
Citation: Su, J.; Zhou, F.; Wu, S.;

Tong, Z. Research Progress on

Natural Small-Molecule Compounds

for the Prevention and Treatment of

Sepsis. Int. J. Mol. Sci. 2023, 24, 12732.

https://doi.org/10.3390/

ijms241612732

Academic Editor: Andreas von

Knethen

Received: 9 July 2023

Revised: 2 August 2023

Accepted: 8 August 2023

Published: 12 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Research Progress on Natural Small-Molecule Compounds for
the Prevention and Treatment of Sepsis
Jingqian Su *,† , Fen Zhou †, Shun Wu and Zhiyong Tong

Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life
Science, Fujian Normal University, Fuzhou 350117, China; 15859446856@163.com (F.Z.);
qsx20221412@student.fjnu.edu.cn (S.W.); tongzhiyong1998@163.com (Z.T.)
* Correspondence: sjq027@fjnu.edu.cn
† These authors contributed equally to this work.

Abstract: Sepsis is a serious disease with high mortality and has been a hot research topic in medical
research in recent years. With the continuous reporting of in-depth research on the pathological
mechanisms of sepsis, various compounds have been developed to prevent and treat sepsis. Natural
small-molecule compounds play vital roles in the prevention and treatment of sepsis; for exam-
ple, compounds such as resveratrol, emodin, salidroside, ginsenoside, and others can modulate
signaling through the NF-κB, STAT3, STAT1, PI3K, and other pathways to relieve the inflammatory
response, immunosuppression, and organ failure caused by sepsis. Here, we discuss the functions
and mechanisms of natural small-molecule compounds in preventing and treating sepsis. This review
will lay the theoretical foundation for discovering new natural small-molecule compounds that can
potentially prevent and treat sepsis.
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1. Introduction

Sepsis is a serious disease with relatively high morbidity and mortality rates, involving
life-threatening organ dysfunction caused by the host’s abnormal response to infection [1].
With the delisting of Eli Lilly’s (Indianapolis, IN, USA) Xigris in 2011, there is currently
an absence of a specific pharmaceutical intervention for the management of sepsis; there-
fore, identifying effective drugs for the prevention and treatment of sepsis has become a
research hotspot.

The pathogenesis of sepsis is complex. The initial acute response of the host to an inva-
sive pathogen activates macrophages and produces a series of cytokines (pro-inflammatory
and anti-inflammatory factors) that trigger apoptosis, necroptosis, and pyroptosis and acti-
vate damage-associated molecular patterns or pathogen-associated molecular patterns [2],
which in turn trigger a cytokine storm [3]. A major change in the levels of cytokines in the
body can cause damage to multiple organs, including the kidneys [4], lungs [5], liver [6],
and heart [7], and eventually affect the immune function of the body and cause immune
disorders. Inflammatory responses and immunosuppression occur sequentially during sep-
sis [8], and severe inflammatory responses in the body can lead to coagulation disorders [9].
Therefore, reducing inflammation, immunosuppression, and coagulation disorders are key
parts of sepsis treatment. The drugs developed to regulate inflammatory responses include
cytokine antagonists, pattern-recognition receptor inhibitors, recombinant human APC
(Activated Protein C), and recombinant human soluble thrombosis regulators for regulating
the blood coagulation system. Additionally, several anti-immunosuppressive drugs, such
as cytokines (granulocyte colony-stimulating factor and granulocyte-macrophage colony-
stimulating factor) and co-repressor molecule inhibitors, have been developed [10]. In addi-
tion to these drugs, this review will also focus on some natural medicinal substances, such
as kombucha [11] and black mulberry [12], which exert antioxidant and anti-inflammatory
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effects in sepsis models and improve the immunity and survival rates of septic mice. Other
small-molecule compounds, such as Fucoxanthin [13] and bis-N-norgliovictin [14], have
also been reported to improve survival by reducing inflammation levels.

Natural small-molecule compounds (usually compounds with a molecular
weight < 1000 Da) have attracted wide attention in drug research because of their charac-
teristics and the advantages of rapid diffusion into cells to reach the target. Drugs can
broadly be divided into several categories based on their structure and properties, such
as polyphenols, anthraquinones, glycosides, flavonoids, and biogenic amines. Through a
thorough investigation of the literature, this paper summarizes and discusses the functions
and mechanisms of natural small-molecule compounds in preventing and treating sepsis.

