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Abstract: Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Cur-

rently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression 

and the development of health disorders is being intensively studied. Nevertheless, Notch1 signal-

ling is not only controlled at the transcriptional level but also by a variety of post-translational 

events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intra-

cellular crosstalk with other signalling molecules—among those are long non-coding RNAs 

(lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the 

modulation of Notch1 signalling, from expression to activity, and their connection with the devel-

opment of health disorders, especially cancers. 
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1. Introduction 

The Notch receptors belong to a highly conserved family of transmembrane recep-

tors responsible for transmitting intracellular signals upon cell-to-cell (juxtacrine) contact. 

One of the most characteristic features of the Notch receptors is that they act as mem-

brane-anchored mechanosensing receptors coupled with a specific nuclear transcriptional 

modulator—the Notch intracellular domain (NICD) [1]. Notch ligands (Delta-like type ( 

DLL) and Jagged/Serrate proteins (JAG)), presented by a signal-sending cell, activate the 

Notch receptors (NOTCH-1, -2, -3, and -4) on the signal-receiving cell [2]. The canonical 

Notch signalling pathway involves two neighbouring cells; the receptor–ligand interac-

tion results in mechanical forces that unveil a receptor’s proteolytic site near the plasma 

membrane, recognised and cleaved by the ADAM family of metalloproteinases (Site-2 

cleavage; S2), triggering a series of proteolytic events that lead to the release of the NICD, 

upon gamma-secretase (γ-secretase) cleavage (Site-3; S3) [3]. The NICD is subsequently 

translocated to the nucleus, where it binds CSL (also known as CBF-1/RBP-jκ, Su (H), or 

Lag-1) and forms a transcriptional complex that regulates the expression of downstream 

genes, such as HES1 (Hes family bHLH transcription factor 1), HEY1 (Hes-related family bHLH 

transcription factor with YRPW motif 1), MYC (MYC proto-oncogene, bHLH transcription 

factor), and NRARP (NOTCH-regulated ankyrin repeat protein) [4]. The final gene expression 

patterns and cell fate after Notch activation are highly varied and dependent on various 

factors such as the cell type, environment, pattern of activation, concentration of receptors 

and ligands on cell surfaces, and even the duration and strength of activation [5,6]. Such 
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a plasticity in Notch signalling transmission is largely the result of modulation at multiple 

levels. 

The earliest discovery of NOTCH physiological function was the characteristic 

“notches” found in the distal tip of Drosophila melanogaster wings in Notch-null mutants, 

among others, by Thomas Hunt Morgan, Calvin B. Bridges, and John S. Dexter at the be-

ginning of the 20th century [7,8]. Since then, and thanks to advances in genetics and mo-

lecular biology, the Notch signalling system has been rapidly unravelled, mainly in D. 

melanogaster and Caenorhabditis elegans [9]. It is now clear that Notch signalling plays a key 

role in developmental and physiological functions. Some of the best described roles of 

NOTCH1 are the maintenance of stem cell populations [10] and the hippocampal [11] and 

olfactory [12] plasticity of the nervous systems. Yet it also plays defined functions in angi-

ogenesis [13–18] and osteogenesis [19,20], among multiple other developmental pro-

cesses. The Notch system is important in the regulation of embryonic development, such 

as during lateral inhibition and induction, binary cell fate, and boundary formation 

[21,22]. In fact, the Notch pathway is already active in mice embryos that consist only of 

four cells [23], and it is present in a variety of tissues and organs, such as the thymus [24], 

vascular system [25], and bone tissue [26], throughout the entire life span. The regulation 

of Notch activity is performed by transcriptional enhancers, silencers, and enzymes intro-

ducing posttranslational modifications, as well as partnering molecules. Aberrations of 

the multifaceted Notch system result in multiple health disorders, including cancers. 

In humans, activating mutations of NOTCH1 was first associated with the develop-

ment and progression of leukaemia (see also 2.1) [27–30]. High NOTCH1 activity has been 

also linked with several other types of cancers including lymphomas [27–30] and brain 

[31], breast [32], lung [33,34], ovarian [35], renal [36], and hepatocellular cancer [37,38]. 

The relationship between the Notch signalling pathway and cancer progression is com-

plex and not only related to an acceleration of cell proliferation. NOTCH1 target genes are 

also associated with the control of apoptosis, epithelial–mesenchymal transition (EMT), 

increased drug resistance [39–44], modulation of the tumour microenvironment, and 

maintenance of the cancer stem cell population [45,46]. For these reasons, excessive acti-

vation or inhibition of Notch signalling can lead to a serious dysregulation of homeostasis. 

NOTCH1 activity has both oncogenic as well as tumour-suppressive effects on cells dur-

ing oncogenesis, depending on the tumour type (for review, see [47]). The oncogenic role 

of NOTCH1 signalling is also connected with the dysregulation of cellular metabolism 

and genome stability [48,49]. 

