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Abstract: Tea plants are an economically important crop and conducting research on tea breeding
contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the
requirements of the public. This study reviews the current status of tea plants germplasm resources
and their utilization, which has provided genetic material for the application of multi-omics, including
genomics and transcriptomics in breeding. Various molecular markers for breeding were designed
based on multi-omics, and available approaches in the direction of high yield, quality and resistance
in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-
cellomics, pangenomics, plant–microbe interactions and epigenetics are proposed and provided as
references. This study aims to provide inspiration and guidance for advancing the development of
genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
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1. Introduction

Tea plants hold important health and cultural values as a non-alcoholic beverage,
one of the most widely consumed drinks globally. Originating in Southeast Asia [1], tea
plants have been widely distributed around the world, with over 5 million hectares under
cultivation in more than 60 tea-growing countries worldwide [2]. Nearly 70% of the world’s
population consumes between 18 and 20 billion cups of tea every day [3]. Tea leaves
feature characteristic secondary metabolites such as polyphenols [4], catechins [5] and
caffeine, which play a crucial role in determining the yield and quality of the tea leaves.
Additionally, these compounds offer numerous health benefits, including the prevention
and treatment of cardiovascular disease [6] and cancer prevention, etc. [7]. Research in
breeding can effectively cultivate excellent varieties of tea plants, explore target traits, and
deepen the understanding of the genetic background, which could lay the foundation for
the development of the tea industry.

Germplasm resources are the key in plant breeding, carrying abundant genetic re-
sources [8]. Germplasm resources, including both main and wild varieties, represent the
potential source of plant genetic diversity and they also contain potential alleles [9]. Allelic
variation in key biological pathways facilitate the achievement of crop breeding goals [10].
The germplasm resources that have been developed by natural selection and domestication
of tea plants over the long-term provide a gene pool for breeding target varieties., and the
development of omics promotes the utilization of tea plants resources with high value traits
or excellent quality. Omics serve as a powerful tool for studying the function, structure
and genetic information of the plant body, which emerged as an essential strategy for mod-
ern plant breeding [11]. For example, transcriptome sequencing emerged as a prominent
method for functional analysis and gene prediction [12], playing a crucial role in studying
the mechanisms of regulation [13]. The metabolome was adapted to detect a wide range of
metabolites, enabling the exploration of intricate biological pathways in plants [14–16]. The
breeding goals of high yield, quality and resistance to biotic and abiotic stresses in tea plants
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were achieved through the identification of gene functions [17], transcriptional regulatory
mechanisms [18], changes in metabolites [19], localization of genetic variation loci and
dissection of complex trait mechanisms [20,21]. Marker-assisted breeding could also be
achieved for target traits, and with the continued publication of sequencing data, molecular
markers were designed to be applied in tea plants research for origin and evolutionary
probing [22], kinship and genetic diversity, and other related analyses [23]. Furthermore,
the development of tea plants breeding could not be achieved without the application of
the above multi-dimensional perspectives, which in turn provided the necessary supports
and insights.

Different techniques and tools have been applied to resolve biological issues such as
origin, domestication, genetic structure, yield, quality, resistance and other traits, and have
advanced the process of tea plants breeding. However, tea plants still suffer from slow
conventional breeding rates and genetic resistance limitations in the breeding process, and
their breeding work still confronts numerous challenging events. In this study, the current
status and utilization of germplasm resources, the application of multi-omics in tea plants
breeding, molecular markers developed, major breeding directions and approaches were
the focus of the research, providing essential insights and novel directions for seeking more
appropriate breeding techniques and strategies for tea plants in the future.

2. Status of Germplasm Resources and Utilization

Germplasm was the genetic material that was passed from one generation to the next,
and germplasm resources formed through long-term natural evolution and artificial selec-
tion were the original material for tea plants breeding, as well as the material foundations
for studying the origin and evolution of species [24,25]. The collection and conservation of
germplasm resources were a vital aspect of tea plants breeding. China was the first country
in the world to discover and utilize tea plants, which were passed around the world via
the maritime and land Silk Roads, and the evolution and selection of which resulted in an
abundant germplasm resource for thousands of years [26]. In contrast to the earliest wild
tea plants, modern breeding orientations led to tea varieties with good taste, high yields
and adaptability to exposure the different stresses.

Currently, more than 350 species of the genus Camellia have been recorded [27],
of which two main cultivars are Camellia sinensis var. sinensis (CSS; Chinese type) and
Camellia sinensis var. assamica (CSA; Assam type), which were used to produce green,
black, dark, Oolong, white and yellow teas [28]. Both types of tea plants were distinc-
tive in their type and geographical distribution, with CSA being grown mainly in very
warm tropical regions, unlike the more widespread geographical location where CSS was
cultivated. Environmental differences were responsible for the phenotypic differences,
with CSS representing a slow-growing shrub of small leaves that could withstand cold
climates, while CSA was a fast-growing species with large leaves that were sensitive to cold
weather [29,30]. Unlike the drinking function, some species such as C. oleifera, C. semiserrata
and C. chekiangoleosa were used in the production of edible oils as well as in functional
foods, pharmaceuticals and beauty products [31,32]. Flowering species such as C. reticulata,
C. sasanqua and C. saluensis were employed for ornamental purposes [33,34].

Germplasm resources could provide the source of genes for desired traits to rapidly
advance tea plants breeding, and technologies such as distant hybridization, genetic engi-
neering and cellular engineering were applied to tea plants breeding work. The breeding of
tea plants hybrids was inseparable from CSS and CSA germplasm resources, in which the
accumulation of tea plants quality metabolites was identified in relation to the germplasm
of the F1 descendants of hybrids between high-yielding CSA varieties and high-quality CSS
clones; thus, the breeding of hybrids provided more options for the selection of tea plants
breeding materials [35]. In retrospect, hybridization had been an important method of
breeding and refinement in tea plants breeding, and under-utilized CSA with more rare al-
leles and private haplotypes were considered as a worthy germplasm resource in tea plants
breeding [36]. Moreover, at the genetic level, germplasm resources contained extensive
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alleles and the identification and application of allelic variation for genetic improvement
was the essential approach to germplasm resources research. Due to the characteristics of
tea plants, the genome was highly heterozygous and allelic variants have been identified,
for example, allelic variants had been discovered in oolong tea related to aroma and stress
tolerance traits, and marker-assisted breeding of allelic variants had broadened the pathway
for enhancing stress tolerance and aroma in other tea varieties [37]. In addition, the specific
expression of alleles for energy and terpene metabolic pathways from the maternal line
and glutathione-rich metabolism of the paternal line were identified in oolong tea hybrids,
respectively, providing options for future breeding improvement using alleles contributing
to more biological functions to regulate tea plants quality [38]. The vast variations between
tea plants germplasm resources offered potential scope for breeding, and the variations
in Western Himalayan germplasm resources provided genotypic information for the de-
velopment of asexual lines [39], and sustainable breeding could be promoted through the
selection of high-quality genotypes. Albino teas usually have high ratios of theanine that
were beneficial to the flavor of the tea plants and catechin indices; therefore, the germplasm
resources could be efficiently bred according to their characteristics [40].

