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Abstract: Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and
mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the im-
mune response; therefore, the contribution of 17β-estradiol and testosterone to this phenomenon has
been studied. Both hormones differentially affect several aspects of innate and adaptive immunity.
Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in
higher concentrations in humans, with immunomodulatory properties in different parasitic dis-
eases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the
case of malaria, the only information is that higher levels of DHEA are associated with reduced
Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to
the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying
the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines,
and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei
ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ,
IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a
and IgG3 antibodies. The results presented here show that DHEA modulates the immune response
against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present
in malaria.

Keywords: DHEA; Plasmodium; gonadectomy; sexual dimorphism; IL-2; IL-4; IFN-γ; IgG

1. Introduction

Malaria is the deadliest parasitic disease; in 2021, it caused 627,000 deaths [1] and
is a clear example of sexual dimorphism in which males develop higher mortality than
females [2,3]. In general, women exhibit more robust innate and adaptive immune re-
sponses against infectious agents and eliminate Plasmodium more efficiently than men.
Although this sexual condition is accepted, few articles have analyzed this phenomenon
in both sexes [4]. 17β-estradiol and testosterone are involved in the sexual dimorphism
that occurs in the immune response in malaria [5–7]. Both hormones modify survival
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and cellular and humoral immune responses in Plasmodium infections [2,8,9]. DHEA is
the precursor hormone of testosterone and 17β-estradiol and has important immunopo-
tentiating properties [10]. DHEA modulates immune response, cell activity and cytokine
concentration [11], and this hormone increases macrophage and natural killer (NK) cell
activity [12,13] and promotes the maturation of CD4+ T cells and their secretion of inter-
feron (IFN) [14]. Furthermore, DHEA boosts the immune response in the bacterial [15],
viral and parasitic diseases [16]. In parasitic diseases, DHEA has been shown to promote
the immune response in patients infected with Trypanosoma cruzi, decreasing parasitemia
and TNF-α levels [17]. Furthermore, increased DHEA concentration has been associated
with reduced infection by Schistosoma japonicum and Schistosoma mansoni [18,19]. Addi-
tionally, DHEA promotes the Th1-type response and consequently promotes recovery
in patients with Leishmania mexicana [20]. In the Plasmodium berghei infection, the DHEA
analog (16α-bromoepiandrosterone) decreases parasitemia in vitro and in vivo [21]. These
findings show that DHEA modulates the immune response in parasitic diseases, and all of
them exhibit sexual dimorphism [22]. Unfortunately, DHEA participation in the immune
response against Plasmodium-infected individuals of both sexes has not yet been studied.
Sexual dimorphism is a highly complex phenomenon involving sex hormones, genetic
differences and even behavior between the sexes [4]. Due to the immunomodulatory
properties of DHEA, it is likely that DHEA also contributes to sexual dimorphism in the
immune response to Plasmodium because together with its sulfated form (DHEA-S), DHEA
constitutes the steroid hormone at the highest concentration [23]. Moreover, DHEA posi-
tively regulates the immune response [24]. Particularly in malaria, it has been associated
with lower parasitemia in Plasmodium falciparum-infected individuals and high hemoglobin
concentrations [25,26]. However, the mechanisms that explain these findings are unknown.
The purpose of this work is to analyze whether DHEA is involved in the sexual dimor-
phism of the immune response in malaria. To this end, we modified the concentration of
this hormone in vivo in male and female mice that were infected with P. berghei ANKA;
we evaluated the impact on parasitemia, immune cells in the spleen (CD3+, CD4+, CD8+,
CD19+, macrophages and NK cells), pro- and anti-inflammatory cytokines and IgG and
IgM levels.

To our knowledge, this work is the first report documenting the dimorphic participa-
tion of DHEA in the immune response to malaria and contributes to a better understanding
of the differences between sexes that could support the future development of sex-specific,
more efficient, anti-malarial therapies.

2. Results
2.1. DHEA Administration Dramatically Increased DHEA Levels in Mice Infected with
P. berghei ANKA

We used a previously calibrated dose that increased DHEA concentration in vivo in
mice [27]. All DHEA-treated groups showed markedly increased DHEA concentrations
regardless of whether they were infected or gonadectomized (Figure 1A,B); furthermore, we
detected that infection generated a dimorphic pattern by decreasing DHEA concentrations
in intact females compared to males under the same conditions (Figure 1B).