The dynamic fine-tuning of NOTCH signalling is achieved by post-transcriptional 

and post-translational regulation. The first includes the control of RNA stability by RNA-

binding proteins and microRNAs [50,51]. For example, NOTCH1 mRNA stability is mod-

ulated by the methylation of adenine (m6A) residues by N6-methyladenosine methyltrans-

ferases such as METTL3 and METTL14 [52,53]. These modifications are recognized by 

proteins such as YTHDF2 (YTH domain family 2) that cause the inhibition of Notch signal-

ling by the downregulation of NOTCH1, HES1, and HES5 mRNA levels [50]. 

On the other hand, NOTCH1 is regulated via post-translational modifications 

(PTMs), meaning an addition of different functional groups, to the target amino acid side 

chain, which reversibly modulate the structure, activity, localisation, and stability of the 

target. NOTCH1 is regulated by several PTMs including proteolysis, phosphorylation, 

acetylation, methylation, hydroxylation, sumoylation, ubiquitination, and O-glycosyla-

tion [54]. For example, tumour-suppressor cyclin C-dependent kinases, CDK3, 8, and 19, 

phosphorylate the N1ICD at multiple sites, triggering the binding of Fbw7 ubiquitin ligase 

and further polyubiquitination and proteolytic degradation [55]. Many kinases also di-

rectly control N1ICD transcriptional activity, one of which is casein kinase 2 (CK2). First, 

it targets S1900 and, further, T1897 of the N1ICD, leading to a decrease in binding between 

the N1ICD and MAML (Mastermind)–CSL complex, therefore lowering transcriptional 

activity [56]. Additionally, the phosphorylation of the N1ICD at the second NLS is im-

portant for both nuclear localisation [57,58] and transcriptional activity [57], while murine 
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double minute 2 (MDM2)-mediated ubiquitination was shown to enhance N1ICD tran-

scriptional activity [59].  

The regulatory mechanisms of Notch signalling also include the activity of ncRNAs, 

which encompass constitutively expressed ribosomal (rRNAs), transfer (tRNAs), small 

nuclear (snRNAs), and small nucleolar (snoRNA) RNAs, telomerase RNA (TERC), tRNA-

derived fragments (tRFs), tRNA halves (tiRNAs), and also regulatory ncRNAs including 

microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siR-

NAs), circular RNAs (circRNAs), enhancer RNAs (eRNAs), and long non-coding RNAs 

(lncRNAs) [60]. The interaction between miRNAs and the Notch pathway has been widely 

reported and reviewed (for example, [61–63]); therefore, here, we will focus on lncRNAs 

and summarise how they affect transcriptional, translational, and post-translational 

Notch1 signalling. 

2. Non-Coding RNAs as a Pivotal Control Factor of Notch Signalling 

Numerous studies have documented the significant contribution of ncRNAs in the 

regulation of NOTCH1-related genes, including tumour suppressors and oncogenes. 

NcRNAs are roughly classified based on the length of the nucleotide sequences, ncRNA 

position relative to the target gene, and/or ncRNA function. The small ncRNAs 

(sncRNAs), of less than 200 nucleotides in length, include mainly miRNAs, siRNAs, piR-

NAs, tRFs, and tiRNAs, while lncRNAs are transcripts with lengths exceeding 200 nucle-

otides that are usually synthesised by the antisense transcription of target genes (antisense 

lncRNA) or within intergenic (lincRNA) or intronic loci [64,65]. LncRNAs assist in the re-

modelling of the genome architecture, gene transcription, and post-transcriptional RNA 

processing via a direct interaction with other nucleic acids and proteins [66]. As a result, 

they are involved in processes such as the control of the transcription [67] and translation 

[68], as well as the formation of nuclear subcomponents by DNA looping [69] and chro-

matin organisation [70]. Mechanistically, lncRNAs act as scaffolds or decoys for other 

RNAs and proteins to bind to. The ability of lncRNA to specifically interact with other 

nucleic acids is harnessed for the formation of transcriptional and chromatin modification 

complexes, and they also act as sponges for other ncRNAs. Subsequently, lncRNAs super-

vise other ncRNAs by controlling miRNA availability, mRNA maturation, and siRNA for-

mation. All of these activities allow lncRNAs to oversee gene expression by controlling 

the function, mutual interactions, and intracellular localisation of proteins and other 

RNAs [71–73]. 