2. Polyphenol Compounds

Polyphenols are compounds with multiple phenolic groups. Polyphenols can inhibit
the activity of nuclear factor kappa-B (NF-κB), which in turn inhibits cell proliferation, an-
giogenesis, and metastasis and promotes apoptosis [15]. Currently, the main small-molecule
polyphenols used for treating sepsis are resveratrol, curcumin, and tetrahydrocurcumin.

Resveratrol (CAS: 501-36-0) is a non-flavonoid polyphenol compound with anti-
inflammatory, antiviral, antibacterial, and antitumor properties [16]. Thus far, research
on the use of resveratrol for treating sepsis has mostly involved animal experiments; this
compound has not yet entered the stage of clinical research regarding sepsis treatment.
As shown in Figure 1, resveratrol can mitigate the acute kidney injury induced by sep-
sis. Sirtuin1 (SIRT1) is an NAD-dependent protein deacetylase, which is considered the
main regulator of sepsis-induced acute kidney injury because it reduces oxidative stress
and inflammation [17]. Activation of SIRT1 can inhibit the inflammatory response and
oxidative stress. Resveratrol, as an SIRT1 activator, alleviates acute kidney injury in cecal
ligation and puncture (CLP) septic mice by activating SIRT1 to promote deacetyl-mediated
autophagy [18]. Resveratrol can also alleviate damage to other organs. For instance, it
ameliorates the cardiomyocyte injury induced by lipopolysaccharide (LPS) by upregulating
miR-149 and downregulating high mobility group protein B1 (HMGB1) [19]. Resvera-
trol also improves sepsis-associated encephalopathy by inhibiting the expression of the
nucleotide-binding oligomerization domain, leucine-rich repeat, NOD-like receptor protein
3 (NLRP3), and interleukin-1β (IL-1β) [20] and can activate vascular endothelial growth
factor-B (VEGF-B) expression and inhibit the NF-κB pathway to alleviate sepsis-induced
acute lung injury [21]. However, high doses of resveratrol can increase intracellular ox-
idation, enhance mitochondrial membrane depolarization, and induce endothelial cell
death [22].

Curcumin (CAS: 458-37-7) is a natural polyphenol compound with anti-inflammatory,
anti-infection, and other biological properties [23]. As shown in Figure 2, curcumin al-
leviates lung injury in CLP model mice by regulating the differentiation of CD4+ T cells
into Tregs, promoting the transformation of macrophages, and exerting anti-apoptosis,
anti-inflammatory, and immunoregulatory effects [24]. Curcumin can also downregulate
Toll-like receptor 1 (TLR1), inhibit the phosphorylation of NF-κB, and improve the survival
rate of cardiomyocytes treated with lipopolysaccharides (LPS) [25]. Curcumin has also
been reported to inhibit NF-κB and janus kinase2 (JAK2)/signal transducer and activator
of Transcription 3 (STAT3) signaling and the expression of p-JAK2/STAT3, p-p65, and
BCL2-Associated X (BAX) in mice with acute kidney injury to alleviate septic acute kidney
injury effectively in CLP mouse models [26]. Curcuma longa extract is rich in turmeric.
The main compound present in turmeric is β-turmerone (CAS: 19693-54-0). In a previous
study, treatment with Curcuma longa extract had an anti-inflammatory effect and reduced
the production of NO in an inflammation model induced by LPS [27]. In another study,
targeted inhibition of toll-likereceptor4(TLR4) mediated downstream information trans-
mission, thereby effectively preventing brain injury caused by neuroinflammation in LPS
model mice [28].
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Figure 1. Action mechanism of resveratrol in the treatment of sepsis. ALI, acute lung injury; SAKI, 
sepsis-induced acute kidney injury; SAE, sepsis-associated encephalopathy; VEGF-B, vascular en-
dothelial growth factor-B; SIRT1, Sirtuin1; NLRP3, NOD-like receptor protein 3; HMGB1, high mo-
bility group protein B1; GPX4, glutathione Peroxidase 4. 

 
Figure 2. Action mechanism of curcumin in the treatment of sepsis. ALI, acute lung injury; SAKI, 
sepsis-induced acute kidney injury; MyD88, myeloid differentiation factor 88; BAX, BCL2-Associ-
ated X; STAT3, Signal Transducer and Activator of Transcription 3. Solid line: direct action; Dashed 
line: indirect action. 

