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Abstract: Orexins are neuropeptides that play important roles in sleep-wake regulation and food
intake in the central nervous system, but their receptors are also expressed in peripheral tissues,
including the endocrine system. In the present study, we investigated the functions of orexin in
adrenal steroidogenesis using human adrenocortical H295R cells by focusing on its interaction with
adrenocortical bone morphogenetic proteins (BMPs) that induce adrenocortical steroidogenesis.
Treatment with orexin A increased the mRNA levels of steroidogenic enzymes including StAR,
CYP11B2, CYP17, and HSD3B1, and these effects of orexin A were further enhanced in the presence
of forskolin. Interestingly, orexin A treatment suppressed the BMP-receptor signaling detected by
Smad1/5/9 phosphorylation and Id-1 expression through upregulation of inhibitory Smad7. Orexin
A also suppressed endogenous BMP-6 expression but increased the expression of the type-II receptor
of ActRII in H295R cells. Moreover, treatment with BMP-6 downregulated the mRNA level of OX1R,
but not that of OX2R, expressed in H295R cells. In conclusion, the results indicate that both orexin
and BMP-6 accelerate adrenocortical steroidogenesis in human adrenocortical cells; both pathways
mutually inhibit each other, thereby leading to a fine-tuning of adrenocortical steroidogenesis.

Keywords: bone morphogenetic protein (BMP); orexin; steroidogenesis and adrenal

1. Introduction

Orexins are neuropeptides that have various effects on sleep and wakefulness reg-
ulation, food intake, emotions, and stress responses [1,2]. Orexins have two isoforms,
orexin A and orexin B, which are derived from a precursor peptide [1]. Orexins act through
two types of G protein-coupled receptors: orexin receptor type 1 (OX1R) and orexin re-
ceptor type 2 (OX2R). Orexin A binds to both OX1R and OX2R, whereas orexin B binds
only to OX2R [1–3]. Orexins and their receptors are not restricted to the hypothalamus
but are also expressed in peripheral tissues such as the pancreas, gonads, kidney, intestine,
adipose tissue, and adrenal gland [4]. It has been confirmed that orexins affect pancre-
atic insulin and glucagon secretion, testicular androgen production, ovulation, intestinal
motility and secretion, lipid metabolism, and adrenomedullary catecholamine release [4].
Furthermore, there is growing evidence that orexins play functional roles in the regulation
of the endocrine system, including the hypothalamic-pituitary-adrenal (HPA) axis [1,5,6].

It has been reported that OX1R and OX2R are expressed in the rat, porcine, and
human adrenal cortex [7,8] and that orexins stimulate glucocorticoid and mineralocorti-
coid secretion from adrenocortical cells of various species [9–14]. Importantly, there is
accumulating evidence that orexins are involved in the control of blood pressure and
hypertension [15,16]. Pharmacological blockade of orexin receptors reduced blood pressure
in spontaneously hypertensive rats, an animal model of human essential hypertension [17],
and in BPH/2J mice, a genetic model of hypertension associated with an overactive sym-
pathetic nervous system [18]. The upregulation of OX1R contributed to hypertension
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in obese Zucker rats, an animal model of obesity-related hypertension [19]. In addition,
studies on orexin-deficient narcoleptic patients and animal models showed a variable de-
crease in arterial blood pressure (ABP) during wakefulness and a blunted decrease in ABP
from wakefulness to non-rapid-eye-movement sleep (NREM) and rapid-eye-movement
sleep (REM) [20,21]. Of note, there have been a few studies in which the HPA system in
individuals with narcolepsy was investigated. It was found that the basal secretion of
adrenocorticotropin (ACTH) was dramatically reduced [22] and that cortisol levels after
dexamethasone suppression were significantly lowered in narcolepsy patients [23]. These
results suggested that orexin is physiologically involved in the control of blood pressure
via various mechanisms, which potentially include the regulation of the HPA axis and
adrenal steroids.