2.1. Controlling Transcription of NOTCH1 and NOTCH1-Related Genes in Cancers 

The evolutionarily conserved elements of the Notch pathway are presented through-

out the entire Animalia kingdom. Phylogenetic studies suggest that the fundamental mol-

ecules of the pathway, the NOTCH receptors and ligands, have played essential roles in 

animal evolution [74]. In humans, four independent NOTCH (1, 2, 3, 4) genes located on 

the 9q34.3, 1p12, 19p13.12, and 6p21.32 chromosomal regions, respectively, encode 

NOTCH1-4 proteins which are relatively similar in their core structure. The Notch ligands 

are encoded by five genes: DLL (1, 3, 4) and JAG (1, 2) [75]. The expression patterns of 

NOTCH receptor genes and their ligands depend on the specific cellular context and are 

often altered in a variety of tumours [48,76]. Moreover, in feedback regulation, activated 

NOTCH1 affects its own expression as well as expression of other NOTCH receptors and 

their ligands [77]. 

Various lncRNAs act as inhibitors or activators of Notch signalling elements. For ex-

ample, NOTCH1 expression is regulated, at the transcriptional level, by neighbouring 

genes, such as lncRNA RP11-611D20.2 (also known as LINC01573) which acts as a cis tran-

scriptional activator of NOTCH1 signalling in paediatric T cell acute lymphoblastic leu-

kaemia (T-ALL) and is therefore named NALT1 (NOTCH1-associated lncRNA in T-ALL) 

(Figure 1(I)) [78]. Recently, a similar role of NALT1 was reported in gastric cancer (GC), 
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where the knockdown of this lncRNA resulted in a decrease in NOTCH1 expression, 

which reduced the invasion and migration of GC cells [79]. 

 

Figure 1. Models of ncRNA action in the control of the Notch1 pathway at the (I) transcriptional, 

(II) mRNA and translational, and (III) post-translational levels. (I) LncRNAs work with various 

RNA binding proteins (RBPs) to act as a transactivation element for cis-regulatory sequences (such 

as promoters, enhancers, suppressors), e.g., NALT1 recruits to the NOTCH1-promoter transcrip-

tional activation complex promoting Notch signalling in T-ALL. (IIa) Several miRNAs have been 

shown to bind the 3′-UTR of NOTCH1 mRNA leading to its degradation. (IIb) LncRNAs such as 

ZFAS1 sequestrate miRNAs, acting as miRNA sponges, i.e., the binding of miR150-5p prevents it 

from inactivating eIF4E mRNA and inhibition of the translation of NOTCH1 via blocking the trans-

lation initiation step. (III) NcRNAs affect the activity and stability of NOTCH1 by regulating the 

expression of proteins that can modify NOTCH1 protein, such as (IIIa) POGLUT1, responsible for 

NOTCH1 glycosylation, or (IIIb) PAX8, controlling the NOTCH1 phosphorylation status. (IIIc) 

LncRNA LUNAR1 reorganises chromatin in close proximity to its own locus and binds the NOTCH1 

and Mediator complex to enhance IGF1R transcription. 

The effect of lncRNAs on the chromatin organisation affecting the Notch1 pathway 

has also begun to be elucidated in breast cancer (MDA-MB-231) cells. The silencing of the 

highly expressed intergenic lncRNA regulator of reprogramming (linc-ROR) led to an in-

crease in NOTCH1, LC3-II (LC3-phosphatidylethanolamine conjugate), Beclin-1, and p53 
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expression, promoting autophagy and apoptosis [40]. Mechanistically, linc-ROR decreases 

the expression of miR-34a, a NOTCH1 mRNA inhibitor, via the inhibition of histone H3 

acetylation in the miR-34a promoter region. Similar epigenetic phenomena were described 

in human cholangiocarcinoma (CCA), in which Enhancer of zeste homolog 2 (EZH2)-me-

diated histone 3 trimethylation of lysine 27 (H3K27me3) in the same promoter lowered 

miR-34a levels and promoted Notch1 signalling [80]. 

In the control of gene expression, lncRNAs act also via the regulation of proteins af-

fecting NOTCH1. Studies on obesity have shown that NK6 homeobox 1 (Nkx6.1), which 

binds NOTCH1 at a 139 bp enhancer sequence (known as the CR2 fragment) in the second 

intron and positively regulates its expression [81], is upregulated by lncRNA regulator of 

insulin transcription ROIT [82]. ROIT interacts with and induces the ubiquitination and 

degradation of DNA methyltransferase 3a via the proteasome, thereby reducing methyl-

ation of the Nkx6.1 (NK6 homeobox 1) promoter and consequently increasing the expression 

of Nkx6.1 and insulin genes [82]. These data support the importance of the 

ROIT/Nkx6.1/Notch1 pathway in diabetes. 

2.2. NOTCH1 mRNA and Translation Control 

Increasing evidence indicates that both lncRNAs and miRNAs regulate NOTCH1 

mRNA processing. Most of these interactions have been described in stem cells and vari-

ous diseases including cancer, where aberrant ncRNA levels result in the dysregulation of 

NOTCH1 signalling. 