After hydrogenation of curcumin, tetrahydrocurcumin (CAS: 36062-04-1) is obtained, 
which contains fewer unsaturated C double bonds in its structure; thus, tetrahydrocurcu-
min has higher stability, stronger antioxidation effects, and higher bioavailability than 
curcumin. As shown in Figure 3, tetrahydrocurcumin significantly increased the expres-
sion of SIRT1 and inhibited inflammation and oxidative stress, thereby preventing sepsis-
induced acute kidney injury in a CLP mouse model [29]. 

Figure 1. Action mechanism of resveratrol in the treatment of sepsis. ALI, acute lung injury;
SAKI, sepsis-induced acute kidney injury; SAE, sepsis-associated encephalopathy; VEGF-B, vascular
endothelial growth factor-B; SIRT1, Sirtuin1; NLRP3, NOD-like receptor protein 3; HMGB1, high
mobility group protein B1; GPX4, glutathione Peroxidase 4.
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After hydrogenation of curcumin, tetrahydrocurcumin (CAS: 36062-04-1) is obtained,
which contains fewer unsaturated C double bonds in its structure; thus, tetrahydrocurcumin
has higher stability, stronger antioxidation effects, and higher bioavailability than curcumin.
As shown in Figure 3, tetrahydrocurcumin significantly increased the expression of SIRT1
and inhibited inflammation and oxidative stress, thereby preventing sepsis-induced acute
kidney injury in a CLP mouse model [29].
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3. Anthraquinone Compounds

Many natural anthraquinones have anticancer, anti-inflammatory, antioxidant, anti-
osteoporosis, and other physiological properties [30]. The natural small-molecule an-
thraquinones used in sepsis treatment include emodin and aloin.

Emodin (CAS: 518-82-1) is a natural anthraquinone compound with numerous phar-
macological effects, including anticancer, antiviral, anti-inflammatory, antibacterial, and
hepatoprotective activities [31]. Thus far, research on the utility of emodin in preventing
and treating sepsis has primarily focused on in vitro cell and animal experiments. Emodin
can relieve lung injury, intestinal mucosal barrier injury, and cognitive impairment caused
by sepsis through the scorch signaling pathway and the Vitamin D receptor (VDR)/NF-E2-
related factor 2 (Nrf2) pathway. As shown in Figure 4, emodin alleviates NLRP3-induced
acute lung injury by inhibiting LPS-dependent scorch death signaling [32]. It is known
that VDR can activate the SIRT1/Nrf-2 pathway [33]. Emodin inhibits SIRT1-mediated
HMGB1 protein expression by increasing the mRNA and protein expression of VDR and
its downstream molecules [34], thus alleviating the lung injury caused by sepsis [32]. In
addition, emodin can bind to c-Jun N-terminal kinase (JNK2), inhibit the activation of
NF-κB signaling [35], induce a protective effect against sepsis-associated intestinal mucosal
barrier injury, increase the expression of tyrosine kinase receptor B (TrkB) and brain-derived
neurotrophic factor (BDNF), and significantly inhibit the inflammatory response in CLP
mice, thereby improving cognitive impairment and reducing pathological damage [36].

Aloin (CAS: 1415-73-2) is an anthraquinone compound with antitumor, anti-inflammatory,
antiosteoporosis, antiviral, antibacterial, and other pharmacological properties [37]. As
shown in Figure 5, aloin treatment can alleviate LPS-induced inflammation by inhibiting
NF-κB signaling; blocking the phosphorylation, acetylation, and nuclear transport of
p65 subunits; and downregulating stress-related genes [38,39]. At the same time, aloin
significantly inhibits the activation of NLRP3 inflammatory bodies to improve LPS-induced
acute lung injury and increase the expression of SIRT1 [40]. In LPS cell models and CLP-
induced sepsis mouse models, deacetylation of HMGB1 achieved by activating SIRT1
reduces the release of HMGB1 and sepsis-related mortality [41]. Treatment with aloin
has been shown to significantly reduce the levels of harmful renal functional substances,
such as urea, creatinine, and urinary protein, and protect mice from sepsis-induced acute
kidney injury [42]. Therefore, aloin, as a small-molecule drug, is effective in alleviating
sepsis-induced acute kidney and lung injury.
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4. Glucoside Compounds

Glycosides connect the end-group carbon atoms of sugars or sugar derivatives with
non-sugar substances. Currently, the main glycosides used for treating sepsis are salidroside
and geniposide.