2.2. Effects of Modifying DHEA Concentration on Temperature and Hemoglobin Concentration in
Mice Infected with P. berghei ANKA

Quantifying weight loss, hypothermia and decreased hemoglobin levels provides
insight into disease severity in CBA/Ca mice infected with P. berghei ANKA [6]. We did
not detect differences depending on DHEA concentration on body weight; we also did not
detect a dimorphic pattern in temperature or hemoglobin concentration (Supplementary
Figures S1 and S2).
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Figure 1. Effect of modifying DHEA levels on plasma steroid concentrations in male and female
mice infected with P. berghei ANKA. Eight groups of male mice and eight groups of female mice
were used; four groups of each sex were gonadectomized (Gx), and the other four groups remained
intact as controls. Four weeks after surgery, two Gx and 2 intact groups were treated with DHEA
for 5 days. The day after the last administration, one group of Gx and one of the intact mice of
each sex were infected with P. berghei ANKA, and the remaining groups were injected with PBS as
infection control groups. On day 8 post infection or on the equivalent day in uninfected groups,
the mice were sacrificed, heart blood was extracted, and plasma was separated to determine the
plasma concentration of DHEA. Uninfected groups are represented in (A) and infected groups in
(B). The histogram represents the mean of each group ± SEM mean standard error (n = 10). Lines
above the histogram represent significant differences between groups. Asterisks (*) indicate statistical
significance between 2 groups * (p ≤ 0.05), ** (p ≤ 0.01), and **** (p ≤ 0.0001). The significance
between groups was calculated with two-way ANOVA with a Bonferroni post hoc test. The whole
experiment was performed twice.

2.3. DHEA Administration to Intact Male Mice Increased Parasitemia

Intact females exhibited higher parasitemia than intact males, particularly on days 5
and 6 post infection, inducing a dimorphic pattern (Figure 2A). In contrast to our expec-
tations, DHEA administration to intact mice eliminated the differences between sexes by
increasing parasitemia only in intact males (Figure 2B,E). Additionally, gonadectomy did
not modify parasitemia in either sex, maintaining the dimorphic pattern (Figure 2C,E).
Furthermore, the reconstitution of Gx mice with DHEA increased parasitemia in both sexes
on day 6 postinfection (Figure 2D); in addition, the reconstitution of Gx mice with DHEA
prior to infection eliminated the dimorphic pattern (Figure 2E). Finally, increasing DHEA
administration to 40 mg/kg did not modify parasitemia (Figure S3).

2.4. Reducing the DHEA Concentration Generated a Dimorphic Pattern in the CD3+, CD19+ and
NK Cell Populations of Uninfected Mice

Because the spleen is the central organ where the immune system eliminates Plasmodium,
infection with this parasite induces significant changes in size, architecture and cellular
composition [28]. In this work, we evaluated whether modifying DHEA levels affects the
central cell populations of the immune response in the spleen. No differences were de-
tected in the CD3+ population between uninfected intact males and females; gonadectomy
generated a dimorphic pattern in which females had a higher number of CD3+ cells than
males in the absence of infection. Additionally, the reconstitution of Gx mice with DHEA
decreased the number of CD3+ cells, which eliminated the dimorphic pattern (Figure 3A).
Interestingly, infection decreased this population in all intact groups, and gonadectomy
reduced the number of CD3+ cells in the infected groups (Figure 3A). Regarding the CD4+

cells, gonadectomy reduced this population in uninfected females; however, reconstituting
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Gx mice with DHEA did not restore their CD4+ population, and no changes were detected
in infected mice (Figure 3B). Concerning CD8+ cells, we detected that intact uninfected
females exhibited higher numbers of CD8+ cells than males under the same conditions,
generating a sex-associated pattern, and DHEA administration further increased this differ-
ence. In addition, gonadectomy decreased this population, which eliminated the dimorphic
pattern. Moreover, infection completely depleted this population only in the intact groups;
in contrast, all Gx and infected groups dramatically increased CD8+ numbers regardless of
DHEA concentration (Figure 3C).
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Figure 2. Effect of DHEA on parasitemia in male and female mice infected with P. berghei ANKA.
Four groups of male mice and four groups of female mice were used; two groups of each sex were
gonadectomized (Gx), and the other two groups remained intact as controls. Four weeks after surgery,
two Gx and 2 intact groups were treated with DHEA for 5 days. The day after the last administration,
one group of Gx and one intact group of each sex were infected with P. berghei ANKA (day zero),
and the remaining groups were injected with PBS as infection control groups. Parasitemia was
assessed daily from day 3 post infection. Parasitemia of intact male and female mice are shown
in (A); parasitemia of DHEA-treated mice in (B); parasitemia of Gx mice in (C); parasitemia of Gx
DHEA-treated mice in (D); and the area under the curve (AUC) of the above groups is shown in (E).
Graphs represent the mean of each group ± SEM (n = 10). Asterisk (*) indicates statistical significance
between 2 groups (p ≤ 0.05) and *** (p ≤ 0.001) calculated with two-way ANOVA and Bonferroni
post hoc test. The whole experiment was performed twice.