The target traits of current cultivars were mainly derived from natural and induced
genetic diversity [41], and excessive use of limited germplasm resources in the breeding
process will result in genetic erosion and thus, loss of genetic diversity [42]. Thus, accel-
erating the selection of excellent varieties and germplasm innovation was required and
therefore, increased the diversity of germplasm resources and provided more sources of raw
material for the sustainability of tea plants breeding. Furthermore, germplasm diversity
might be achieved through the study of variety-specific mechanisms of quality-related
metabolites. Assuming that the main cultivars of tea plants were subject to mutations or
lacking resistance to unexpected diseases, a substantial reduction in yield or loss of quality
could occur. The genetic diversity of germplasm resources was the valuable resource for
breeding, and in addition to the proper utilization of existing germplasm, the conserva-
tion and transmission of resources provided the final barrier to safeguard the breeding of
tea plants.

3. Application of Multidimensional Omics in Tea Plants Genetic Breeding

With the development of high-throughput sequencing technologies and the reduction
of sequencing costs [43], the application of multidimensional genomics in tea plants genetic
breeding was becoming more widespread. This section presented the current status of
research on genomic, transcriptomic, metabolomic and resequencing technologies in tea
plants and drew a schematic diagram of multi-omics mining of genetic resources under
abiotic stress adversity (Figure 1) with a view to providing insights for researchers.
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3.1. Genome

The release of the genome of the first model crop, Arabidopsis thaliana, kicked off a
chapter in the genome era [44]. The assembly of genomes could further our understanding
of the genetic basis of plant diversity [45], understand the mechanisms of adaptive evolution
and ultimately accelerate the applications for breeding plants [46,47]. For tea plants, as an
essential cash crop, the research in the field of genomics was of relevance. Yunkang10 was
the first tea high-quality genome whose assembly revealed that enhanced catechin synthesis
and stress tolerance were caused by the spectrum-specific amplification of genes related to
flavonoid metabolism biosynthesis. Besides, elevated catechin and caffeine contents were
dependent on high expression of the biosynthesis genes in comparison across cultivars,
which also refined research on the biosynthesis of characteristic tea plants’ secondary
metabolites and functional genomics [48]. The release of the draft genome sequence of
tea shuchazao had identified CSS and CSA that diverged from one ancestor, discovered
copies of genes that contribute to secondary metabolite synthesis caused by homologous
duplication, and determined key genes for theanine synthesis, not only deepening the
comprehension of enhancing tea plants quality but also setting the foundation for tea
plants breeding refinement [49]. In addition, researchers constructed a chromosome-
level reference genome of size 2.94 Gb by genomic and resequencing techniques and
discovered that the expansion of the driving genome size was induced by insertions of LTR
retrotransposons in comparison with previously published genomes, and reported that
tandem repeats enabled the amplification of terpene synthase associated with tea aroma,
and also confirmed the theory that cultivated tea plants originated in southwest China [22].
Meanwhile, the Longjing43 genome revealed that it underwent the same WGD event
as SCZ and YK10 25 million years ago; the expansion of the gene family of germacrene
D synthase (TPSGD) associated with secondary metabolites and NBS-ARC associated
with resistance in genome evolution was discovered. The advantages of CSS in terms
of flavor and resistance compared to CSA during domestication was obtained [50]. The
successive releases of the tea plants genome (Table 1) have provided additional resources
for marker-assisted breeding, as well as advancing research in the areas of genetic breeding,
evolutionary origins, metabolite synthesis resolution and structural variations.

Table 1. Published information of tea genomes.

Cultivar Species Genome Size/Gb Reference

Yunkang10 C.sinensis var. assamica 3.02 [48]
Shuchazao C.sinensis var. sinensis 3.14 [49]
Shuchazao C.sinensis var. sinensis 2.94 [22]
Shuchazao C.sinensis var. sinensis 3.20 [51]

DASZ Wild tea tree 3.11 [52]
Biyun C.sinensis var. sinensis 2.92 [53]

Longjing43 C.sinensis var. sinensis 3.26 [50]
Tieguanyin C.sinensis var. sinensis 3.06 [54]
Huangdan C.sinensis var. sinensis 2.94 [37]
Huangdan C.sinensis var. sinensis 5.53 [37]

Duyunmaojian C.sinensis var. sinensis 2.97 [55]

Camellia C.oleifera Abel. var
“Nanyongensis” oleifera 2.89 [56]

3.2. Transcriptome and Metabolome

Transcriptomic and metabolomic analyses have been extensively engaged to unravel
the mechanisms of transcriptional regulation and metabolite changes related to characteris-
tic secondary metabolite synthesis, stress resistance and yield traits in tea plants. Mean-
while, with the development of biotechnology, some representative genes related to the
biosynthesis of secondary metabolites and abiotic and biotic stresses in tea plants that have
been cloned and characterized were increasingly made available for future improvement
reference (Table 2). Apart from these, some applications of omics were summarized. For
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example, Epigallocatechin-3-gallate (EGCG) reached its maximum content in the interaction
of temperature-dominant multiple ecological factors with structural genes such as CsANS
and CsCHI and transcription factors, furthermore producing the transition from phenolic
acid to flavonoid biosynthetic pathways [57]. Light intensity influenced the content of three
major metabolites, catechin, caffeine and theanine, through NAC, WRKY and bHLH family
transcription factors and structural genes including DFR and CHS in different seasons,
which inspired the regulation of metabolite content during different seasons to enhance
quality [19]. Transcription and metabolism revealed that the higher accumulation of caf-
feine in tea plants than in coffee plants might be explained by the more copies of the NMT
gene and its high expression level in tea plants; moreover, the caffeine biosynthesis process
might be partially conserved [58]. Compared with green leaves in purple tea cultivar, the
higher expression of transcription factors such as NAC008 and MYB23 and the accumula-
tion in flavonoids such as copigmentation of quercetin might contribute to the formation of
purple leaves [59]. The transcription factor CsMYB90, which was highly associated with
anthocyanins such as cyanidin 3-O-galactoside, had been identified in the variety Zijuan
and the overexpression was verified in tobacco. In addition, the cyanidin 3-O-galactoside
glycosyl group, which affected anthocyanin accumulation, and the transcription factors 3T,
3AT and ANS, which were responsible for the regulation of anthocyanin content, were also
identified in Zijuan [60,61]. Decreased chlorophyll might cause the occurrence of albinism
in tea plants; RNA-seq and targeted metabolism uncovered that the absence of photosyn-
thetic pigments activated their photoprotective mechanisms and that high nitrogen levels
in albino tea plants facilitated the synthesis of photoprotective metabolites [62].

