excluded from
the analysis. For comparison of RNA-Seq and microarray input, OC tumor values pro-

http://www.cbioportal.org/public-portal/
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vided in the genetic profile “ov_tcga_rna_seq_v2_mrna_median_Zscores” in the study
labeled as “ov_tcga” were selected. We used clinical characterization of the patients
obtained by the function cgdsr::getClinicalData(). The predefined OC expression pro-
files (fallopian, immunoreactive, mesenchymal, and proliferative) were retrieved with
the function cgdsr::getCaseLists(mycgds,‘ov_tcga_pub’). The cgdsr::getCaseLists (my-
cgds,‘ov_tcga_pub’) function allows the user to fetch a list IDs of the patients from the
0v_tcga_pub study. The predefined OC expression profiles (fallopian, immunoreactive,
mesenchymal, and proliferative) could be retrieved with the cgdsr::getProfikeData function.

We are aware that there is an overlap between the “ov_tcga_pub” and “ov_tcga”
datasets. Given that the samples have different categories of clinical annotation (such as
response to platinum therapy or pathological features of the tumor), we analyzed both sets.
All data processing was performed in the R programming language (version 4.2.1) using
RStudio (version 2022.12.0 + 353 “Elsbeth Geranium” Release).

4.2. Clinical and Pathological Features

In statistical and predictive analyses, we analyzed mRNA expression assessed by a
microarray from the study labeled “ov_tcga_pub” (n = 489) for 13 CSC markers: ALDH1A1,
CD44, EPCAM, KIT, LGR5, NES, NOTCH3, POU5F1, PROM1, PTTG1, ROR1, SOX9, and
THY1. Data for the remaining four out of 16 CSC markers (c-Kit, SNORD89, SNORA72,
and TMSB4X) were incomplete and therefore excluded from further analysis. We compared
the markers’ expression with the clinical and pathological features, including DFS, OS,
grade, platinum sensitivity status, primary therapy outcome, tumor residual disease, stage,
and expression profile.

For some patients, only data on mRNA expression were available, whereas for oth-
ers, data on both mRNA and protein expression were available. Additional statistical
analyses were performed on the dataset labeled as “ov_tcga”. This included analysis of
mRNA (n = 558) expression data of the same 13 CSC markers described above and mass
spectrometry measurements of the 5 proteins (n = 174) produced by the ALDH1A1, CD44,
EPCAM, NES, and THY1 genes. Only a part of the dataset records contained information
about both mRNA and protein levels; the rest comprised only mRNA data. We statistically
compared the expression of the mRNA with clinical and pathological features, including
clinical stage, DFS, OS, grade, histological type, treatment outcome, and expression profile.
According to TCGA database, after therapy, platinum-resistant cancer recurs within six
months, whereas in platinum-sensitive cancer, the recurrence takes place more than six
months after completion of platinum-based chemotherapy. In our statistical and predictive
analyses, we included information about MKI67 as a proliferation marker.

4.3. Data Preprocessing

For predictive analysis of carboplatin therapy outcome and multivariate survival
analyses, we conducted additional data preprocessing steps. First, we excluded records
with values of categorical features that were highly under-represented (<10 records). Less
under-represented values of ordinal categorical features were grouped with more numerous
values in the sequence. For multivariate analysis, the residual disease feature was grouped
into categories: “no visible residual disease” and “visible residual disease” (tumor tissue
of any size remaining after the surgery). Tumor grade was divided into “grade G3” and
“non-grade G3” (G1 and G2) groups, and cancer stage features were split into “stage IV”
and “non-stage IV” groups.

To facilitate the use of machine learning methods, we performed numerical encoding
of categorical features. The expression profile feature was one-hot-encoded as four separate
variables corresponding to either immunoreactive, fallopian, mesenchymal, or proliferative
expression profiles. Moreover, we performed binary encoding on categorical variables that
were previously divided into two groups. In such a way, we encoded residual disease
assessment as “Is visible residual disease” binary feature, tumor grade as “Is grade G3”,
and cancer stage as “Is stage IV”.
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Lastly, for the purpose of training carboplatin therapy outcome classifiers, we tackled
the class imbalance issue with random oversampling. We did not apply any class balancing
methods for either of the survival analyses, as they provide no performance gains to the
models trained on censored survival data [56].