Regarding the macrophage (CD107b+) population, uninfected intact females had a
higher number of this population than males under the same conditions, exhibiting a dimor-
phic pattern. When DHEA was administered to uninfected mice, the dimorphic pattern was
maintained; in addition, gonadectomy decreased this cell population only in females, elimi-
nating the dimorphic pattern (Figure 4A). Furthermore, infection increased macrophage
numbers in intact vehicle-treated males and DHEA-treated Gx females (Figure 4A).
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Figure 3. Effect of modifying DHEA levels on CD3+, CD3+/CD4+ and CD3+/CD8+ cell populations
of male and female mice, uninfected and infected with P. berghei ANKA. Eight groups of male mice
and eight groups of female mice were used; four groups of each sex were gonadectomized (Gx),
and the other four groups remained intact. Four weeks after surgery, two Gx and 2 intact groups
were administered DHEA for 5 days. The day after the last administration, one group of Gx and
one group of intact mice of each sex were infected with P. berghei ANKA, and the remaining groups
were injected with PBS as infection control groups. On day 8 postinfection, mice were sacrificed,
spleens were removed and immune response cells were evaluated by flow cytometry. In the dot plot,
the rectangle frames 100% of the cells positive for CD3+, CD4+ or CD8+ markers. The bar graphs
represent the average number of cells in each group ± SEM. CD3+ lymphocytes are represented in
(A), helper T cells (CD4+) in (B), cytotoxic T cells (CD8+) in (C). Lines above histograms represent
significant differences between groups (n = 10). Asterisks (*) indicate statistical significance between
groups * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) and **** (p ≤ 0.0001). The significance between groups
was calculated with two-way ANOVA with a Bonferroni post hoc test. The whole experiment was
performed twice.
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Figure 4. Effect of modifying DHEA levels on macrophage (CD107b+), B-cell (CD19+) and NK cell
(CD3−CD16+/CD32+) populations of male and female mice, uninfected and infected with P. berghei
ANKA. Eight groups of male mice and eight groups of female mice were used; four groups of
each sex were gonadectomized (Gx), and the other four groups remained intact. Four weeks after
surgery, two Gx and 2 intact groups were administered DHEA for 5 days. The day after the last
administration, one group of Gx and one group of intact mice of each sex were infected with P. berghei
ANKA, and the remaining groups were injected with PBS as infection control groups. On day 8 post
infection, mice were sacrificed, spleens were removed and immune response cells were evaluated
by flow cytometry. In the dot plot, the rectangle frames 100% of the cells positive for CD107b+ or
CD19+ or CD16+/CD32+ markers. The bar graphs represent the average number of cells in each
group ± SEM. Macrophages (CD107b+) are represented in (A), B cells (CD19+) in (B), and NK cells
(CD3−/CD19−/CD16+/CD32+) in (C). Lines above histograms represent significant differences
between groups (n = 10). Asterisks (*) indicate statistical significance between 2 groups * (p ≤ 0.05),
** (p ≤ 0.01), *** (p ≤ 0.001) and **** (p ≤ 0.0001). The significance between groups was calculated
with two-way ANOVA with a Bonferroni post hoc test. The whole experiment was performed twice.

Regarding B cells (CD19+), DHEA administration to intact uninfected mice generated
a dimorphic pattern; females exhibited higher numbers of CD19+ cells than males under
the same conditions; additionally, gonadectomy considerably decreased this population,
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particularly in females, which also generated a dimorphic pattern that did not change
after DHEA reconstitution (Figure 4B). Gonadectomy decreased the number of CD19+ cells
exclusively in infected females (Figure 4B).