Cold stress among abiotic stresses was the main factor affecting the survival and breed-
ing of tea plants, and substantial studies have been conducted regarding the regulatory
mechanisms of cold tolerance in tea plants. Pyr/PYL-PP2C-SnRK2 in the ABA pathway
enhanced the freezing tolerance through stomatal closure and performed the key role in
signal transduction of freezing stress [63]. The difference in cold tolerance between tea
tree shuchazao and yinghong9 varieties might be due to the activation of the CBF-COR
pathway resulting from the high expression of amino acids [64]. Treatment with exogenous
substance methyl jasmonate reduced the accumulation of ROS in tea plants under cold
stress and maintained the stability of cell membranes to strengthen the cold tolerance of
tea plants [64]. CsUGT91Q2 were identified as being involved in the regulation of cold
tolerance in tea plants by glycosylating nerolidol to nerolidol glucoside [65]. The research
on the regulatory mechanism of tea plants in response to cold stress and the excavation of
cold resistance pathways will contribute to the elucidation of the cold resistance mechanism
of tea plants and foster the breeding of cold resistant varieties. Apart from that, the planting
pattern of intercropping tea plants with soybean crop, the withering process in production,
the metabolite dynamics of fermentation process and shaking process, the variation of tea
aroma in different seasons, different fertilization strategies, the difference of characteristic
metabolites among different varieties, and other factors affecting metabolite changes and
synthesis under various complex conditions and their roles on tea quality have tremen-
dously driven the characterization research and variety breeding of tea plants [66–72], while
providing novel ideas for future researchers to dig deeper according to the key pathways
or regulatory networks of metabolite synthesis.
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Table 2. Genes that have been cloned and characterized in tea plants.

Genes Function Description References

Secondary metabolism
CsAlaDC Theanine biosynthesis [73]

CsTS Theanine biosynthesis [74]

CsMYB5
Regulating anthocyanin and proanthocyanidin biosynthesis

[75]Negatively regulating phenylpropane and shikimic pathway

CsMYB4a
Regulating flavonoid 3′-hydroxylase

[76]Participating in flavonoid biosynthesis
CsF3′H Biosynthesis of terpenes in MVA pathway [77]

CsF3Ha, CsF3Hb Regulating Cinnamate 4-hydroxylase biosynthesis [78]

Cstps1 Regulating of catechin production in phenylpropanoid pathway
[79]Regulation of epicatechin content

CsC4H
Participating in flavan-3-ol biosynthesis

[80]Catalyzing caffeine biosynthesis pathway
Regulating Jasmonic acid biosynthesis

Cs4CL [81]
CsANR Converting volatile compounds into β-primeverosides [82]
CsLAR Formation of the volatile component indole in oolong tea [83]

CsTCS
Participating in aroma quality regulation

[84]Biosynthesis of linalool and nerolidol
CsAOC Regulating salicylic acid carboxyl methyltransferase and salicylic acid to produce methyl salicylate [85]

Aroma synthesis Insect-induced defense response

CsGT1
Involved in herbivore defense

[86]Participating in the response of low temperature, high temperature, osmosis and hormone stress

CsTSA, CsTSB2 Respond to abiotic stress
[87]Response to most abiotic stresses (including salinity, heavy metal toxicity, drought, high

temperature and phytohormones)

CsTPS08, CsTPS10 Participating in pest defense
[88]Significantly improving the cold tolerance of plant

CsLIS/NES Exogenous application of SPM to improve tea plants drought tolerance [89]

CsSAMT
Low temperature induced during dormancy

[90]Directing the gene expression of tea somatic embryo nucleus
Regulating the absorption of ammonium from soil by tea plants roots

Abiotic and biotic
stresses
Cstps1 Regulating nitrogen absorption by tea plants root system [79]
CsCPI3 Regulating tea plants dormancy [91]
CsVQ [92]

CsAQP [93]
CsGPX2 [94]

CsTPS08, CsTPS10 [88]
CsPPO [95]

CsSPMS [96]
CsTUA [97]
Others
CsH1 [98]

CsAMT1.2 [99]
CsNRT2.4 [100]
CsLAX2 [101]

3.3. Whole Genome Resequencing

Whole genome resequencing enabled research at the population level to analyze the
mechanisms of adaptive evolution and varietal improvement in tea plants. In recent years,
the massive number of resequencing data have accelerated the genetic breeding process in
tea plants. Genome resequencing had screened for CsMYB1, which existed only in modern
tea cultivars, as the regulator of trichome and galloylated cis-catechins biosynthesis and
had been targeted in domestication to enhance tea plants’ flavor [102]. Genome resequenc-
ing of 120 ancient tea plants species from eight different taxa unearthed candidate genes
significantly associated with leaf traits (TEA012477, TEA028016, TEA025567, TEA017338)
and plant types (TEA029928 and TEA012294), the results of which can be applied to genetic
improvement and functional excavation of tea plants [103]. Cultivated germplasm was
divided into CSS and CSA subgroups by resequencing the whole genomes of 30 cultivated
and three wild species, while the CSS subgroup was revealed to possess more genetic diver-
sity. The variation and environmentally adapted selective regions identified in the research
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could be adapted for subsequent molecular marker breeding or fingerprinting [104]. The
abundant SNP and insertion deletion genetic variants loci were identified in the resequenc-
ing data of Jinxuan and other 98 tea varieties, the high-density genetic map was constructed
and 25 representative markers associated with leaf area were exploited; the work laid
the foundation for quantitative trait localization and breeding of superior varieties of tea
plants [21]. In total, 139 tea plants resources from around the world were utilized to explore
the evolution of germplasm, where hybridization increased heterozygosity between tea
plants populations together and population genetic results indicated that the domesticated
CSS had superior disease resistance and flavor than CSA [50]. Since tea germplasm re-
sources of different varieties had significant trait differences and genetic variation among
varieties, future resequencing of larger samples was thus the necessary direction for tea
plants breeding works.