4.4. Statistics

In our statistical analyses, we tested the normality of the data distribution using a
Shapiro–Wilk test. Student’s t-test (t.test) was used for data with a normal distribution to
calculate the statistical significance (p-value). A Mann–Whitney U test was used for data
with a non-Gaussian distribution. Kruskal–Wallis and ANOVA tests were used to compare
the data of more than two independent groups for non-normally and normally distributed
data, respectively. The R package ‘ggstatsplot’ was used to generate plots [57].

The data were presented as boxplots with an interquartile range (IQR), median, min-
imum, and maximum values. Jitter plots were used to demonstrate the scattering of the
data. The central line in the plots corresponds to the median. The upper and lower “hinges”
correspond to the first and third quartiles, respectively. Plot whiskers extend to the most
extreme data point, which is within 1.5 times the interquartile range from the box. We
visualized data representing individual patients as dots in the boxplots. The correlations
were calculated using Pearson’s correlation and presented in a correlation matrix with
Pearson correlation coefficients (r) and p values using the ggstatsplot::ggcorrmat() function.

4.5. Univariate Analysis of Overall and Disease-Free Survival

The relationships between OS and DFS and expression data were analyzed based on a
study labeled “ov_tcga_pub”, as well as mRNA and mass spectrometry data from a study
labeled “ov_tcga”. We applied the survival and survminer libraries. A Cox proportional
hazards regression model was used to perform survival analysis. The data were presented
as hazard ratios with 95% confidence intervals, beta (β) coefficients, and calculated p values.
The plots were generated by the ggstatsplot::ggcoefstats() function.

4.6. Predictive Analysis of Carboplatin Treatment Outcome

We assessed the predictive power of a random forest model that was trained on the
“ov_tcga_pub” microarray dataset to perform binary classification platinum treatment effi-
cacy (n = 287). The features considered in analysis are expression levels of the same 13 CSC
markers that were used for the univariate analysis. Moreover, the MKI67 proliferation
marker, residual disease assessment, tissue expression profile, tumor grade, and cancer
stage features were included.

To create random forest models, we used the randomForest::randomForest func-
tion [58]. We assessed the performance of classifiers using AUC score and a 5-fold cross
validation (CV) method repeated 34 times, which resulted in 170 models trained for per-
formance estimation. We optimized each model’s hyperparameters using 5-fold cross
validation and a grid search performed on its training set. The hyperparameters were also
evaluated using the AUC score. For each model, we chose parameters that showed the best
performance on validation sets. Random forest models were optimized for the best values
of forest size in a range of 100–300 and tree node size in a range of 5–30. To test whether
the estimated performance was significantly better than a random guess, we performed
a one-sample Student’s t-test (distribution passed the Shapiro–Wilk normality test) and
checked an alternative hypothesis, i.e., that the AUC score distribution > 0.5. The AUC
score was calculated using the pracma::trapz function [59]. The ROC plot was prepared
using the ggplot2 package. Each plotted curve represents a performance assessment of one
of the models trained during CV.

4.7. Multivariate Analysis of Overall and Disease-Free Survival

We used the Cox proportional hazards model with ridge regularization [60] to analyze
OS and DFS of patients in the “ov_tcga_pub” microarray dataset. We considered only records
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with complete mRNA expression levels and complete clinical and pathological data for the
13 CSCs, including residual disease assessment, tissue expression profile, tumor grade, and
cancer stage information (n = 487). We included the MKI67 proliferation marker in the analysis.