Finally, gonadectomy increased the NK population only in uninfected females, which
induced a dimorphic pattern that did not change with DHEA administration. In infected
mice, changing the DHEA concentration did not affect this population (Figure 4C).

2.5. DHEA Generated a Dimorphic Pattern in the Concentrations of IFN-γ, IL-2 and IL-4

Given that immune response cells produce cytokines and malaria severity is associated
with elevated concentrations of TNF-α, IL-6 and IL-10 [29,30]. Additionally, DHEA de-
creases IFN-γ synthesis and increases IL-10 levels in vitro [31]. Therefore, we assessed the
concentrations of pro- and anti-inflammatory cytokines. No differences in IFN-γ concentra-
tion were detected between intact male and female mice or Gx mice treated with the vehicle
without infection; furthermore, DHEA administration increased IFN-γ concentration only
in uninfected females (Figure 5A). In general, infection increased the IFN-γ concentra-
tion in intact animals treated with vehicle or DHEA. Administering DHEA decreased the
IFN-γ concentration only in intact infected females, which induced a dimorphic pattern
(Figure 5A). Regarding TNF-α, in general, males exhibited higher levels than females,
although the increase was not significant; the infection increased the TNF-α concentration
in the intact groups; however, DHEA administration did not significantly modify the con-
centration of this cytokine (Figure 5B). Concerning IL-2, gonadectomy in uninfected mice
resulted in a dimorphic pattern, with males having higher IL-2 concentrations than females
under the same conditions. Reconstituting Gx mice with DHEA dramatically decreased
the IL-2 concentration in uninfected Gx males, eliminating the dimorphic pattern. In in-
fected mice, gonadectomy increased the IL-2 concentration only in vehicle-treated females,
and reconstitution of Gx mice with DHEA significantly decreased the IL-2 concentration
exclusively in females, resulting in a dimorphic pattern (Figure 5C).

Regarding IL-10, modifying the concentration of DHEA did not change the concentra-
tion of this cytokine in uninfected mice. In addition, infection increased the concentration
of IL-10 in intact females, generating a dimorphic pattern in which females exhibited a
higher concentration of IL-10 than males. DHEA administration eliminated this dimorphic
pattern. Furthermore, gonadectomy decreased the concentration of IL-10 only in infected
females, and reconstitution of Gx females with DHEA did not restore the concentration of
this cytokine in infected females (Figure 5D).

Related to IL-4, DHEA-reconstituted Gx mice in the absence of infection had decreased
IL-4 concentrations, whereas, in infected mice, DHEA-reconstituted male Gx mice had
higher IL-4 concentrations than females under the same conditions, resulting in a sex-
dependent pattern (Figure 6A). Concerning IL-6, the reconstitution of Gx mice with DHEA
without infection increased IL-6 concentrations in both sexes. However, neither gonadec-
tomy nor infection changed the IL-6 concentration (Figure 6B). Finally, infection or DHEA
administration did not change the IL-17 concentration (Figure 6C).