NOTCH1 mRNA is tightly controlled by miRNAs binding to its 3′ UTR region; how-

ever, lncRNAs can efficiently prevent such interactions as described for FEZF1-AS1 in 

non-small-cell lung cancer (NSCLC) [83] and SNHG7 in breast cancer [84], acting as miR-

34a sponges sequestering this miRNA from its target mRNAs, consequently increasing 

the amount of NOTCH1 mRNA. A similar sponge activity was reported for NEAT1 (nu-

clear-enriched abundant transcript 1) against miR-146b-5p in T-ALL [85], LncND (neurodevel-

opment) and miR-143-3p in neuronal development [86], LINC01123 and miR-449b-5p in re-

nal cell carcinoma [87], an intergenic lncRNA 346 (LINC00346) and miR-34a-5p in GC [88], 

HCG18 and miR-34c-5p in bladder cancer [89], and DCST1-AS1 binding miR-92a-3p in en-

dometrial carcinoma (EC) [90]. Contrarily, lncRNA CARMEN7 (cardiac mesoderm enhancer-

associated non-coding RNA), which is increased downstream of NOTCH activation [91], 

augments miR-143/145 expression through an enhancer element located in this mi-

croRNA’s locus, thereby promoting the differentiation of adult human cardiac precursor 

cells into smooth muscle cells [92]. 

A slightly different mode of NOTCH1 regulation via lncRNAs has been reported in 

head and neck squamous cell carcinoma (HNSCC) patients, whose low expression of 

lncRNA ZFAS1 (ZNFX1 antisense RNA 1) correlated with the upregulation of NOTCH1 

and better survival, suggesting an oncogenic role of this lncRNA. Yet the ZFAS1 levels 

typically differed depending on the cancer stage and tumour size (T-stage). It was shown 

that ZFAS1 overexpression in HNSCC cells and tissues samples is associated with poor 

patient outcomes [93]. At the molecular level, ZFAS1 binds miR-150-5p, the inhibitor of 

eIF4E (eukaryotic translation initiation factor 4E), which is required for the translation of 

several genes involved in proliferation, survival, EMT, and cancer invasion [93]. A year 

later, studies on the inflammatory response and apoptosis of RAW264.7 macrophages re-

vealed that miR-150-5p alleviates those processes, at least partially, via Notch1 targeting. 

The results highlighted miR-150-5p as a target in the development of anti-inflammatory 

and anti-apoptotic drugs for sepsis treatment [94]. 

Zhao and collaborators have shown that the presence of DLX6 antisense RNA 1 

(DLX6-AS1) is associated with the Notch1 signalling pathway. The knockdown of this 

lncRNA led to a reduction in Notch1 signalling by diminishing NOTCH1, p21, and HES1 

at the mRNA and protein levels. Clinical analyses indicated that a high level of DLX6-AS1 

in patients with epithelial ovarian cancer was significantly associated with lymph node 
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metastasis and a poor prognosis [95]. Furthermore, the role of DLX6-AS1 has been re-

ported as tumour-promoting in pancreatic cancer [96], non-small-cell lung cancer [97], 

and glioma [98] through inhibiting miR-181b, miR-144, and miR-197-5p, respectively, yet 

their association with the Notch1 signalling pathway has not been investigated in detail. 

In addition to regulation by lncRNAs and miRNAs, the NOTCH1 transcript can also 

be backspliced into a circular RNA (circ-NOTCH1) during splicing, which has both sponge 

and decoy activities. For example, circ-NOTCH1 binds METTL14, depletes the amount of 

free METTL14, and consequently maintains a high level of NOTCH1 mRNA [52]. 

2.3. Controlling Notch1 Signalling by lncRNA at the Post-Translational Level in Cancers 

LncRNAs often function as scaffolds for signalling proteins, and the Notch pathway 

is no exception. Several lncRNAs control Notch1 signalling both by directly interacting 

with the NOTCH1 protein, such as lncRNA LINC00511 which mediates contacts between 

the N1ICD transcriptional complex and enhancers, e.g., at the SOX9 gene [99], or by con-

trolling other proteins that are involved in NOTCH1 activity and processing. 

Neighbour of BRCA1 gene 2 (NBR2) is a lncRNA that directly binds to the N1ICD, as 

shown in osteosarcoma (OS) [100]. The mechanism of action for NBR2 is not yet well es-

tablished; however, it seems to play an essential role in the development of Notch-de-

pendent OS. OS patients with low NBR2 expression have a shorter overall survival rate 

compared with patients with higher NBR2 levels. Additionally, the overexpression of this 

lncRNA decreased NOTCH1, N-cadherin (CDH2), and Vimentin expression and led to the 

inhibition of cell migration and proliferation but did not affect apoptosis, both in OS [100] 

and in NSCLC [101]. 