Salidroside (CAS: 10338-51-9) is a constituent of herbal Rhodiola rosea L., extensively
employed in the adjunctive therapy of cardiovascular and cerebrovascular disorders and
certain neoplasms [43]. The use of salidroside in sepsis treatment is still being investi-
gated through in vivo and in vitro experiments, and the drug has not yet entered clinical
research. As shown in Figure 6, salidroside inhibits the production of caspase-3/9 by
upregulating Bcl-2 and downregulating Bax, thereby inhibiting the phosphorylation of
Phosphoinositide-3 kinase (PI3K) and AKT and reducing the levels of pro-inflammatory
cytokines and apoptosis [44]. Salidroside can significantly reduce the expression of p65
in kidney tissue, reduce the levels of pro-inflammatory factors in the plasma and kidney,
and alleviate sepsis-induced acute kidney injury in CLP models. It has also been shown to
significantly reduce the mortality of septic rats [45]. Salidroside can enhance the expression
of PPP1R15A and downregulate endoplasmic reticulum stress-related proteins, thereby
inhibiting endoplasmic reticulum stress and improving lung injury in septic mice [46].
Salidroside can also inhibit the phosphorylation of NF-κB and PI3K/AKT/mTOR, signifi-
cantly reduce the expression levels of ROS, CAT, SOD, GSH-px, TNF-α, IL-6, and IL-1β
in cells, and have obvious cardioprotective effects on LPS-treated rats [47]. Thus, further
investigation of the clinical applications of salidroside will be beneficial.
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As a new iridoid glycoside, geniposide (CAS: 24512-63-8) has many biological ac-
tivities, such as anti-inflammation, anti-oxidation, and anti-apoptosis properties [48]. As
shown in Figure 7, in a mouse model of septic myocardial dysfunction induced by LPS,
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geniposide can activate AMPKα and inhibit myocardial reactive oxygen species (ROS)
production, block NLRP3-mediated cardiomyocyte apoptosis and pyrolysis, and improve
septic-induced myocardial dysfunction [49]. Additionally, in LPS-induced cell and CLP-
induced sepsis mouse models, geniposide significantly inhibits the inflammatory response,
apoptosis, oxidative stress, and vascular permeability associated with sepsis-induced acute
kidney injury by activating Peroxisome proliferator-activated receptor γ(PPARγ) [50]. There
are few reports of the use of geniposide in sepsis treatment, and its specific mechanism in
this context requires further study.
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5. Sterol Compounds

Sterols, also known as steroids, are lipid compounds. Currently, ginsenosides are
the main steroids used for sepsis treatment. They are used in LPS- and CLP-induced
sepsis models.

Ginsenosides are also known as triterpenoid saponins and are divided into many
categories. Among them are Rb1 (CAS: 41753-43-9) [51], Rb3 (CAS: 68406-26-8) [52,53],
Rd (CAS: 52705-93-8) [54], Re (CAS: 52286-59-6) [55], Rg1 (CAS: 22427-390) [56,57], Rg5
(CAS: 186763-78-0) [58], Rg6 (CAS: 147419-93-0) [59], and Rh1 (CAS: 63223-86-9) [60] reduce
the expression of pro-inflammatory cytokines through the TLR4/NF-κB/MAPK signaling
pathway to reduce inflammation and organ damage and improve the survival rate.

Furthermore, as shown in Figure 8, Rh1 can potentially attenuate the activation of
TNF-α and IL-6 mediated by HMGB6 [61] and minimize tissue damage. Additionally, Rh1
and Rg2 can inhibit the production of mitochondrial reactive oxygen species (mtROS) [62],
and Rg3 can activate the AMPK signaling pathway to promote mitochondrial autophagy,
maintain mitochondrial homeostasis, and alleviate the subsequent inflammatory response,
thereby reducing the cell and organ damage caused by sepsis and increasing the survival
rate of septic rats [63]. Rg4 can activate PI3K/p-AKT signal transduction, inhibit the septic
kidney inflammation induced by CLP, and improve survival [64]. In clinical treatment, the
combination of total ginsenosides and ulinastatin has been shown to be effective against
septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) [65]. Thus,
ginsenosides have great potential for the prevention and treatment of sepsis.
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6. Flavonoid Compounds

Flavonoids are compounds resulting from the linkage of two benzene rings with
three carbon atoms. The main flavonoids used in sepsis treatment are breviscapine, baicalein,
and diosmtin.