2.6. Reconstitution of Gx Males with DHEA Increased the Concentration of the IgG Subclass

Antibodies are required to eliminate the Plasmodium parasite [32]; in addition, DHEA
has been reported to regulate antibody synthesis in mice [33]; thus, we tested whether
modifying DHEA concentration affects antibody levels. DHEA administration did not
significantly modify the IgM concentration or total IgG in the intact or Gx mice (Figure 7A,B).
Nevertheless, when we evaluated IgG subclasses, we detected that the reconstitution of
gonadectomized mice with DHEA increased the levels of IgG1, IgG2a, IgG2b and IgG3
exclusively in males (Figure 7C–F). To determine whether the immune response was
polarized to a Th1 or Th2 type, the IgG1/IgG2a ratio was assessed. As the ratio in all
groups was lower than one, DHEA promoted a Th1 response (Figure 7G).
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Figure 5. Effect of modifying DHEA levels on the plasma concentration of cytokines: IFN-γ, TNF-α,
IL-2 and IL-10 in uninfected and infected male and female mice with P. berghei ANKA. Eight groups of
male mice and eight groups of female mice were used; four groups of each sex were gonadectomized
(Gx), and the other four groups remained intact. Four weeks after surgery, two Gx and two intact
groups were reconstituted with DHEA for 5 days. On the day following the last administration,
one group of Gx and one of the intact mice of each sex were infected with P. berghei ANKA, and
the remaining groups were injected with PBS as infection control groups. On day 8 post infection,
mice were sacrificed and plasma was obtained to quantify the levels of the cytokines IFN-γ (A),
TNF-α (B), IL-2 (C) and IL-10 (D). Determination was performed by flow cytometry. Histograms
represent the mean of each group ± SEM (n = 10). The lines above histograms represent significant
differences between groups. Asterisks (*) indicate statistical significance between 2 groups * (p ≤ 0.05),
** (p ≤ 0.01), *** (p ≤ 0.001) and **** (p ≤ 0.0001). The significance between groups was calculated
with two-way ANOVA with a Bonferroni post hoc test. The whole experiment was performed twice.
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Figure 6. Effect of modifying DHEA levels on the plasma concentration of the cytokines IL-4, IL-6
and IL-17 in uninfected and infected male and female mice with P. berghei ANKA. Eight groups of
male mice and eight groups of female mice were used; four groups of each sex were gonadectomized
(Gx), and the other four groups remained intact. Four weeks after surgery, two Gx and two intact
groups were reconstituted with DHEA for 5 days. On the day following the last administration,
one group of Gx and one of the intact mice of each sex were infected with P. berghei ANKA, and the
remaining groups were injected with PBS as infection control groups. On day 8 post infection, mice
were sacrificed, and plasma was obtained to quantify the levels of the cytokines IL-4 (A), IL-6 (B) and
IL-17 (C). Determination was performed by flow cytometry. Histograms represent the mean of each
group ± SEM (n = 10). Lines above histograms represent significant differences between groups.
Asterisks (*) indicate statistical significance between 2 groups * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001)
and **** (p ≤ 0.0001). The significance between groups was calculated with two-way ANOVA with a
Bonferroni post hoc test. The whole experiment was performed twice.
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Figure 7. Effect of modifying DHEA levels on plasma concentration of total IgM and IgG, IgG1,
IgG2a, IgG2b and IgG3 antibodies of male and female mice infected with P. berghei ANKA. Eight
groups of male mice and eight groups of female mice were used; four groups of each sex were
gonadectomized (Gx), and the other four groups remained intact. Four weeks after surgery, two
Gx and 2 intact groups were treated with DHEA for 5 days. The day after the last administration,
one group of Gx and one of the intact mice of each sex were infected with P. berghei ANKA, and the
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remaining groups were injected with PBS as infection control groups. On day 8 post infection, all mice
were sacrificed, and plasma was separated to determine the levels of antibodies: IgM (A), total IgG (B),
IgG1 (C), IgG2a (D), IgG2b (E), and IgG3 (F). Additionally, the IgG1/IgG2a ratio (G) was calculated.
Histograms represent the mean of each group ± SEM, (n = 10). Lines above histograms represent
significant differences between groups. Asterisks (*) indicate statistical significance between groups
** (p ≤ 0.01), *** (p ≤ 0.001) and **** (p ≤ 0.0001). The significance between groups was calculated
with two-way ANOVA and a Bonferroni post hoc test. The whole experiment was performed twice.

3. Discussion

To evaluate the participation of DHEA in the sexual dimorphism that occurs in the
immune response against P. berghei ANKA, we modified the concentration of DHEA in male
and female mice. We decreased its levels by gonadectomy or increased it by exogenous
administration. After treatments, mice were infected with P. berghei ANKA. We found that
gonadectomy, infection and DHEA administration generated sex-associated patterns.