Adrenocortical steroidogenesis is directly stimulated by angiotensin II (Ang II), ACTH,
and potassium. In addition to the major stimulants, several factors have been reported
to play roles in the regulation of adrenocortical steroidogenesis [24,25]. Among these, we
have focused on the roles of bone morphogenetic proteins (BMPs), which are members
of the transforming growth factor (TGF)-β superfamily, in the adrenal gland [26]. The
BMP receptors consist of type-I receptors, including activin receptor-like kinase (ALK)-
2, -3, and -4, and type-II receptors, including activin type-II receptor (ActRII) and BMP
type-II receptor (BMPRII) in human adrenocortical cells [27]. Based on the results of
in vitro studies, BMP-6 enhances Ang II-induced aldosterone production via activation of
mitogen-activated protein kinase (MAPK) signaling by interacting with ALK-2 and -3, and
ActRII among the BMP receptors [27–30]. In addition, activin enhances ACTH-induced
aldosterone production by activating cyclic adenosine monophosphate (cAMP)/protein
kinase A (PKA) signaling [27,31]. Interestingly, it has recently been found that melatonin,
a pineal gland hormone that is involved in sleep regulation and circadian functions [32],
enhanced aldosterone production induced by ACTH, and activin [31] and that Clock mRNA
expression was suppressed by both BMP-6 and activin and was linked to the expression of
steroidogenic enzymes [33]. However, the functional link between the signaling of BMPs
and orexin in adrenocortical steroidogenesis has not been elucidated.

In the present study, we aimed to investigate the functional roles of orexin in the
regulation of adrenocortical steroidogenesis by focusing on its interaction with the BMP
system in human adrenocortical cells.

2. Results

First, the effects of orexin on adrenocortical steroidogenesis were examined. Since there
have been some studies showing that changes in the expression of steroidogenic enzymes
and the concentration of secreted cortisol after orexin treatment were time-dependent, with
24 h treatment exhibiting one of the peaks [34,35], the treatment time was fixed at 24 h.
Forskolin (FSK) is a stimulator of adenylyl cyclase and increases intracellular cAMP, which
leads to the induction of steroidogenesis in the adrenal cortex [36]. Given the findings
that an adenylyl cyclase inhibitor and a PKA inhibitor abolished the enhanced cortisol
secretion by orexin A [37], the cAMP/PKA pathway is possibly linked to the roles of orexin
A in adrenocortical steroidogenesis. Moreover, it has been recently demonstrated that
HSD3B1 is expressed in the zone glomerulosa and is stimulated by Ang II rather than
potassium [38,39].

As shown in Figure 1, orexin A (10 to 300 nM) treatment significantly enhanced the
expression of steroidogenic enzymes, including StAR, CYP11B2, CYP17, and HSD3B1, in
the absence of FSK. However, the orexin A concentration showing the maximal effect was
different among the steroidogenic enzymes: 30 nM of orexin A for the expression of StAR,
100 nM for that of CYP11B2, 10 nM for that of CYP17, and 300 nM for that of HSD3B1. FSK
(1 µM) stimulation increased the expression of steroidogenic enzymes, and co-treatment
with orexin A further upregulated the expression of the enzymes in a dose-dependent
manner. Co-treatment with 300 nM of orexin A resulted in a significant enhancement of
the expression of all of the enzymes. Thus, orexin treatment enhanced the expression of