As shown in Figure 9, breviscapine (BS, CAS: 116122-36-2) inhibits the overactivation
of the TLR4/NF-κB, caspase-3/PARP, and MAPK signaling pathways, thereby inhibiting
the expression of proinflammatory cytokines and chemokines [66]. Breviscapine can
also regulate the PI3K/Akt/glycogen synthase kinase-3β (GSK-3β) pathway and inhibit
myocardial inflammation and apoptosis of coronary microembolization (CME) to achieve
cardiac protection [67].

Baicalein (CAS: 491-67-8) is an important component extracted from Scutellaria baicalensis.
The use of baicalein in the treatment of sepsis has not yet been investigated clinically. As
shown in Figure 10, baicalein can activate the AMPK pathway and inhibit downstream
MAPK/NF-κB signal transduction and chemokines to inhibit the expression of ROS [68,69],
thus inhibiting the activation of NLRP3 inflammatory bodies [70]. Baicalein inhibits the
expression of dynamic protein-associated protein 1 (Drp1), reduces the levels of ROS,
and reduces the production of TNF-α, MIP-1, and IL-6 to inhibit LPS-induced acute lung
injury [71]. Moreover, baicalein can improve the sepsis-induced liver injury induced by
LPS and CLP in septic mice by activating Nrf2 signaling in hepatocytes, which regulates an-
tioxidation and pro-inflammatory signal transduction [72]. The above-mentioned findings
suggest that baicalein may be a candidate drug for treating sepsis.

Diosmtin (Dio, CAS: 520-27-4) has anti-inflammation, anti-oxidation, and anti-apoptosis
properties [73]. It is still being studied in the laboratory as a treatment for sepsis. As
shown in Figure 11, in an LPS-induced cell model, Dio can alleviate sepsis-induced acute
kidney injury by enhancing the activity of the Nrf2 pathway, increasing the expression of
lncRNA-TUG1, and inhibiting the expression of caspase-3 [74]. In addition, vanilla lignin
can activate Nrf2 signaling to clear ROS and inhibit the activation of NLRP3 to limit the
development of inflammation, which can alleviate LPS-induced acute lung injury [75].
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indirect action.
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Figure 11. Action mechanism of diosmtin in the treatment of sepsis. ALI, acute lung injury; SAKI,
sepsis-induced acute kidney injury; TUG1, Taurine Up-Regulated 1; Keap1, kelch like ECH associated
protein 1; Nrf2, NF-E2-related factor 2; ARE, AU-rich element; sMaF, synthetic music mobile applica-
tion format; ROS, reactive oxygen species. Solid line: direct action; Dashed line: indirect action.

7. Biogenic Amines

Biogenic amines, which are organic compounds with low molecular weights, possess
biological activity and have a high nitrogen content.

Agmatine (AGM, CAS: 306-60-5) is a naturally occurring polyamine synthesized by
the enzyme L-arginine decarboxylase within the central nervous system. AGM is broadly
distributed within the liver and central nervous system [76]. As shown in Figure 12,
agmatine alleviates vascular dysfunction in LPS-treated rats by inhibiting the expression of
inducible nitric oxide synthase (iNOS) and oxidative stress [77]. Agmatine can also inhibit
the phosphorylation and degradation of IκB, thereby inhibiting the activation of NF-κB
signal transduction and reducing systemic inflammation and organ failure in LPS mice [78].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 20 
 

 

7. Biogenic Amines 
Biogenic amines, which are organic compounds with low molecular weights, possess 

biological activity and have a high nitrogen content. 
Agmatine (AGM, CAS: 306-60-5) is a naturally occurring polyamine synthesized by 

the enzyme L-arginine decarboxylase within the central nervous system. AGM is broadly 
distributed within the liver and central nervous system [76]. As shown in Figure 12, ag-
matine alleviates vascular dysfunction in LPS-treated rats by inhibiting the expression of 
inducible nitric oxide synthase (iNOS) and oxidative stress [77]. Agmatine can also inhibit 
the phosphorylation and degradation of IκB, thereby inhibiting the activation of NF-κB sig-
nal transduction and reducing systemic inflammation and organ failure in LPS mice [78]. 