We first demonstrated that the dose of DHEA we administered increased its con-
centration in plasma. This effect is consistent with that described by Medina et al., who
reported that subcutaneous DHEA administration increases the concentration of this steroid
up to 24 times on day 7 post treatment [34]. However, in our work, gonadectomy only
decreased DHEA concentration by a trend; a likely explanation for this finding is that
since gonadectomy was performed four weeks prior to infection, the mouse censored its
deficiency and was able to synthesize DHEA at extragonadal sites [35]. In addition, we
found that DHEA did not change body weight, temperature, or hemoglobin concentration.
However, gonadectomy decreased the temperature in the uninfected groups in both sexes.
It is possible that this surgery, by decreasing the concentration of 17β-estradiol [7], dereg-
ulated thermogenesis in adipose tissue [36]. In addition, DHEA increases mitochondrial
FADH2 synthesis, resulting in heat generation [37]. In a further finding, gonadectomy
increased hemoglobin concentration, which is an unexpected result because high levels
of DHEA are associated with increased hemoglobin concentration [26]. This increase is
likely to be a consequence of the reduction in 17β-estradiol concentration, as it negatively
regulates the erythropoietin synthesis [38]. In addition, gonadectomy in male rats has been
reported to increase erythropoietin levels [39]. We also analyzed the effect of modifying
DHEA concentration on parasitemia, detecting that intact and Gx-infected females treated
with vehicle had higher parasitemia than males; interestingly, this dimorphic pattern was
eliminated when DHEA was administered, as it increased parasitemia in intact males
without affecting female mice; then, we tried a higher dose (40 mg/kg), but the result
was the same (Supplementary Figure S3). To our knowledge, ours is the first report that
DHEA increases parasite load. In contrast, Freilich et al. reported that the DHEA analog
16α-bromoepiandrosterone decreases parasitemia in P. berghei ANKA-infected rats [21], and
it is likely that this difference is due to DHEA presenting higher affinity for the androgen
receptor than 16α-bromoepiandrosterone [40]. Our result also contrasts with that described
by dos Santos et al. in Trypanosoma cruzi infection [41]. A probable explanation is the
parasite used, as we experimented with P. berghei ANKA in an in vivo study. In addition, it
is likely that these discrepancies are because immune response cells have different numbers
of receptors for DHEA in males than in females [42], which also vary depending on whether
the mice are intact or gonadectomized [43].

Because the spleen is the leading site of Plasmodium destruction, we analyzed the
effect of modifying DHEA levels on the central cells of the immune response in the spleen.
We found that uninfected Gx females exhibited higher numbers of CD3+ cells than males
under the same conditions; this result corresponds with the dimorphic pattern found in
IL-2 concentration in this group. Most likely, IL-2, in addition to promoting CD3+ cell
proliferation, it also regulates the process of apoptosis mediated by FASL expression in T
cells [44]. This explanation is supported by the disappearance of the dimorphic pattern
in T cells when DHEA was administered to Gx mice. In contrast, Cao et al. described
that administering DHEA increases both T-lymphocyte proliferation and IL-2 concentra-
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tion [13]. This difference could be explained because the Cao group administered a dose of
14.42 µg/kg DHEA orally, while we used 8 mg/kg DHEA subcutaneously. Furthermore,
infection decreased the number of CD3+ cells in intact vehicle- or DHEA-treated females
and vehicle-treated Gx females compared to their uninfected controls. A likely explanation
is that Plasmodium infection induces apoptosis in this cell population [45].

In this study, uninfected intact females had higher numbers of CD3+/CD8+ cells than
males under the same conditions, which corroborates the findings of Arsenovic et al.,
who demonstrated that female rats have higher numbers of CD8+ T lymphocytes than
males [46]. We show that DHEA administration increased the number of CD3+/CD8+ cells
in uninfected female mice, further accentuating the dimorphic pattern of this population. A
probable explanation is that DHEA at high concentrations binds to ERα and Erβ (estrogen
receptors) [47], and this interaction induces the proliferation of T-lymphocytes [48]. How-
ever, this possibility requires experimental demonstration in our model. Moreover, infection
decreased the number of CD3+/CD8+ cells in intact males and females, corresponding with
the decrease in total CD3+ cells during infection. This result is likely due to Plasmodium
infection inducing apoptosis of CD3+/CD8+ T cells in the spleen [49]. Another possibility
is that TCD3+/CD8+ lymphocytes migrate to lymphoid nodules or to the brain [50–52]. In
addition, modifying the DHEA concentration did not change the number of macrophages
in any group, which is probably why DHEA did not decrease parasitemia in our malaria
model. Regarding CD19+ cells, DHEA administration did not modify this population;
nevertheless, gonadectomy decreased it in both uninfected and infected females treated
with vehicle. This effect is probably due to the loss of estrogen regulation of CD19+ cells by
removing the gonads, as previously shown [6,53].