As previously mentioned, lncRNAs appear to be strongly associated with the devel-

opment of T-ALL. The first reports linking human NOTCH1 and carcinogenesis were de-

scribed in the early 1990s and were related to NOTCH1 chromosomal translocations in T-

ALL [65]. Several years later, the genome-wide mapping of NOTCH1-regulated tran-

scripts in T-ALL revealed 182 lncRNAs, among which 55% were interacting with the 

N1ICD–RBPJΚ (recombination signal binding protein for immunoglobulin Kappa J region, also 

known as CSL) activator complex. One of these lncRNAs is LUNAR1 (leukaemia-induced 

non-coding activator RNA 1), acting as an enhancer of the expression of its neighbouring 

gene, IGF1R (insulin-like growth factor1-receptor), which is essential for T-ALL tumour de-

velopment in vitro and in vivo [66]. As LUNAR1 binds to enhancer elements in the pro-

moter of IGF1R, its own promoter, and the N1ICD, it was suggested that it exploits the 

chromatin configuration to recruit the mediator complex and sustain the full activation of 

the IGF1R promoter, fuelling T-ALL development (Figure 1(IIIc)) [66]. In agreement with 

this, it has been found that the inhibition of LUNAR1 in CRC decreases tumour growth 

and efficiently depletes IGF1 pathway activity, indicating a role for the LU-

NAR1/NOTCH1/IGF1R axis in cancer development [67]. 

LncRNAs may also modulate Notch1 signalling indirectly by binding proteins re-

lated to NOTCH1, such as the Paired box gene 8 (PAX8) protein which was proposed to 

activate the N1ICD in the nucleus by modulating its phosphorylation status and affecting 

the transcription of its target genes, as well as promoting aerobic glycolysis in pancreatic 

carcinoma. PAX8 directly interacts with lncRNA MACC1-AS1 (MACC1 antisense RNA 1), 

increasing its stability, and therefore modulates its activity. The knockdown of MACC1-

AS1 inhibited cancer proliferation and metastasis [102]. Based on these facts, MACC-

AS1/PAX8/Notch1 signalling might be considered as a target for the alternative treatment 

of pancreatic carcinoma patients. The recently described functional role of lncRNA inter-

action with the NOTCH1 receptor is summarised in Figure 2 and Supplementary Table 

S1. 
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Figure 2. Cancer-related lncRNA overexpression and its impact on the regulation of NOTCH1 ex-

pression. LncRNAs upregulating NOTCH1 expression are marked in green and with ↑; lncRNAs 

downregulating NOTCH1 expression are marked in red and with ↓. 

3. Notch1-Related lncRNAs and Other Diseases 

As the Notch system controls multiple processes, it appears to be tightly related to 

some congenital and developmental health disorders. Besides cancers, among the dys-

functions linked with abnormal Notch1 signalling are muscle, bone, cerebrovascular, and 

neurodegenerative diseases. This includes vascular diseases like strokes and ischemic at-

tacks [103], thoracic aortic aneurysms [104], heart malfunction [105], neurodegenerative 

diseases including Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclero-

sis [106], pulmonary dysfunctions [107], severe vertebral abnormalities in spondylocostal 

dysostosis and spondylothoracic dysostosis [108], disorders related to the dysfunction of 

muscle, like Duchenne muscular dystrophy [109], bone structure dysfunction, like Klip-

pel–Feil syndrome [110], as well as Hajdu–Cheney [111], Adams–Oliver [112], and Von 

Hippel–Lindau [113], and multiorgan dysfunction like Alagille syndrome [114]. Still, in 

many cases, the relation between NOTCH1 signalling and the development or risk of var-

ious diseases remains unsettled. Nevertheless, there is mounting evidence linking abnor-

malities in the lncRNA-mediated control of NOTCH1 to various levels of its expression in 

several health disorders (see Table 1). 

Among the lncRNAs involved in the epigenetic regulation of Notch1 signalling in 

diseases are HOTAIR and Potassium voltage-gated channel subfamily Qmember 1 overlapping 

transcript 1 (KCNQ1OT1) [115–117]. In autoimmune diseases, the overexpression of HO-

TAIR in both systemic sclerosis (SSc) myofibroblasts and SSc skin biopsies correlates with 

a reduction in miRNA-34a expression and consequent Notch pathway activation. Mecha-

nistically, HOTAIR controls the EZH2 methyltransferase-dependent trimethylation of 27 

lysine residues in histone H3 (H3K27me3) and therefore epigenetically represses miRNA-



Int. J. Mol. Sci. 2023, 24, 12579 8 of 18 
 

 

34a expression [115,118,119]. NOTCH1 is also associated with the development of myo-

cardial infarction (MI).  