 
Figure 12. Mechanism underlying the therapeutic effects of agmatine in the management of sepsis. 
LPS, lipopolysaccharides; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase. 

8. Alkaloid Compounds 
Alkaloids are a class of basic organic compounds containing nitrogen. Most alkaloids 

have a complex ring structure and a range of biological activities. The main alkaloids used 
for the prevention and treatment of sepsis are kukoamine B, matrine, anisodamine hydro-
bromide, berberine, and leonurine. 

As shown in Figure 13, kukoamine B (CAS: 164991-67-7), as a novel dual inhibitor of 
LPS and CpG DNA, regulates the downstream signal pathway by directly binding and 
neutralizing LPS and CpG DNA, thus significantly inhibiting the inflammatory response 
in LPS-induced septic mice [79]. Wang et al. [80] used an exposure-response model to op-
timize dose selection in phase IIb clinical trials and recommended a 0.24 mg/kg regimen. 
A randomized, double-masked, placebo-controlled, multi-dose phase I study also demon-
strated that single and multiple intravenous infusions of 0.06–0.24 mg/kg were safe and 
tolerable in healthy volunteers [81]. 

Matrine (CAS: 519-02-8) is the main alkaloid used in traditional Chinese herbal med-
icine and is extracted from Sophora flavescens (Leguminosae) [82]. Matrine has many bio-
logical activities, such as anti-tumor, anti-inflammation, analgesia, anti-fibrosis, anti-viral, 
and anti-arrhythmia properties, and can enhance immune function [83]. Matrine is still 
being studied in the laboratory as a sepsis treatment. As shown in Figure 14, matrine has 
been shown to restore the levels of miR-9 reduced by LPS by inhibiting the JNK and NF-
κB pathways, thereby protecting cells from tissue damage induced by LPS [82]. Matrine 
can inhibit the TLR4/MyD88/NF-κB pathway, NLRP3 inflammatory body activation, and 
the secretion of proinflammatory cytokines [84] and can regulate the JNK signaling path-

Figure 12. Mechanism underlying the therapeutic effects of agmatine in the management of sepsis.
LPS, lipopolysaccharides; ROS, reactive oxygen species; iNOS, inducible nitric oxide synthase.



Int. J. Mol. Sci. 2023, 24, 12732 11 of 20

8. Alkaloid Compounds

Alkaloids are a class of basic organic compounds containing nitrogen. Most alkaloids
have a complex ring structure and a range of biological activities. The main alkaloids
used for the prevention and treatment of sepsis are kukoamine B, matrine, anisodamine
hydrobromide, berberine, and leonurine.