Int. J. Mol. Sci. 2023, 24, 12559 3 of 12

steroidogenic enzymes and enhanced the FSK-induced expression of steroidogenic enzymes
in H295R cells.
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Figure 1. Effects of orexin A and forskolin on the expression of steroidogenic enzymes by human
adrenocortical cells. H295R cells (3 × 105 cells/mL) were treated with orexin A (ORX; 10–300 nM) in
the presence or absence of forskolin (FSK; 1 µM) in serum-free DMEM/F12 for 24 h. Total cellular
RNAs were extracted and the mRNA levels of steroidogenic enzymes, StAR, CYP11B2, CYP17, and
HSD3B1, were standardized by RPL19 mRNA levels and expressed as fold changes. Results are
shown as means ± SEM and were analyzed by the unpaired t-test; *, p < 0.05 vs. basal groups; †,
p < 0.05 vs. FSK alone groups; ‡, p < 0.05 between the indicated groups.
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Next, the effects of orexin on BMP signaling, an inducer of adrenocortical steroido-
genesis, were evaluated using H295R cells. Stimulation with BMP-6 (30 ng/mL) for 1 h
readily activated the phosphorylation of Smad1/5/9 in H295R cells, and pretreatment
with orexin A (300 nM) for 24 h suppressed the Smad1/5/9 phosphorylation induced by
BMP-6 (Figure 2A). Then, the effect of orexin A on the transcription of Id-1, a target gene
of BMP signaling, was examined. As shown in Figure 2B, BMP-6 (30 ng/mL) treatment
for 24 h enhanced Id-1 mRNA expression, whereas co-treatment with orexin A (300 nM)
suppressed the expression of Id-1 induced by BMP-6. These results suggested that orexin A
suppressed BMP signaling in H295R cells.
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Figure 2. Mutual interaction of the signaling of orexin A and BMP in adrenocortical cells. (A) H295R
cells (3 × 105 cells/mL) were pretreated with orexin A (ORX; 300 nM) in serum-free DMEM/F12
for 24 h. After 1 h stimulation with BMP-6 (30 ng/mL), the cells were lysed and then subjected to
immunoblot (IB) analysis by using antibodies that detect pSmad1/5/9 and tSmad1. The integrated
signal density of each protein band was digitally analyzed and the ratios of signal intensities of
pSmad1/5/9/tSmad1 were calculated. The results are representative of those obtained from at
least three independent experiments and are expressed as fold changes. Results are shown as
means ± SEM and were analyzed by the unpaired t-test. (B) H295R cells (3 × 105 cells/mL) were
treated with BMP-6 (30 ng/mL) with or without ORX (300 nM) in serum-free DMEM/F12 for 24 h.
Total RNAs were extracted and the mRNA levels of Id-1 were standardized by RPL19 levels and
expressed as fold changes. Results are shown as means ± SEM and were analyzed by the unpaired
t-test. (C) The expression of mRNAs encoding OX1R, OX2R, and PRL19 was examined by RT-PCR in
H295R cells. (D) H295R cells (3 × 105 cells/mL) were treated with BMP-6 (30 ng/mL) in serum-free
DMEM/F12 for 24 h. Total RNAs were extracted and the mRNA levels of OX1R and OX2R were
standardized by RPL19 levels and expressed as fold changes. Results are shown as means ± SEM and
were analyzed by the unpaired t-test; * p < 0.05 vs. basal groups and between the indicated groups.
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We then confirmed the mRNA expression of OX1R (158 bp) and OX2R (204 bp) in
H295R cells (Figure 2C). Thus, the effects of BMP-6 on orexin receptors were examined. It
was found that treatment with BMP-6 (30 ng/mL) for 24 h significantly downregulated the
expression of OX1R but not that of OX2R (Figure 2D). These results suggested that BMP-6
suppressed the effects of orexin A on H295R cells by downregulating OX1R expression.

To investigate the mechanism by which orexin A suppresses BMP signaling in H295R
cells, we further examined the effects of orexin A on BMP signaling, endogenous BMP-6,
and BMP receptors. It was found that orexin A (300 nM) treatment for 24 h upregulated
the expression of Smad7 (inhibitory Smad; I-Smad) in the presence of BMP-6 (30 ng/mL),
suggesting that orexin suppresses BMP signaling by activating I-Smad (Figure 3A). Orexin
A treatment (300 nM) for 24 h suppressed the expression of endogenous BMP-6 mRNA in
H295R cells (Figure 3B). On the other hand, orexin A (300 nM) tended to upregulate the
expression of ALK-3, ActRII, and BMPRII, in which the expression of ActRII was signifi-
cantly upregulated among the BMP receptor subtypes, suggesting that downregulation of
BMP signaling by orexin A enhances the expression of BMP receptors as a feedback loop
(Figure 3C).
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Figure 3. Effects of orexin A on expression of BMP signaling and endogenous BMP-6 in adrenocortical
cells. (A) H295R cells (3 × 105 cells/mL) were treated with BMP-6 (30 ng/mL) with or without
orexin A (ORX; 300 nM) in serum-free DMEM/F12 for 24 h. Total cellular RNAs were extracted and
the mRNA levels of Smad6 and Smad7 were standardized by RPL19 levels and expressed as fold
changes. Results are shown as means ± SEM and were analyzed by the unpaired t-test; * p < 0.05
vs. basal groups. (B,C) H295R cells (3 × 105 cells/mL) were treated with orexin A (ORX; 300 nM)
in serum-free DMEM/F12 for 24 h. Total RNAs were extracted and the mRNA levels of BMP-6 (B)
and BMP receptors (ALK-2, -3, ActRII, and BMPRII; (C)) were standardized by RPL19 levels and
expressed as fold changes. Results are shown as means ± SEM and were analyzed by the unpaired
t-test; * p < 0.05 vs. basal groups.
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3. Discussion