Table 1. Interaction between lncRNA and Notch1 signalling in health disorders. 

Localisation Disease lncRNA 
NOTCH1 

Expression 
Cell Line 

Animal Mod-

els 
Patients Reference 

Cardiac sys-

tem 

Acute myo-

cardial infarc-

tion 

XIST↑ ↑ - 
AMI rat 

model  
- [120] 

 Calcific aortic 

valve disease 
H19↑ ↓ 

VICs, Saos2, 

COS7 
- 36 patients [121] 

 Myocardial 

infarction 
KCNQ1OT1↑ ↑ - 

C57BL/6 male 

mice 
- [117] 

 Ischemic 

stroke 
H19↑ ↓ - 

Male C57BL/6 

J mice 
40 patients  [122] 

Immune sys-

tem 
T-ALL NALT1↑ ↑ Jurkat cells - 

Bone marrow 

of 20  children 
[78] 

 Systemic scle-

rosis (SSc) 
HOTAIR↑ ↑ - - 

12 adult pa-

tients  
[115] 

Neural system Epilepsy NEAT1↑ ↑ CTX-TNA - 6 patients [123] 

 
Intervertebral 

disc degenera-

tion 

FAM83H-

AS1↑ 
↑ - - 10 patients [124] 

 
Nasopharyn-

geal carci-

noma 

SNHG12↑ ↑ 

SUNE1, CNE1, 

CNE2 68, 

HNE-1 

- 
139 tissue 

samples 
[125] 

Head and 

neck cancer 

Oesophageal 

cancer 
MALAT1↑ ↑ 

TE-1, EC109, 

KYSE30, OE21 
- - [126] 

  SNHG1↑ ↑ Eca109, TE-1 - 72 patients [127] 

 Laryngeal 

cancer 
SNHG1↑ ↑ - - 

42 patients 

(different tu-

mour stages) 

[128] 

Digestive sys-

tem cancer 

Pancreatic car-

cinoma 
MACC1-AS1↑ ↑ 

BxPC-3, 

PANC-1, MIA 

PaCa-2, KP-2, 

AsPC-1, 

Capan-1 

- 

2 cohorts (98 

and 124 pa-

tients) of pri-

mary tissues 

[102] 

 Gastric cancer 
NALT1 

(LINC01573) ↑ 
↑ 

SGC-7901, 

BGC-823 
- 

336 patients 

after D2 

lymph node 

dissected gas-

trectomy 

[79] 

  
LINC00346↑ 

(sponge for 

miR-34a-5p) 

↑ 

MGC803, 

BGC823, 

MKN28, 

MKN45, 

SGC7901 

Xenografts in 

athymic 

(nu/nu) mice 

58 gastric ade-

nocarcinoma 

tissue samples 

[88] 

 Colorectal car-

cinoma 

FAM83H-

AS1↑ 
↑ 

SW480, LoVo, 

HCT116, HT29 
- 40 patients [129] 
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  MALAT1↑ ↑ 

COLO205, 

HCT-116, 

LoVo, HT26, 

SW480 

Nude Balb/c 

mice 
- [130] 

 Hepatocellu-

lar carcinoma 
LINC00261↓ ↑ 

SMCC-7721, 

MHCC97L, 

MHCC97H 

- 
66 tissue sam-

ples 
[131] 

Reproductive 

tract 

Ovarian can-

cer 
DLX6-AS1↑ ↑ 

HEY, SKOV3, 

OVCAR-3 
- 

128 tissue 

samples 
[95] 

  MALAT1↑ ↑ 

A2780, 

OVCAR3, 

COC1, A2780/ 

CDDP, 

COC1/CDDP, 

OVCAR3/DDP 

- 

20 paired tu-

mour tissue 

samples 

[132] 

 
Endometrial 

carcinoma 

(EC) 

MEG3↓ ↑ 
HEC-1A, 

KLE 
- 

30 tumour tis-

sue samples 
[133] 

  DCST1-AS1↑ ↑ HEC-1 - 62 patients [90] 

 Prostate carci-

noma 
LINCO1638↑ ↑ - - 42 patients [134] 

  GHET1↑ ↑ 
LNCap, 

C4-2 
- 30 patients [135] 

Other cancers Breast cancer linc-ROR↑ ↓ MDA-MB-231 - - [40] 

  SNHG7↑ ↑ - - 

37 pairs of tu-

mour tissue 

samples 

[84] 

 Lung cancer NBR2↓ ↑ - - 

50 NSCLC pa-

tient tissue 

samples 

[101] 

  LBX2-AS1↑ ↑ 

A549, PC9, 

H1975, SPC-

A1, H1299 

- 
165 NSCLC 

patients  
[136] 