Finally, gonadectomy induced a dimorphic pattern in the NK cell population, with
Gx-uninfected male mice showing higher numbers of NK cells than females under the
same conditions. This dimorphic pattern may be associated with Gx males developing
higher IL-2 concentrations than Gx females, as IL-2 is one of the main factors promoting
NK cell proliferation [54]. In summary, DHEA administration decreased the concentration
of IL-2 in Gx females, which increased the number of CD3+/CD8+ T cells.

Immune cells modulate immunity by secreting cytokines. In this work, we detected
that infection with P. berghei ANKA increased the concentrations of IFN-γ and TNF-α,
which corroborates what has been previously described [55]. In addition, DHEA adminis-
tration decreased the concentration of IFN-γ in intact infected females compared to intact
infected males, resulting in a sex-associated pattern. This pattern corresponds to the lower
concentration of IFN-γ in DHEA-treated female rats infected with Trypanosoma cruzy com-
pared to male rats under the same conditions [56], which indicates that DHEA modulates
cytokine production differently in males and females. Furthermore, DHEA inhibits the in-
flammatory response by preventing NF-κB translocation and PI3K-mediated signaling [57],
which promotes the activation of lymphocytes. Finally, it is also likely that DHEA decreases
IFN-γ secretion by modulating NK cells, which are the main IFN-γ expressing cells in the
spleen [49].

On the other hand, gonadectomy increased the IL-2 concentration in males compared
to females without infection, resulting in a dimorphic pattern. Interestingly, this sex-
associated pattern was eliminated when DHEA was administered, which corroborates
the findings of Pratschke et al. who reported that DHEA administration decreases IL-2
synthesis in lymphocytes from patients with abdominal surgery. [58]. In contrast, in the
infected groups, the reconstitution of Gx mice with DHEA decreased the IL-2 concentration
in females only, resulting in a sex-dependent pattern.

Furthermore, infection increased the IL-10 concentration exclusively in intact females,
resulting in a dimorphic pattern that was eliminated by DHEA administration. Interest-
ingly, this group had the lowest DHEA concentration and the highest IL-10 levels. This
finding corresponds with that described in patients with systemic lupus erythematosus in
whom DHEA administration decreases their IL-10 concentration [59]. Another possible
explanation is the reciprocal regulation between the concentration of the cytokines IFN-γ
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and IL-10 in Plasmodium infection [60], which is relevant given that IL-10 decreases the
incidence of cerebral malaria and modulates the effects of IFN-γ [61,62]. Moreover, Omer
and Riley demonstrated that TGF-β, in addition to increasing IL-10 concentration, improves
survival and decreases parasitemia in Plasmodium berghei infected mice [63]. Given that Treg
cells are important for regulating inflammation by producing TGF-β [64] and that DHEA
modulates the proliferation of Tregs [65], it would be important to evaluate the effect of
DHEA on TGF-β concentration as well as to assess the population of Tregs to understand
the immunoregulation exerted by DHEA in this disease.

An interesting finding is that modifying the concentration of DHEA in infected mice
only affected the concentration of IL-2 and IL-4 in Gx females, which generated dimor-
phic patterns depending on sex, a likely explanation being that IL-2 is required for IL-4
synthesis [66]. In addition, DHEA administration decreased the IL-4 concentration in
uninfected Gx males, which was expected given that this steroid suppresses the Th2-type
response [13,67]. Regarding IL-6, DHEA administration increased the levels of this cy-
tokine in uninfected Gx male and female mice, an effect that differs from that reported
by Sudo et al., who described that DHEA administration suppressed IL-6 levels [33]. The
discrepancy in this result is probably because we performed the determination in Gx mice,
and hormones produced in the gonads, such as testosterone, also upregulate the synthesis
of this cytokine [68].

Related to the antibody levels, reconstituting Gx and infected males with DHEA
increased the concentration of IgG1, IgG2a, IgG2b and IgG3 antibodies in plasma. This
finding corroborates the results of Cheng and Tseng, who described that DHEA administra-
tion increases the concentrations of IgM and IgG [69]. In addition, regardless of treatment
or sex, the IgG1/IgG2a ratio was less than one, suggesting a predominance of the Th1-type
response characteristic of P. berghei infections [70]. However, only DHEA-treated and
infected Gx males exhibited increased IgG1, IgG2a, IgG2b and IgG3 levels. A probable
explanation is that DHEA decreased the IL-4 concentration in Gx females under the same
conditions, and this cytokine is a growth and differentiation factor for B lymphocytes that
promotes their differentiation into antibody-producing cells [71].