As shown in Figure 13, kukoamine B (CAS: 164991-67-7), as a novel dual inhibitor of
LPS and CpG DNA, regulates the downstream signal pathway by directly binding and
neutralizing LPS and CpG DNA, thus significantly inhibiting the inflammatory response
in LPS-induced septic mice [79]. Wang et al. [80] used an exposure-response model to
optimize dose selection in phase IIb clinical trials and recommended a 0.24 mg/kg regi-
men. A randomized, double-masked, placebo-controlled, multi-dose phase I study also
demonstrated that single and multiple intravenous infusions of 0.06–0.24 mg/kg were safe
and tolerable in healthy volunteers [81].
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Matrine (CAS: 519-02-8) is the main alkaloid used in traditional Chinese herbal
medicine and is extracted from Sophora flavescens (Leguminosae) [82]. Matrine has many bi-
ological activities, such as anti-tumor, anti-inflammation, analgesia, anti-fibrosis, anti-viral,
and anti-arrhythmia properties, and can enhance immune function [83]. Matrine is still
being studied in the laboratory as a sepsis treatment. As shown in Figure 14, matrine has
been shown to restore the levels of miR-9 reduced by LPS by inhibiting the JNK and NF-κB
pathways, thereby protecting cells from tissue damage induced by LPS [82]. Matrine can
inhibit the TLR4/MyD88/NF-κB pathway, NLRP3 inflammatory body activation, and the
secretion of proinflammatory cytokines [84] and can regulate the JNK signaling pathway to
inhibit the activation of NLRP2 inflammatory bodies, thereby effectively alleviating the
symptoms of CLP-induced sepsis in mice [85]. Matrine can also downregulate PTENP1
and upregulate miR-106b-5p to enhance the vitality of cardiac myoblasts and reduce the
inflammatory response, thus alleviating the cardiac insufficiency caused by sepsis [86].
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Anisodamine hydrobromide (CAS: 55449-49-5) is an alkaloid first extracted from
Scopolia tangutica root in 1956 [87]. Tablets and injections made from anisodamine hy-
drobromide are often used as anticholinergic drugs in the clinic. As shown in Figure 15,
anisodamine hydrobromide inhibits NF-κB signaling, thereby inhibiting LPS-induced apop-
tosis and inflammation [88], and alleviates LPS-induced acute kidney failure by inhibiting
mitochondrial dysfunction and oxidative stress [87]. At the same time, anisodamine hy-
drobromide can inhibit cell death and apoptosis by inhibiting the gasdermin D (GSDMD)
pathway, thereby reducing acute lung injury [89]. In addition, anisodamine hydrobromide
can impede the degradation process of vascular endothelial cadherin, thereby preserving
the integrity of the vascular endothelial barrier and enhancing microcirculation [90].

Berberine (CAS: 2086-83-1) is the main bioactive component extracted from the bark
of Phellodendron chinensis and Coptis chinensis in traditional Chinese medicine. Clinical
adverse events are rarely reported [91]. Berberine has a therapeutic effect against cardiac
dysfunction, myocardial injury, and intestinal vascular barrier dysfunction caused by sepsis.
As shown in Figure 16, berberine increases the activity of total nitric oxide synthase (NOS)
in the heart, increases the protein expression of p-Akt and phosphorylated endothelial NOS,
decreases the expression of inflammatory factors such as TNF-α and IL-1β by inhibiting the
activation of the TLR4/NF-κB signaling pathway, and alleviates the cardiac dysfunction
and myocardial injury caused by sepsis in LPS rat and mouse models [92,93]. In addition,
berberine exhibits a protective effect against the intestinal vascular barrier dysfunction
induced by sepsis in both LPS cell models and CLP rat models, which is related to berberine-
induced downregulation of Wnt/β-catenin signaling [94].
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Leonurine (CAS: 24697-74-3) is a natural alkaloid with anti-inflammatory and an-
tioxidant properties [95]. As shown in Figure 17, leonurine can alleviate LPS-induced
myocarditis by inhibiting the expression of p-IκBα and p-p65 [96]. Furthermore, leonurine
can mitigate the LPS-induced acute lung injury in mice by inhibiting oxidative stress and
inflammation, which are regulated by the Nrf2 signaling pathway [95]. However, the
application of leonurine in the treatment of sepsis is a relatively new area of research and
has mostly been limited to experimental animal research.
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9. Amide Compounds

Glutamine (CAS: 56-85-9) is a type of l-α-amino acid containing five kinds of carbon
and is considered the most abundant amino acid in the human body. As a single nutrient
supplement, a reasonable dose of glutamine is considered safe [97]. As shown in Figure 18,
glutamine supplementation in the abdominal cavity can reduce sepsis-induced damage
to the intestinal mucosa, kidney, and liver tissues in CLP rat models [98]. Glutamine can
inhibit the expression of SIRT5 to inhibit the desuccinylation of pyruvate dehydrogenase
(PDH), which leads to an increase in oxidative phosphorylation, thereby promoting M2
polarization of macrophages to reduce burn sepsis in mice [99]. In clinical trials, intravenous
administration and enteral combined administration of glutamine effectively improved
transferrin, creatine/height index, and nitrogen balance in patients with dystrophic sepsis,
with the best effects on days 7 and 15 [100].
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Table 1. Natural small-molecule drugs for sepsis treatment. 