  EGFR-AS1↓ ↑ 
NCH-H460, 

NCH-H23 
- 

87 NSCLC pa-

tients 
[137] 

  LET↓ ↑ 

A549, 95D, 

NCI-H292, 

NCI-H1975 

- 
66 NSCLC pa-

tients 
[138] 

 Osteosarcoma MEG3↓ ↑ MG-63, U2OS - - [139] 

  NBR2↓ ↑ 
MG-63, U2OS, 

SAOS-2 
- 62 patients [140] 

  CRNDE↑ ↑ 
MG-63, SAOS-

2, U2OS 
- 72 patients [141] 

Abbreviations: ↑ represents upregulation; ↓ represents downregulation. 

In a mouse MI model, KCNQ1OT1 was reported to affect Notch1 signalling via de-

creasing RUNX3 (inhibitor of Notch1 signalling) expression through the methylation of 

its promoter [117]. Consequently, the overexpression of KCNQ1OT1 led to the activation 

of the Notch1 signalling pathway and the development of MI. In other studies, Zhang et 

al., reported the regulation of NOTCH expression by X-inactive specific transcript (XIST) 

in acute MI in a rat model. XIST silencing led to a lower NOTCH1 expression level via 
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increasing miR-449, which manifested in an inhibition of myocardial cell apoptosis and a 

reduction in the pathological injuries [120]. Thus, targeting XIST-NOTCH1 signalling 

might be considered as a potential therapeutic strategy for MI; however, more detailed 

research is needed as XIST silences the entire X chromosome and the described effect on 

NOTCH1 might not be specific. 

One of the first discovered eukaryotic lncRNAs, H19, was shown to silence NOTCH1 

transcription by preventing the recruitment of p53 to its promoter in calcific aortic valve 

disease (CAVD). Hadji et al., reported that increased levels of H19 in CAVD lead to an 

abnormal mineralisation of the aortic valve [121]. Reducing NOTCH1 signalling in valve 

interstitial cells increases the expression of genes such as RUNX2 and BMP2 which play a 

pro-osteogenic role [121,142]. A similar mechanism of action of H19 has been documented 

in studies of neurogenesis after ischemic stroke. In this case, the silencing of the H19 

lncRNA leads to an increase in NOTCH1 transcription, which promotes the process of 

neurogenesis. Moreover, patients with elevated levels of circulating H19 have a worse 

prognosis after ischemic stroke [122]. 

There is also evidence that lncRNAs regulate Notch1 signalling during viral infec-

tion. The host NOTCH1 downregulates the prototype foamy virus (PFV) internal pro-

moter activity, which triggers the expression of the viral transcriptional transactivator 

(Tas), a protein essential for viral replication and gene expression. However, lncRNA RP5 

acts in opposition to NOTCH1 by promoting the expression of miR-129-5p, which knocks 

down NOTCH1 mRNA, and, therefore, restoring Tas expression. This work provides evi-

dence that some host lncRNAs promote PFV replication by outweighing NOTCH1 inhi-

bition during early viral infection [143]. 

Data on the regulation of NOTCH1 mRNA by ncRNAs in health disorders are in 

abundance. In studies on the development of epilepsy, the silencing of lncRNA NEAT1 

results in the downregulation of NOTCH1, JAG1, and HES1. NEAT1 affects NOTCH1 sig-

nalling by suppressing miR-129-5p, which, as described above, targets NOTCH1 mRNA 

[123]. 

4. Medicinal Perspectives for lncRNAs in Notch1-Related Diseases 

A better understanding of the role of lncRNA on Notch1 signalling might provide 

new therapeutic strategies. The interconnection between Notch signalling and lncRNAs 

makes the latter potential biomarkers for Notch signalling activity, as they have high tis-

sue- and tumour-type-specific expression patterns [144,145]. A clear advantage of 

lncRNAs as biomarkers is their fast and sensitive quantitative analysis by real-time RT-

PCR, which can be performed from biological fluids [146–148]. The applicability of 

lncRNAs as biomarkers is well illustrated by PCA3 (prostate cancer gene 3), routinely used 

in clinical applications as a prostate cancer marker [149], for instance, for patients who 

obtain a negative result from a prostate biopsy together with a raised level of prostate-

specific antigen (PSA) which may indicate undiagnosed cancer [150]. To date, several 

lncRNAs have been shown to be associated with cancer progression and can be consid-

ered as survival factors for certain neoplasias. For example, the upregulation of lncRNAs 

DCST1-AS1, NALT1, LBX2-AS1, and MACC1-AS1 correlates with the poor survival of pa-

tients with EC, GC, NSCLC, and pancreatic carcinoma, respectively [79,90,102,136]. Mean-

while, the levels of SNHG1, NALT1, and CRNDE are associated with metastases in EC, 