In the present study, the roles of orexin A and BMP signaling in adrenocortical steroido-
genesis were uncovered in human adrenocortical H295R cells (Figure 4). Orexin A enhanced
the expression of steroidogenic enzymes and further upregulated the expression of these
enzymes induced by FSK. Orexin A suppressed both Smad1/5/9 phosphorylation and
subsequent Id-1 mRNA expression via upregulation of I-Smad. Orexin A suppressed
the expression of endogenous BMP-6 and enhanced the expression of ActRII among the
BMP receptor subtypes, indicating that orexin A suppresses BMP-Smad signaling and
induces BMP receptor expression, possibly as a feedback system. On the other hand,
BMP-6 treatment downregulated OX1R expression. These results suggest that orexin
A and BMP, both of which stimulate adrenocortical steroidogenesis, mutually suppress
the downstream signaling, leading to the fine-tuning of adrenocortical steroidogenesis in
adrenocortical cells.
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Figure 4. Functional interaction of the signaling of orexin A and BMP in adrenocortical cells. Orexin
A (ORX) stimulated the expression of steroidogenic enzymes, including StAR, CYP11B2, CYP17,
and HSD3B1. ORX further upregulated the expression of these steroidogenic enzymes stimulated
by forskolin-induced activation of adenylyl cyclase. ORX suppressed BMP-6-induced Smad1/5/9
phosphorylation and Id-1 mRNA expression via the upregulation of Smad6/7. ORX suppressed the
expression of endogenous BMP-6. On the other hand, BMP-6 downregulated the expression of orexin
receptors (OXRs). Thus, functional interactions between the signaling of orexin A and BMP for the
regulation of adrenocortical steroidogenesis were shown in adrenocortical cells. Dotted lines indicate
inhibitory actions.

In this present study, orexin upregulated the expression of StAR, CYP11B2, CYP17,
and HSD3B1, indicating an increased production of both mineralocorticoids and glucocorti-
coids. Consistent with these results, it was reported that orexins increased the mRNA levels
and protein levels of StAR in H295R cells in a dose-dependent manner and that the effects
were blocked by treatment with an OX1R antagonist [34]. It was also shown that orexins
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increased the promoter activity of CYP11B2, 3β-hydroxysteroid dehydrogenase type 2
(HSD3B2), and to a lesser extent, CYP11B1 and human steroid 21-hydroxylase (CYP21) [40].
Moreover, it was reported that orexin A increased the mRNA and protein expression levels
of 3β-HSD and cortisol secretion by H295R cells in a dose-dependent manner, with 1 µM of
orexin A showing the maximal effect. Of note, the effects were partly blocked by an OX1R
antagonist [41,42]. These results suggest that orexin enhances a wide range of steroido-
genic enzymes that are involved in the synthesis of mineralocorticoids and glucocorticoids.
Likewise, BMP-6 treatment enhanced aldosterone production by upregulating the mRNA
expression of StAR, P450scc, and CYP11B2 among the steroidogenic enzymes by H295R
cells [27,28]. These findings suggested that both orexin and BMP-6 individually stimulate
the expression of steroidogenic enzymes and subsequent adrenal hormone secretion. How-
ever, these stimulatory effects on adrenocortical steroidogenesis interact with each other
and their effects are modulated via the crosstalk of intracellular signaling.

Regarding the signaling mechanisms, it was revealed that the effects of orexins on
adrenocortical steroidogenesis were regulated by OX1R-induced MAPK activation: Gq-
and to a lesser extent Gs-mediated extracellular receptor kinase 1/2 (ERK1/2) and p38
activation [43]. Moreover, it was reported that the upregulation of 3β-HSD and cortisol by
orexin A was blocked by an AKT antagonist [41]. As for BMP signaling, our group has
reported that BMP-6 enhances Ang II-induced aldosterone production via the activation
of MAPK signaling by interacting with ALK-2 and -3, and ActRII [27–30]. In the present
study, it was found that orexin A upregulated the expression of FSK-induced steroidogenic
enzymes and inhibited BMP signaling by influencing I-Smad and ActRII. These results sug-
gest that orexin and BMP actions lead to the maintenance of adrenocortical steroidogenesis
by activating intracellular signaling, a part of which is shared by both of them.