The models were obtained using the glmnet::cv.glmnet function [61,62]. For ridge
regularization, we set the alpha parameter to zero. Moreover, no baseline function was
assumed, as we focused only on hazard risk prediction. We assessed the performance of the
hazard models trained on the “ov_tcga_pub” dataset using the c-index score and a 5-fold
cross-validation (CV) method repeated 34 times, which resulted in training 170 models
for performance estimation. The cv.glmnet function incorporates a hyperparameter opti-
mization method by cross validation. The optimization was performed on each model’s
training set with 5-folds CV, with the c index as a validation score. The optimized param-
eter was lambda, which determines the strength of the regularization. Other parameters
were left at default values. To test whether assessed performance was significantly better
than a random guess, we performed a one-sample Student’s t-test (distribution passed
the Shapiro–Wilk normality test) and checked an alternative hypothesis, i.e., that the c
index > 0.5.

To further assess the performance of the hazards model trained on the “ov_tcga_pub”
dataset, we stratified patient risk into low- (patient median risk <1.0) and high-risk (patient
median risk ≥ 1.0) strata. The efficacy of the patient division was determined using a
log-rank test. We visualized the stratification results with Kaplan–Meier survival curves
calculated using the survival::survfit function and drawn with the survminer::ggsurvplot
function [63]. The curves were additionally described with confidence intervals. The
dashed lines indicate the time of median survival probability for each stratum.

4.8. Feature Importance Analysis

To uniformly estimate the importance of “ov_tcga_pub” dataset features, in all our ma-
chine learning analyses, we used the permutation feature importance (PFI) model-agnostic
score [64]. The PFI is measured as an increase in the model’s prediction error after per-
muting the feature’s values. The PFI scores were obtained using the iml::FeatureImp$new
function with “ratio” as a comparison method [65].

For PFI measurements, we used the same models that were previously trained for
the purpose of performance estimation. PFI measurement was repeated 30 times on each
model and its corresponding test set, resulting in 5100 measurements per feature in total. To
test whether a feature was significantly important, we performed a one-sample Wilcoxon
test (distributions did not pass the Shapiro–Wilk normality test) and checked an alternative
hypothesis, i.e., that the obtained PFI score distribution is greater than the value, indicating
no prediction importance (PFI > 1). A feature was determined as important if its estimated
PFI was higher than 1 with p < 0.01.

The feature importance is presented as a box plot with interquartile range, median,
and minimum and maximum values drawn in the same way as in our statistical analysis
using the ggplot2 package (version 3.4.2).

5. Conclusions

Our study showed that the expression of six CSC markers (CD44, ALDH1A1, EpCAM,
THY-1, POU5F1, and LGR5) is significant in OC in terms of clinical outcome, including stage
and grade of the disease, as well as the platinum sensitivity and patient survival. The CD44,
ALDH1A1, EpCAM, THY-1, POU5F1, and LGR5 levels in OC may be used as prognostic
factors for the primary outcome and may be beneficial in predicting the treatment response.
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Figure A1. Comparison between clinical and pathological features (A,B) and correlation matrices 
(C–E) (“ov_tcga” and “ov_tcga_pub” datasets) (in Figure A1A, we cut the lower and upper outli-
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Figure A1. Comparison between clinical and pathological features (A,B) and correlation matrices
(C–E) (“ov_tcga“ and “ov_tcga_pub“ datasets) (in (A), we cut the lower and upper outliers).
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Figure A2. Expression profiles of the “ov_tcga_pub” dataset. mRNA levels are represented as Z
scores in subgroups according to OC expression profiles. High amounts of EpCAM (A), NES (B) 
NOTCH3 (C), ROR 1 (D) transcripts were associated with proliferiative profile. The upregulation 
of KIT (E) was associated with mesenchymal profile. Elevated level of PTTG1 (F) was associated
with immunoreactive profile. The fallopian profile was characterized by elevation of POU5F1 (G) 
and SOX9 (H). 
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Figure A2. Expression profiles of the “ov_tcga_pub” dataset. mRNA levels are represented as Z
scores in subgroups according to OC expression profiles. High amounts of EpCAM (A), NES (B)
NOTCH3 (C), ROR 1 (D) transcripts were associated with proliferiative profile. The upregulation of
KIT (E) was associated with mesenchymal profile. Elevated level of PTTG1 (F) was associated with
immunoreactive profile. The fallopian profile was characterized by elevation of POU5F1 (G) and
SOX9 (H).
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