GC, and OS, respectively [79,127,141]. In colorectal cancer, the expression of lncRNA 

CCAT1 (colon cancer–associated transcript 1) may potentially predict the response to JQ1, a 

chemical inhibitor of bromodomain containing four (BRD4) protein important for colorec-

tal cancer proliferation [151]. At the molecular level, BRD4 recognises and interacts with 

acetylated histone tails, leading to chromatin remodelling by recruiting and stabilising 

multiprotein complexes to DNA [152,153]. As BRD4 plays an important role in mediating 

the expression of genes involved in cancers and non-cancer diseases, several drugs target-

ing it are currently in clinical trials [154]. 
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Among those related to Notch1 signalling, a high NALT1 expression level has also 

been detected in T-ALL patient samples [78]. The increased expression of LINCO1638 

lncRNA and NOTCH1 has been observed in prostate carcinoma patients [134]. Cai et al., 

showed that NOTCH1-interacting lncRNA NBR2 expression was downregulated in OS 

tissues and correlated with a shorter overall survival time compared with patients with 

higher NBR2 expression [140]. Due to the specificity of lncRNAs, not only in cancer types 

but also within subtypes [145], they can serve as biomarkers for patient stratification as 

well as for drug response prediction. In gastric cancer cell lines (SGC7901/DDP and 

BGC823/DDP), NOTCH1 was shown to promote the evolution of cisplatin-resistant cells 

via the upregulation of lncRNA AK022798 [155], while its downregulation using siRNAs 

reduced the expression of drug resistance genes. However, subsequent research is re-

quired to establish whether lncRNA may be better in predicting the responses of NOTCH 

inhibitors in relation to what has been discovered so far. 

Other important modulators of NOTCH1 are circular RNAs (circRNAs). Recent stud-

ies have shown the potential of circRNAs as prognostic biomarkers, for instance, 

hsa_circ_0072309 [156] and circCNOT2 [157] in breast cancer. Moreover, it has been shown 

that NOTCH1 and the Notch1 signalling pathway could be upregulated via circNFIX, re-

sulting in glioma progression [158]. CircNFIX acts by sponging miR-34a-5p, which targets 

NOTCH1. Circ-ASH2L also comes in handy in the diagnosis and progression of pancreatic 

ductal adenocarcinoma, as high circ-ASH2L expression was correlated with lymphatic in-

vasion and the TNM (tumour, node, metastasis) stage, plus it was an independent risk 

factor for pancreatic patient survival. Similar to circNFIX, circ-ASH2L functions as a 

miRNA sponge for miR-34a and promotes tumour progression in vivo [159]. 

The circRNA research is still in its infancy, yet with the development of research 

strategies, effective clinical applications of circRNA will arise and expand in the diagnosis, 

treatment, and prognosis of cancer. 

5. Conclusions and Future Perspectives 

The efforts to understand the roles of Notch signalling in cancer have revealed vari-

ous outcomes, either oncogenic or tumour suppressive depending on the cancer type and 

stage of tumourigenesis. This appears to be largely the result of complex crosstalks be-

tween numerous other signalling molecules and pathways. Here, we have reviewed the 

recent data on the role of lncRNAs in the tweaking of NOTCH1 activity via the regulation 

of the NOTCH1 gene, mRNA, and protein. In head and neck tumours, such as HNSCC, 

where the absence of or reduction in NOTCH1 signalling is beneficial for tumour progres-

sion, the low expression of lncRNA ZFAS1 (necessary for regulation of the translation of 

several cancer genes) resulted in the upregulation of NOTCH1 and better survival [93], 

while in BC, where high NOTCH1 activity fuels tumour progression, SNHG7 lncRNA 

promotes the expression of NOTCH1 and EMT by binding miR-34a, which causes malig-

nant behaviour and increases the survival and proliferation of BC cells [84]. Therefore, the 

simple extrapolation of data from studies conducted on other cell types might be mislead-

ing in the case of Notch signalling. Also, more research discovering the network between 

miRNA, lncRNA, and circRNA is needed to further reveal the possible compensatory ef-

fects that may affect therapy. 

In the case of Notch signalling, it is also important to note that these molecules might 

act differently on each NOTCH receptor, as each of them gives partially compensatory, 

partially unique, and partially opposite downstream responses. Thus, lncRNAs seem to 

be more selective, e.g., for targeting, than other molecular targets such as γ-secretase, 

which affects all NOTCH receptors and other signalling pathways [160]. 

Taken together, it is still too early to hypothesise whether lncRNA will be commonly 

used for therapies or diagnoses. The more we know about the functions of lncRNA, 

miRNA, and circRNA and their influences on a disease, the closer we are to their routine 

use in clinics. 
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