4. Molecular Markers

DNA-based molecular markers were genetic markers that offered the advantages of
genetic stability, polymorphism, speed and convenience and were widespread techniques
applied in crop breeding improvement [105,106]. The development of molecular markers
had also facilitated research on the origin and evolution of tea plants, breeding and refine-
ment processes. So far, various markers have been developed and applied in tea plants,
such as random amplified polymorphic DNA (RAPD) and inter simple sequence repeat
(ISSR) markers to analyze the degree of genetic diversity and population genetic structure
in tea clones and to select superior varieties for the further hybrid breeding materials
of tea plants [107]. The development of expressed sequence tag-simple sequence repeat
(EST-SSR) markers in tea oil plants could be applied for the identification of tea oil vari-
eties and protection of genetic resources [108]. SNP markers transformed into competitive
allele-specific PCR (KASP) were found to be associated with nitrogen accumulation and
biomass in tea plants, and functional markers could be utilized in the future to produce
high nitrogen varieties [109]. A genetic linkage map based on amplified fragment-length
polymorphism (AFLP), simple sequence repeat (SSR) and RAPD markers was constructed
to design the molecular markers related to tea plants resistance and quality, as well as to
promote the localization and mining of quantitative trait loci (QTLs) for essential traits in
tea plants [110]. In addition, intron length polymorphic (ILP), sequence-related amplified
polymorphism (SRAP), start codon targeted polymorphism (SCoT), cleaved amplified
polymorphic sequence (CAPS) and other markers have also been developed and applied in
tea plants, which laid the foundation for subsequent marker-assisted breeding and genetic
diversity analysis [23,111,112].

Given the prominent role of SNPs and SSRs in plant breeding research, they were also
widely available in tea plants. Genetic relationship and population structure analysis of
140 varieties of oil tea plants based on SSR markers reflect the genetic relationship between
different germplasm resources, and they could serve for variety identification, classification
and kinship analysis of oil tea plants [113]. The SSR markers identified from the transcrip-
tome associated with tea-specific traits were linked to their transcription factors, which
revealed the interaction with tea resistance and quality, and the developed transcription
factors and SSR combined markers have potential applications in tea trait and marker
association breeding [114]. The whole genome of shuchazao was identified by SSR markers,
and the linkage map of the Zhuyeqi and Yunkang 10 population was constructed. The
phylogenetic analysis revealed that the results were almost consistent with its genetic
background, and the SSR markers developed were highly polymorphic, which had certain
significance for parsing the historical issues of evolution or domestication [115]. Through
the analysis of 142 tea cultivars with SNP loci, which indicated that Yunnan Province
was the main area of origin and domestication of CSA, while CSSs were distributed in
Eastern China, eight markers were developed that could identify germplasm and have
been deployed for the construction of DNA fingerprinting [116]. In addition, SNP variant
loci obtained from whole genome resequencing of 96 F1 hybrid progeny were sequenced
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to construct the high-quality genetic map, where insertion loci located at potential QTL
loci could be distinguished between large and small leaf tea plants [21]. SNP markers
were also applied to distinguish Oolong tea from other cultivars. In total, 75 SNP loci
were generated for genotyping in 100 Oolong tea cultivars, while DNA fingerprinting
was constructed for four major Oolong tea producing regions based on SNP locus infor-
mation [117]. Genetic mapping of the SNP markers identified in the F1 population of
Longjing43 crossed with Baihaozao was constructed and QTL analysis revealed the loci
associated with flavonoid content [118]. Furthermore, key genes related to characteristic
metabolites such as theanine were identified in SNP markers generated from the popula-
tion consisting of 191 germplasms, while 17 SNP markers related to specific metabolites
were determined in another 98 germplasms, providing reliable marker information for the
research of tea metabolites [20]. Six key genes associated with leaf traits were obtained after
GWAS of 338 tea germplasm mined for SNP loci verified by linkage disequilibrium, which
provided the essential reference for subsequent breeding of leaf traits [119].

5. Major Directions and Measures for Tea Plants Breeding

Nowadays, improving current crops or developing new crops with high yields, ex-
cellent quality and low costs, abiotic and biotic stress resistance were the current fore-
most directions for breeders [11,120–123]. Food crops, including wheat, maize and rice,
were modified to increase yields and nutrition to meet the needs of the growing popula-
tion [121,124,125]. However, as the economic crop that is consumed on a regular basis and
whose product, tea, has health benefits, the promotion of high yield, quality and resistance
is the leading concern in tea plants breeding today; hence, this section presented existing
initiatives in tea breeding with the aim to provide references to researchers.

5.1. High Productivity

Acidic soils could restrict the yield of most crops, and Al3+ ions in the soil may sup-
press the development of the root system [126]. However, Al is a special element for tea
plants due to the fact that tea plants were well-adapted to grow in an acidic environment.
The appropriate soil pH for tea plants was 4.5–5.5, yet 46% of soils nationwide contained
pH < 4.5 [127]. In previous hydroponic experiments, the presence of 50 µM Al maximized
the growth of tea branches and 300 µM Al tripled the root biomass [128]. The certain range
of Al3+ caused remarkable growth and physicochemical improvements in different tea
varieties [129]. The application of shellfish amendments in acidified tea plantations could
contribute to a certain degree to the yield, quality and economic value of tea leaves [130].
Although the understanding of tea plants under the influence of Al was still extremely lim-
ited, breeders were now further dissecting the mechanisms of Al tolerance and utilization
in tea plants, thus setting the foundation for optimizing acidic tea plantations, optimizing
the yield quality of tea plants and breeding acid-tolerant crops for the future [131]. Phyto-
hormones were endogenous signaling molecules that were necessary for the development
of tea plants [132]. The main seven hormones were described for their application in tea
plants. Indole-3-butyric acid (IBA) and N-1-naphthylphthalamic acid (NPA)-treated tea
plants generated more lateral roots, and the growth of lateral roots was stimulated by
growth hormone synthesis and accumulation at low nitrogen concentrations [133]. The
cloned growth hormone transporter gene CsLAX2 could regulate tea plants dormancy and
confirmed that growth hormone exerts a vital role in tea plants dormancy [101]. Ethylene
was a gaseous hormone whose signaling was involved in regulating the accumulation
of secondary metabolites and could increase catechin content [134]. Application of ex-
ogenous ethylene glycol effectively inhibited flowering of tea plants and improved tea
bud growth and yield [135]. Salicylic acid was an immune-related hormone [136] that
inhibited phenylpropane and flavonoid metabolic pathways after salicylic acid treatment,
increasing lignin content and defense and disease resistance, and indirectly for yield main-
tenance or enhancement [137]. Tea plant varieties with higher salicylic acid content were
able to enhance the response to anthracnose infection with wilt and attenuated pests and