Orexins and orexin receptors are expressed in the adrenal cortex in a species-specific
pattern [14]. It has been demonstrated that both OX1R and OX2R are expressed in the
human adrenal cortex [10,44]. Regarding the localization of orexin receptors in the human
adrenal cortex, OX1R is expressed in all three layers (zona glomerulosa, fasciculata, and
reticularis) of the adrenal cortex [37,45]. Mazzocchi et al. revealed that OX2R is expressed
in the zona fasciculata and reticularis [37], and Randeva et al. showed that OX2R is
expressed in the zona glomerulosa and reticularis [46]. As for the physiological roles
of the receptors, multiple reports showed that orexin A modulates steroidogenesis via
OX1R rather than OX2R in human adrenocortical cells, which was proven by the selective
blockade of OX1R [10,41,43]. In the present study, it was elucidated that both OX1R and
OX2R were expressed in H295R cells and that BMP-6 treatment inhibited the expression
of OX1R. It is thought that the effects of orexin via OX1R are modulated by the local BMP
system in adrenocortical cells.

It has been revealed that BMPs, as well as orexin, are among the important accel-
erators of adrenocortical steroidogenesis and are functionally involved in the control of
blood pressure. In our previous studies, it was revealed that BMP-6 enhances Ang II-
induced aldosterone production via activation of MAPK signaling in human adrenocortical
cells [27,28] and in the rat adrenal gland [47]. It is of note that endogenous BMP-6 [29,47]
plays functional roles and that BMP-6 in the adrenal cortex may contribute to the phe-
nomenon of aldosterone breakthrough, in which aldosterone concentration increases above
pretreated levels after long-term therapy with an angiotensin-converting enzyme (ACE) in-
hibitor or an Ang II type 1 receptor blocker (ARB) [30]. Moreover, Farnworth et al. revealed
that inhibin A, another member of the TGF-β superfamily, antagonized the inhibitory
effects of BMP-6 on CYP17 expression and 17α-hydroxyprogesterone production in mouse
adrenocortical cells [48], which indicates that adrenocortical cells have an intrinsic regula-
tory system of endogenous BMP-6 function. These results indicate that not only orexin but
also BMP-6 are functionally involved in the regulation of adrenocortical steroidogenesis
and the control of blood pressure. The results of the present study explain the functional
interactions of these stimulants of adrenocortical steroidogenesis and may lead to a further
understanding of the regulatory mechanism of hypertension.
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It has been revealed that orexin also plays physiological roles in the HPA axis. Orexin
receptors are expressed at all levels of the HPA axis, including corticotropin-releasing
hormone (CRH)-synthesizing neurons in the parvocellular part of the paraventricular
nucleus (PVH), corticotrope cells in the pituitary, and also in the adrenal cortex [12]. Central
injection of orexins increases the mRNA expression of CRH and arginine vasopressin (ADH)
in CRH-synthesizing parvocellular neurons, and the increase in expression is accompanied
by increases in circulating levels of ACTH and glucocorticoid [5,49,50]. Given that the
central effect of orexins was inhibited by pretreatment with a CRH antagonist [50], it is
presumed that orexin activates hypothalamic CRH-producing neurons and the subsequent
activation of the HPA axis. In addition, it has been reported that orexin enhances basal but
not ACTH-stimulated glucocorticoid secretion and that antagonizing the ACTH receptor
blunted the corticosterone response to ACTH but not to orexin [37]. Therefore, it is also
possible that orexin has secretagogue effects on adrenal steroids independent of its effects
on the HPA axis. Moreover, in our previous study, it was found that BMP-4 suppressed
ACTH secretion and that orexin A enhanced pro-opiomelanocortin (POMC) transcription
by upregulating CRH receptor signaling and downregulating BMP-Smad signaling [51–53].
Taken together, the results indicate that orexin and the BMP system mutually activate
adrenocortical steroidogenesis both directly and indirectly by influencing multiple levels in
the HPA axis.

Collectively, the results of the present study indicate that orexin stimulates adrenocor-
tical steroidogenesis in FSK-free and FSK-induced conditions and that orexin and BMP-6
modulate steroidogenesis by suppressing each other’s downsignaling in the adrenal cortex.
It was shown that orexin and the BMP system control adrenocortical steroidogenesis directly
and via the activation of the HPA axis. Further research on the functional interaction be-
tween orexins and the endogenous BMP system in the adrenal cortex could expand our un-
derstanding of the pathophysiology of the secretory regulation of adrenocortical steroids.