Compound Model Improvement Adverse Reaction Research Progress 

Resveratrol CLP/LPS SAKI/SAE/ALI/cardiomyocyte injury High doses can increase 
intracellular oxidation Animal experiment 

Curcumin CLP/LPS SAKI/ALI  Animal experiment 
Tetrahydrocurcumin CLP SAKI  Animal experiment 

Emodin CLP/LPS ALI/IMI/cognitive dysfunction  Animal experiment 
Aloin CLP/LPS SAKI/ALI  Animal experiment 

Salidroside CLP/LPS SAKI/ALI/myocardial injury  Animal experiment 
Geniposide CLP/LPS SAKI/myocardial dysfunction  Animal experiment 
Ginsenoside CLP/LPS Inflammatory response and organ damage  Animal experiment 
Breviscapine CME Myocardium inflammation  Animal experiment 

Baicalein CLP/LPS ALI/SLI  Animal experiment 
Diosmtin LPS SAKI/ALI  Cell experiment 
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and organ failure  Animal experiment 

Kukoamine B LPS Inflammation  clinical trials 

Figure 18. Mechanism of glutamine in the treatment of sepsis.
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10. Discussion and Prospects

This review provides a comprehensive overview of the functions and mechanisms
of natural small-molecule compounds in the prevention and treatment of sepsis. These
natural small-molecule compounds can modulate many signaling pathways, such as NF-κB,
TLR4, MAPK, NLRP3, AMPK, and PI3KAKT, to prevent and treat sepsis. Most of these
compounds target proteins to inhibit pathways that cause inflammation; this prevents more
serious organ damage and failure and can alleviate sepsis-related damage to the heart, liver,
kidney, intestinal tract, and lung. However, the application of most natural small-molecule
compounds in the treatment of sepsis is still in the early stages of laboratory research, and
there are few reports on dose, administration time, treatment cycle, and adverse reactions.
Therefore, many experimental studies are needed to further explore the clinical application
of these compounds for treating sepsis in patients. While some small-molecule compounds,
such as the alkaloid kukoamine B, have entered the clinical treatment stage, none have
been approved or are widely used. Table 1 summarizes the experimental models reported
in this paper for evaluating the use of small-molecule compounds in sepsis treatment, the
improvements and adverse reactions in the experimental models, and the research stage.

Table 1. Natural small-molecule drugs for sepsis treatment.

Compound Model Improvement Adverse Reaction Research Progress

Resveratrol CLP/LPS SAKI/SAE/ALI/
cardiomyocyte injury

High doses can increase
intracellular oxidation Animal experiment

Curcumin CLP/LPS SAKI/ALI Animal experiment

Tetrahydrocurcumin CLP SAKI Animal experiment

Emodin CLP/LPS ALI/IMI/cognitive dysfunction Animal experiment

Aloin CLP/LPS SAKI/ALI Animal experiment

Salidroside CLP/LPS SAKI/ALI/myocardial injury Animal experiment

Geniposide CLP/LPS SAKI/myocardial dysfunction Animal experiment

Ginsenoside CLP/LPS Inflammatory response
and organ damage Animal experiment

Breviscapine CME Myocardium inflammation Animal experiment

Baicalein CLP/LPS ALI/SLI Animal experiment

Diosmtin LPS SAKI/ALI Cell experiment

Agmatine LPS Vascular dysfunction/systemic
inflammation and organ failure Animal experiment

Kukoamine B LPS Inflammation clinical trials

Matrine CLP/LPS Cardiac insufficiency Animal experiment

Anisodamine hydrobromide LPS SAKI/ALI Animal experiment

Berberine CLP/LPS
Cardiac dysfunction, myocardial

injury, and intestinal vascular
barrier dysfunction

Animal experiment

Leonurine LPS ALI/myocarditis Animal experiment

Glutamine CLP Damage to the intestinal mucosa,
kidney, and liver tissues Clinical trials

Studying therapeutic drugs for sepsis has always been a hotspot in medical research.
Owing to the in-depth study of the pathogenesis of sepsis in recent years, various medicinal
drugs have continued to emerge. However, there is still a long way to go to find effective
and safe drugs for sepsis treatment. To better serve the clinic, we must explore the specific
molecular mechanisms underlying the effects of these compounds in the context of sepsis
and identify any adverse reactions. We have reason to believe that with further elucidation
of the molecular mechanism of the occurrence and development of sepsis, the in-depth
study of animal models, and the development of more clinical trials, more and more natural
small-molecule compounds and other types of drugs can be developed as effective drugs
for the prevention and treatment of sepsis.
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