Int. J. Mol. Sci. 2023, 24, 12643 9 of 29

diseases [138,139]. Jasmonic acid likewise coordinated plant defense against pests and
pathogens, with jasmonic acid regulating Polyphenol oxidases’ (PPOs’) defense against tea
geometrids [140]. Brassinosteroids (BRs) were ubiquitous phytosterols that responded to
multiple abiotic stresses [141]; besides, exogenous application increased sucrose, starch and
flavonoid content to promote tea plants’ growth and development [142]. Melatonin could
promote photosynthesis and biomass accumulation in tea plants and could alter polyphenol
and caffeine content to improve quality [143]. Exogenous melatonin treatment enhanced
terpene biosynthesis and promoted growth of tea plants [144]. The exogenous implemen-
tation of gibberellin, a plant hormone that promoted germination and growth [145,146],
facilitated the sprouting of tea buds and the development of branches, and increases yields
by half [147]. The yield of tea plants was enhanced at 2 g per acre of chitosan, which induced
significant up-regulation of amino acid metabolism and carbohydrate metabolic pathways
in tea plants [148]. Pruning of summer oolong tea at 30 cm promoted the growth of lateral
branches, while reducing the ratio of total polyphenols to free amino acids to improve
quality [149]. The application of nitrogen, phosphorus, potash and biochar-based fertilizers
to tea plants had been demonstrated to achieve improved yield and quality, but the specific
application should also take into account the disparities brought about by climate, altitude,
agronomic practices, soil condition and variety [150–154]. Tea microbes contributed to
improved growth, quality and yield of tea leaves. For example, tea seedlings inoculated
with arbuscular mycorrhizal fungi (AMF) in pot experiments increased stem biomass and
leaves area, and higher soluble sugar and protein content [155]. PGPR strains Enterobacter
lignolyticus, Bacillus pseudomycoides and other rhizobacteria were used to promote tea plants
growth [156]. Endophytic microbiota could also promote tea plants growth and the pro-
duction of theanine secondary metabolites [157]. Growth was facilitated by the production
of volatiles such as terpens by tea plants’ inter-rooted bacteria, as well as the induction
of indoleacetic acid production and phosphate solubilisation [158]. Altogether, the tea
microbiome supported nutrient uptake, quality improvement and stress mitigation, whilst
utilizing natural resources for yield enhancement remained a sustainable research topic.

5.2. High Quality

Tea polyphenols, catechins, caffeine, amino acids and more are the main secondary
metabolites in tea, and their levels are the main indicators of the flavor quality of tea, whose
biosynthetic pathways have been characterized (Figure 2); thus, conducting research on the
molecules and mechanisms affecting these characteristic compounds will contribute to the
improvement of tea quality. Catechins, caffeine and polyphenols were the key determinants
of the bitterness and astringency of tea leaves [159–161]. Tea plants included six major
catechin types, which were (+)-catechin (C), (−)-epicatechin (EC), (+)-gallocatechin (GC),
(−)-epigallocatechin (EGC), (−)-epicatechin-3-gallate (ECG) and (−)-epigallocatechin-3-
gallate (EGCG), respectively. Only EGCG and ECG were galloylated, accounting for about
75% in total catechins and they contributed more towards flavor than the nongalloylated
catechins [162]. Caffeine was a purine alkaloid, accounting for more than 95 per cent of
the total alkaloids in tea plants. The caffeine content in tea was affected by the develop-
mental stage and treatment, and it varied greatly in different parts, with the content in
the leaves being higher than in the stems. It also accumulated more in the spring than
in summer [6,163]. Theanine, which accounted for 60% of the amino acids in tea, was
the main contributor to the freshness and sweetness of the tea leaves [164,165]. Theanine
was naturally occurring in abundance as a free nitrogen compound, and as a non-protein
amino acid was synthesized from ethylamine and glutamic acid by theanine synthase,
with synthesis occurring preferentially in the roots, which was then transported to the new
shoots [166,167]. The theanine metabolic pathway was divided into synthesis in the roots
and hydrolysis in the buds, where the amino acids and proteins degraded by hydrolysis
enzymes were used for the growth of tea buds [168]. The amount of theanine content could
be influenced by different varieties, which meant that different genetic factors determined
the level of theanine [20]. In addition to this, its content shifts with the seasons, with
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higher levels in spring tea than in summer and autumn [169]. Disturbance by abiotic and
biotic stresses could reduce the accumulation of theanine in different parts [170,171]. In
addition, genes associated with secondary metabolites were enumerated to understand the
synthesis pathways and influencing factors better (Table 3). In modern quality breeding,
diverse methods and techniques regarding exogenous applied substances, various stages,
temperature, genetic engineering and metabolomics represented by LC-MS were used to
solve the stumbling blocks of tea in quality enhancement.
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The tea tree was a plant readily enriched in selenium, and exogenous spraying of sele-
nium nanoparticles markedly improved the quality of summer tea, enhanced the defenses
of the tea plants, visibly altered the ratio of compounds such as tea polyphenols, improved
sweet freshness and reduced bitterness, optimized the bright spot for the application of
nanomaterials in tea plants [172,173]. Foliar application of glycine-chelated sodium selenite
and zinc sulfate heptahydrate could achieve selenium enrichment in tea leaves and indi-
rectly increased the economic value of tea by extending the harvesting time [174]. Certain
ranges of fertilizers could promote plant development, and magnesium supplementation in
hydroponic experiments could increase the amino acid content in tea plants at low nitrogen
levels and complete the fertilization strategies for tea plantation management [175]. The
decline of tea quality might relate to the soil environment, long-term application of organic
fertilizer can improve the acid soil and the yield, quality and performance, while continu-
ous application of chemical fertilizer will further worsen the soil and aggravate the acidity,
which will hinder the growth of tea plants [176]. Research on tea plants has often focused
attention towards the growing period, while foliar nitrogen application during the winter
dormancy of tea plants improves the nitrogen content of mature leaves with the quality and
yield of spring tea, while fertilizer dosage can be reduced [177]. The interaction between
hormones and metabolites within the tea plants also influenced quality, as the expression
of CsJAZ6 in tea plants inhibited the JA pathway, which regulated most secondary metabo-
lites, notably catechins, and the interaction between CsJAZ6 and catechin biosynthesis
regulators negatively regulated catechin accumulation [178]. Apart from endogenous hor-
mones, endogenous hormone signaling factors could also mediate the synthetic pathways
of caffeine, EGCG and theanine to respond to temperature and improve the quality of
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tea leaves [179]. The diurnal temperature difference at 10 ◦C clearly affected primary and
secondary metabolites, with the lowest levels of polyphenols and catechins and higher
levels of amino acid and theanine synthase expression, but the actual application on a
certain scale was still constrained by the environment and climate [180]. Different pruning
processes also affect the quality of tea leaves, and in Yunnan tea plantations, metabolite
data from the unpruned tea (UPTT) revealed that levels of amino acids leading to sweetness
increased, while levels of bitter and astringent catechins and caffeine decreased [181]. The
plant-growth regulator treatment of tea guava tissues located in cell suspension system
subserved the accumulation of tea polyphenols and offered support for application in
practical tea garden cultivation [182]. Variable degrees of shade treatment also altered the
quality of the tea leaves, with tea plants cultivated under shade not only having elevated
theanine and caffeine content and reduced polyphenol content affecting taste, but also
stimulating the biosynthesis and transport of theanine at diverse sites [183,184]. With the
exception of external factors such as environmental disturbances, the age of the tree was
also the factor that impacted its quality, the aroma of tea leaves of various ages gradually
increased with age to render them lighter, fresher and sweeter, and the flavonoids that
caused tea leaves to be bitter will lessen [185]. Furthermore, HPLC-MS, GC-MS and LC-MS
techniques have been widely applied to metabolomic studies to determine the synthetic
pathways and changes of various metabolites to resolve the mechanisms affecting the
quality of tea leaves [67,186–190].