4. Materials and Methods
4.1. Experimental Reagents

Forskolin (FSK) was purchased from Sigma-Aldrich Co. Ltd. (St. Louis, MO, USA)
and recombinant human BMP-6 was purchased from R&D Systems Inc. (Minneapolis, MN,
USA). Human orexin A was purchased from Wako Pure Chemical Industries, Ltd. (Osaka,
Japan). The H295R human adrenocortical cell line was cultured in DMEM/F12 containing
10% FBS supplemented with insulin-transferrin-selenium (ITS-G; Thermo Fisher Scientific,
Waltham, MA, USA) with 5% CO2 at 37 ◦C [27].

4.2. Quantitative Real-Time PCR Analysis

H295R cells (3 × 105 cells/mL) were treated with FSK (1 µM), BMP-6 (30 ng/mL), and
orexin A (10 to 300 nM) in serum-free DMEM/F12 in 12-well plates for 24 h. Total RNAs
were extracted using TRI Reagent® (Cosmo Bio Co., Ltd., Tokyo, Japan) and then RNA con-
centrations were evaluated using the NanoDropTM One spectrophotometer (Thermo Fisher
Scientific) and the LightCycler® 96 system (Roche Diagnostic Co., Tokyo, Japan). Primer
pairs for PCR were determined from different exons to eliminate PCR products derived
from chromosomal DNA. Primer pairs for steroidogenic acute regulatory protein (StAR), in-
hibitor of DNA binding 1 (Id-1), Smad6, Smad7, activin receptor-like kinase (ALK)-2 and -3,
activin type-II receptor (ActRII), BMP type-II receptor (BMPRII), and ribosomal protein L19
(RPL19), a housekeeping gene, were prepared as we reported previously [54]. Primer pairs
for cytochrome P450 family 11 subfamily B member 2 (CYP11B2), cytochrome P450 family
17 subfamily A member 1 (CYP17), and 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1)
were prepared according to other reports [31,33]. Other primer pairs were prepared as fol-
lows: OX1R, 214–233 and 352–371 (from GenBank accession #NM_001525); OX2R, 113–132
and 297–316 (NM_001384272); BMP-6, 1760–1779 and 1912–1931 (NM_00718). Reverse
transcription was performed using ReverTra Ace® (TOYOBO CO., LTD., Osaka, Japan),
and quantitative PCR (qPCR) analysis was then performed using the MyGo Pro qPCR
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Instrument (IT-IS Life Science Ltd., Dublin, Ireland) after optimizing the annealing con-
ditions. The relative mRNA expression of the target genes was evaluated by using the
∆ threshold cycle (Ct) method. The values of ∆Ct were calculated by subtracting the Ct
values of RPL19 from those of the target genes. Each target mRNA level, normalized to the
RPL19 mRNA level, was expressed as 2−(∆∆Ct). The results are shown as ratios of target
mRNA to RPL19 mRNA.

4.3. Western Immunoblotting Analysis

H295R cells (3 × 105 cells/mL) were pretreated with orexin A (300 nM) in serum-free
DMEM/F12 for 24 h. After stimulation with BMP-6 (30 ng/mL) for 1 h, the cells were solu-
bilized using a sonicator in 100 µL RIPA lysis buffer (Upstate Biotechnology, Lake Placid,
NY, USA) containing 1 mM Na3VO4, 1 mM NaF, 2% SDS, and 4% β-mercaptoethanol. The
cell lysates were then subjected to SDS-PAGE/immunoblotting analysis using antibod-
ies against phospho-Smad1/5/9 (pSmad1/5/9) and total-Smad1 (tSmad1; Cell Signaling
Technology, Inc., Beverly, MA, USA). The integrated signal density of each protein was
analyzed using the C-DiGit® Blot Scanner System (LI-COR Biosciences, Lincoln, NE, USA).
To evaluate phospho-Smad1/5/9 levels, the ratios of the signal intensities of phospho-
Smad1/5/9/total-Smad1 were calculated.

4.4. Statistics

All data were obtained from at least three independent experiments performed in
triplicate. All of the results are shown as means ± SEM. Statistical analysis was performed
using an unpaired t-test. The p values < 0.05 were accepted as statistically significant.
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