Moreover, the aroma of tea was also crucial to the quality of tea, which was mainly
affected by the nature of the tea plant on its own, the production process, and many
factors in its formation and release [191]. While non-volatile compounds mainly con-
tributed to the flavor and mouthfeel of tea, volatile aroma compounds were the basis
of tea aroma [192]. The main volatile aroma compounds in tea leaves were terpenes, al-
cohols, aldehydes and ketones, which performed the key role despite representing only
a very low percentage of the dry weight of the tea leaves [193]. Aroma compounds
in tea leaves were mostly derived from volatile fatty acid derivatives (VFADs), volatile
terpenoids (VTs) and volatile phenylpropanoids/benzenes (VPBs) [194]. Among them,
biosynthetic genes associated with tea aroma formation have been reported and part of
them have been characterized in vitro [195]. Besides, the dynamics of volatile and non-
volatile compounds in different states of black, white, yellow, green and oolong teas have
been characterized to enhance the aroma [196–200]. Interestingly, volatile and non-volatile
phenylpropanoids/benzoflavonoids in tea shared a common upstream synthetic path-
way, with phenylalanine entering the phenylalanine metabolic and synthetic pathways,
respectively. The former continued to form volatile BPs and the latter formed flavonoids,
including anthocyanins [201]. This pathway associated both volatile and non-volatile
synthetic pathways that could influence the flavor and aroma of tea, which might support
the design of the new tea germplasm to improve the quality of tea.

Table 3. Information on main metabolite genes in tea plants.

Metabolite Genes Biosynthetic Pathway References

L-theanine TS GS ADC GOGAT GDH Nitrogen metabolism pathway [202,203]
Galloylated catechins ECGT UGGT Shikimate pathway [204,205]

phenylpropane pathway

Caffeine SAM TCS MXMT S-Adenosyl-L-methionine (SAM) pathway,
nicotinamide adenine dinucleotide pathway, [84]

adenosine 5-monophosphate pathway, guanosine
5-monophosphate pathway

(E)-Nerolidol LIS/NES Terpene synthesis pathway [89]
Linalool LIS/NES Terpene synthesis pathway [89]

α-Farnesene AFS Terpene synthesis pathway [206]
Anthocyanin PAL C4H 4CL CHS Phenylpropane pathway, [207]

CHI F3′H F3′5′H flavonoid pathway
F3H DFR ANS LAR

Indole CsTSA CsTSB2 Shikimic acid-derived pathway [87]
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5.3. High Resistance

Biotic and abiotic stresses have been the cause of challenges for most crops, including
tea plants (Figure 3) [208–210]. To alleviate the hazards associated with stresses such as acid
rain, low temperature, drought, pests and diseases, salinity and heat, which were common
in tea plants, breeding techniques such as omics, molecular experiments and marker-
assisted breeding were implemented to address these situations. Due to the instability
of the current climate, tea regions in southern China were mostly affected by acid rain.
When the pH of simulated acid rain reached 2.5 or 3.5, the photosynthesis of tea plants was
restricted and the metabolic pathways were affected, damaging the development of tea
plants, whereas acid rain with a pH of 4.5 had no negative impact on tea plants [211]. At
the simulated acid rain pH level of 2.5, the reduction in chloroplast numbers and stomatal
density were observed by transmission electron microscopy, and the expression of several
genes related to photosynthesis and carbohydrate metabolism was altered; in addition,
the plant hormone signal transduction pathway was affected by the high acidity of acid
rain [18]. Acid rain not only affected the yield of tea, but also threatened the quality and
safety of tea leaves. Therefore, the mechanism and resistance measures of tea plants to acid
rain requires further parsing and exploration.
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For regions such as northern China with high latitudes, massive numbers of tea plants
might die during overwintering caused by low temperature or freezing stress. Therefore,
plenty of studies have been focused on breeding for cold tolerance in tea plants, such as the
role of exogenous substances application, response gene mining and transcriptional regula-
tion mechanisms on tea tree breeding. The treatment of exogenous selenium stabilized the
photosynthetic system and membrane stability and improved the cold tolerance of the tea
plants, while the oxidation products of tea polyphenols were reduced and metabolites that
contributed to quality such as sugars and theanine were increased [212]. The application of
exogenous jasmonic acid scavenged reactive oxygen species and maintained membrane sta-
bility under cold stress, while the CsMYB transcription factor functioned not only as the key
component of the signaling response, but also as the binding point between cold stress and
signal transduction [213]. Exogenous application of 5-aminolevulinic acid (ALA) increased
catechin and procyanidin B2 content and altered carbohydrate and flavonoid content to
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enhance cold tolerance [214]. Exogenous melatonin treatment alleviated cold-induced pho-
tosynthetic damage by enhancing antioxidant defense and reducing oxidative stress, but
the molecular mechanism of cold tolerance has not been explored [215]. The plant tended
to increase its freezing tolerance after a period of exposure to cold environments [216],
and similarly, tea plants also have to undergo cold domestication to increase their cold
resistance, and their domestication process triggered back a series of regulatory networks,
such as carbohydrate metabolism and calcium signaling pathways, whose response profiles
in domestication have also been revealed [217]. The genes CsCBF5, CsCBF3, CsFAD2 and
CsFAD5 were detected as exerting an essential role in response to cold stress, providing
ideas for subsequent molecular breeding with potential value [218,219]. Furthermore, chro-
mosome accessibility, circular RNA and genome resequencing excavated potential value for
cold tolerance in tea plants from different research perspectives. Although these measures
provide insights in the cold tolerance of tea plants, the mechanisms of cold tolerance require
further exploration and validation.

Drought stress could shrink the buds and leaves of tea plants and seriously affect the
yield and quality of tea leaves. For this reason, researchers have conducted studies on the
drought tolerance mechanisms of tea plants. By developing hyperspectral imaging tech-
niques to simulate physiological data such as malondialdehyde and electrolyte leakage in
tea plants, researchers could obtain the degree of damage to tea plants under drought stress
and take prompt measures to reduce losses based on the feedback results [220]. The storage
of K+ by mesophyll cells was a vital process for drought resistance in tea plants, and further-
more, treatment with exogenous K+ (5 mM) was able to alleviate damage under drought
stress [221]. Fluvic acid at 0.1 mg/L not only regulated sucrose and starch metabolism [222]
but also enhanced ascorbic acid metabolism and flavonoid biosynthesis to protect against
drought stress [223]. The application of calcium nitrate in the soil resulted in increased
cytosol pH and raised amino acid levels such as tyrosine in tea plants under drought stress,
and simultaneously activated the abscisic and jasmonic acid pathways to participate in
stomatal regulation [224]. Fatty acid unsaturation and H+-ATPase activity were improved
and maintained by the application of the exogenous substance 0.2 mM spermidine (Spd) or
spermine (Spm), thus alleviating the damage caused by drought stress in tea plants [225].
Eugenol modulates the expression of an uridine diphosphate (UDP)-glucosyltransferase,
UGT71A59, which altered the steady state of abscisic acid and regulated stomatal closure
to promote drought tolerance in tea [226]. Besides, 24-epibrassinolide (EBR) also promoted
stomatal closure to resist stress by regulating the expression of stomatal-related genes [227].
Seventy-six CsbZIP genes were identified in the tea genome, and then combined with
13 ABFs in abscisic acid signaling to screen for CsABF2, CsABF8 and CsABF11, transcription
factors that could be applied in subsequent studies to regulate drought resistance [228].

Pests and diseases in tea plants were also the primary factors that reduced yields and
affected the quality of tea plants. Anthracnose, caused by Colletotrichum, proved to be one
of the most serious diseases affecting tea plants, with infected leaves often suffering from
water-soaked disease and lesions to the point of necrosis, which largely affected the yield of
tea plants [229]. Tea green leafhoppers, tea geometrids and tea aphids were the main pests
of tea plants [230]. (E)-Nerolidol enhanced tea tree defenses and protected tea plants from
pests such as Colletotrichum by inducing the production of defense-related compounds to
accumulate in the plant [231]. (Z)-3-Hexenol operated as a potential regulator, activating
JA signaling and reinforcing the resistance of tea against tea geometrid [232]. Early de-
fense signaling, JA biosynthesis and substances associated with defense responses were
intensified and accumulated by indole following enhanced Ca2+ signaling, thus supporting
tea plants to resist pests [233]. CsTCP10 was a positive regulator of tea plants resistance
to Gray blight disease and molecular experiments showed that miR319a inhibited the
expression of CsTCP10, thereby reducing resistance in tea plants [234]. In the event of
pests and diseases in tea gardens, the large-scale application of chemicals and pesticides
performed a crucial role in fighting off pests and diseases but came at a tremendous cost
to the environment. Environmentally friendly methods such as microbial intercropping
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or biocontrol were expected to have a dampening effect on pests and diseases without
damaging the environment [235].

Tea plants were suitable for growing in acidic soils, whereas saline soils affect the
uptake of ions and water from the roots and thus suppressed the growth of tea plants. Genes
associated with theanine biosynthesis, including CsGOGATs, CsAlaDC and CsTSI, were
induced to be significantly up-regulated under salt stress, and exogenous administration
of theanine improved tolerance by increasing the activity of antioxidant enzymes such as
SOD [236]. Tea plants inoculated with Arbuscular mycorrhizal fungi (AMF) alleviated salt
stress through osmoregulation [237]. Under AMF (Glomus etunicatum) treatment, the amino
acid content of salt-stressed tea leaves was elevated, and the expression of resistance-related
genes CsTCS1, CsAPX and CsHMGR was increased, as were the activities of antioxidant
enzymes [238]. Long non-coding RNAs (lncRNAs) excavated from tea genome were
involved in GOLS and calcium signaling pathways to cope with salt stress, in which lncRNA
MSTRG.139242.1 and TEA027212.1 interacted to respond to stress [239]. Various CsHsf
in tea plants were involved in diverse stress responses, and the identification of CsHsfA2
increased the heat tolerance in transgenic yeast, underpinning the genetic engineering
breeding [240]. Exogenous 24-epibrassinolide (BR) not only alleviated the stress caused
by high temperatures, but also induced GS and GOGAT activity to increase the theanine
content in the tea leaves, thus improving the quality of the tea leaves [241]. Overexpression
of CsCDPK20 and CsCDPK26 in transgenic Arabidopsis thaliana increased their heat tolerance
and presumably positively regulated heat tolerance in tea plants [242]. Heat shock proteins
CsHSP90 and CsHSP17.2 perform key roles in heat stress in tea plants [243,244]. However,
relatively little research has been conducted regarding the heat tolerance of tea plants, and
the deeper molecular level of research requires further investigation.

6. Conclusions and Prospects

In this study, the current status and utilization of tea plants’ germplasm resources were
summarized, the applications of multi-dimensional omics in tea plants were presented,
and existing strategies for the current key breeding directions and prospects in tea plants
were also proposed (Figure 4).
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For further exploring the genetic breeding rules of tea plants, breeding enriched
varieties that satisfy high yield quality and resistance and solve the problem of prolonged
breeding cycles and technological innovation in breeding. Therefore, we presented the
most popular and cutting-edge technologies and frequently searched terms in the field
of plant for the reference of researchers and aimed to pioneer novel breeding ideas and
directions for researchers (Figure 5).
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6.1. Single Cell Multiomic

With the advancement of next-generation sequencing technologies, various multi-
omics approaches, including transcriptomics and genomics, have been widely used to
address biological inquiries and unravel underlying mechanisms at the multicellular level.
However, in recent years, single-cell sequencing has emerged as a powerful technique,
enabling researchers to delve into the intricacies of transcription and biological processes
at the individual cell level. This single-cell transcriptome sequencing approach offered a
unique opportunity to explore the complexity and heterogeneity of cellular processes with
high resolution [245–247]. The potential of single-cell transcriptomics was demonstrated
in the model crop Arabidopsis thaliana, where sequencing solved the complex biological
processes undergone by Arabidopsis roots during their transition from stem cells to dif-
ferentiation [248,249]. With the advantages of sequencing, it was widespread in crops
such as maize (Zea mays), rice (Oryza sativa) and tomato (Solanum lycopersicum) [250–254].
In the context of tea plants, single-cell transcriptomics mapped the developmental tra-
jectory of leaf cells and revealed new pathways related to catechin ester metabolism,
providing fresh insights into the synthesis of secondary metabolites [255]. Single-cell se-
quencing initially emerged and was applied in animal and human cells. So far, single-cell
transcriptome sequencing has still been at the early stage in the plant kingdom. Some
issues such as little information about cell types or difficulties in releasing cells have still
been outstanding and unexplored in numerous plant species, presenting both opportu-
nities and challenges [256–259]. Future advancements in technologies, such as single-cell
metabolomics, single-cell genomics and single-cell methylation, were expected to address
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the complex issues related to cellular composition, interaction mechanisms and functional
characteristics in the plant with inferior genetic characteristics like tea plants [260,261].

6.2. Pan-Genome

High-quality reference genomes delivered knowledge of the genetic characteristics of
plants, particularly in the context of domestication breeding and basic plant research. Pan-
genomes assembled from genome sequences of multiple species could carry information on
the genetic diversity of a species. They were recognized as a novel reference tool, serving
as a valuable resource for crop breeding enhancement, as well as for evolutionary and
functional genomics research [262–265].

The integration of wild and cultivated sorghum pangenomes generated information
on genetic variation that could not be captured by a single reference genome, which
contributed to phenotypic characterization and facilitated sorghum improvement [266].
Similarly, the pangenomes of 118 wild and cultivated peas complemented the multitude of
genes and sequence gaps that were missing from the reference genome. This broadened our
understanding of the genetic background on peas, shedding light on their domestication
and evolution [267]. Additionally, the construction of the soybean pangenome led to the
interlinking of genes that determine essential traits with newly uncovered genetic variants,
favoring the resolution of current genetic bottlenecks [268,269]. Otherwise, the assembly of
pangenomes of grains, vegetables and fruits such as radish (Raphanus), cucumber, mung
bean (Vigna radiata L.), cotton and strawberry were used for biological research and genetic
breeding [270–274]. Until now, several high-quality chromosome-level reference genomes
have also been assembled in tea plants, and we firmly believe that more genomes will be
produced in the future, while the emergence of tea plants pangenomes was expected to
represent the new reference for tea plants’ genetic research and breeding in the future.

6.3. Metagenomics

Microorganisms were resident throughout the ecosystem and strong interactions
exist between plants and various microorganisms. Today, rather than traditional research
methods, macrogenomes could capture the genetic information of fungi and bacteria, thus
revealing the mechanisms of plant–microbe interactions and regulation, and guaranteeing
more sustainable breeding strategies [275–277]. Relatively more research was focused on
inter-rooted microorganisms that lived in the soil than on other microorganisms. Inter-
root microbes often modulated plant development by facilitating nutrient uptake and
stimulating resistance to biotic and abiotic stresses through nitrogen fixation, phosphate
solubilisation [278–280]. Plants recruited microbiota performing specific functions to satisfy
their developmental demands through characteristics such as their own secretions and
immune systems [281].

Tomatoes under salt stress could be protected from salinity by a synthetic bacterial
community of the desert plant Indigofera argentea [282]. The existence of the bacterium
Brevibacterium linens RS16 restored photosynthetic properties and elevated salt tolerance
in rice under salt stress [283]. Analysis of the microbial community of diverse resistant
tomato varieties detected and cultured Xanthobacteria Xanthobacteria resistant to wilt caused
by the Ralstonia solanacearum pathogen, and this study elucidated the mechanism by which
the microbiota could establish protection against the pathogen in plant [284]. Selection and
cultivation of microbiota for plant breeding and the utilization of the positive effects of
advantageous microorganisms for the welfare of plant was the forward-looking approach
to the use of microbial action for plant reclamation. Extensive studies were conducted on
the regulation of plant–microbe interactions [285] and the application of this model to tea
plants might lead to the search for potential microbial groups that contributed to the high
yield and resistance of tea plants.
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6.4. Epigenetics

Epigenetics received widespread attention in the field of plant genetics, which re-
ferred to heritable modifications of gene function that did not involve DNA sequence
alterations [286,287]. Epigenetics comprised DNA methylation, histone modification and
RNA interference, which modified the stress response of plant under different stress
environments [288], while DNA methylation was one of the most passionately studied
epigenetic mechanisms that could manipulate gene expression, genome stability and chro-
matin structure [289,290]. Up till now, DNA methylation has been deployed in plants
such as maize (Zea mays L.), tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), potato
(Solanum tuberosum L.), citrus and land cotton (Gossypium hirsutum L.) to investigate various
biological events [291–296]. Pronounced changes in the transcript levels of cytosine-5 DNA
methyltransferase and DNA demethylase in tea plants demonstrated the pivotal role of
DNA methylation in the regulation of abiotic stresses and had served as a reference for the
analysis of epigenetic mechanisms in tea plants [297]. Epigenetics was the prospective area
to exploit the ability of DNA methylation for stable transmission of genetic traits to nurture
and maintained the superior characteristics of tea plants in the future.
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