The increase in antibody concentration induced by DHEA is important because it is
associated with reduced disease severity [72]. It is critical to note that gonadectomy and
DHEA administration could also affect testosterone and 17β-estradiol levels, which could
influence the interpretation of the results.

While the molecular mechanisms by which DHEA modifies immune function in
malaria remain to be revealed, Vargas-Villavicencio et al. have shown that DHEA adminis-
tration increases androgen receptor (AR) expression in the spleen [27]. In addition, DHEA
also binds estrogen receptors ERα and ERβ [40], suggesting that DHEA interacts with
the AR, ERα and ERβ present in immune response cells and acts through mechanisms
involving a classical nuclear receptor in the immune system, although the affinity for these
receptors is low [73]. In addition, DHEA may also be transformed into androgens, estrogens
or other metabolites in peripheral tissues [74].

4. Materials and Methods
4.1. Mice

Four-week-old male or female CBA/Ca mice were used. The mice were a generous
gift from Dr. William Jarra (National Institute for Medical Research, London, UK). The
animals were bred and maintained in a specific pathogen-free environment in the animal
house of the Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma
de México. All protocols used in animal handling were authorized by the animal care
and use committee, registration number 24/08/SO/3.4.1, respecting the official national
standard NOM-062-ZOO-1999.
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4.2. Gonadectomy
4.2.1. Orchidectomy

Male mice were gonadectomized (Gx) as previously described [8]. In brief, 4-week-old
CBA/Ca male mice were anesthetized with a mixture of ketamine: xylazine 80 mg/kg:
8 mg/kg (Phoenix Pharmaceutical Inc., St. Joseph, MO, USA). The testes and epididymis
were removed via scrotal excision under sterile conditions, and the efferent ducts were
sealed by electrocautery.

4.2.2. Ovariectomy

Four-week-old female CBA/Ca mice were anesthetized with the mixture (ketamine:xy-
lazine), incisions were made in the lower abdomens under aseptic conditions, ovaries were
removed, and muscles were sutured. Male and female mice were used 4 weeks after
surgery to allow for their recovery.

4.3. DHEA Administration

DHEA (Sigma-Aldrich, St. Louis, MO, USA) was diluted in vehicle (sweet almond
oil LASA, México City, Mexico) and injected subcutaneously (8 mg/kg body weight) daily
for 5 days prior to infection as previously described [27]. Control groups received 50 µL
of vehicle.

4.4. Parasite, Infection and Parasitemia

P. berghei ANKA was kindly donated by Dr. William Jarra (National Institute for
Medical Research, London, UK). Parasites were expanded in mice and stored in cryovials
under liquid nitrogen. To activate the parasite, a vial was thawed at room temperature
and immediately intraperitoneally inoculated into a 4-week-old mouse. When parasitemia
reached approximately 20%, a blood sample was drawn in cold PBS, the total number
of erythrocytes was counted in a Neubauer chamber and blood was diluted with PBS
to obtain a suspension with 1 × 104 parasitized red cells/mL. For infection, each mouse
was inoculated intravenously with 100 µL of the above suspension (1 × 103 parasitized
red cells).

To evaluate parasitemia, blood smears were prepared, fixed with absolute methanol
and stained with Giemsa (Sigma-Aldrich, St. Louis, MO, USA) diluted 1:10 in phosphate
buffer. To quantify the number of parasites, the 100× objective of a Carl Zeiss Standard
20 Microscope (Carl Zeiss Ltd., Welwyn Garden City, UK) was used. Fifty fields were
evaluated when parasitemia was less than 2%, and 200 erythrocytes were evaluated when
parasitemia exceeded this number. Since P. berghei ANKA is lethal and most mice die
around day 9 post infection, we sacrificed all mice on day 8 post infection [8]. Parasitemia
in each group was presented as the geometric mean of parasitized red cells ± SEM.

4.5. Body Weight and Temperature

Daily from day 0 to day 8 postinfection, all mice were weighed on a semianalytical
balance (Ohaus, Parsippany, NJ, USA). Body temperature was also assessed daily using an
infrared thermometer (Thermofocus, 01500A/H1N1, Vedano Olona-Varse, Italy).

4.6. Hemoglobin Concentration

Two microliters of mouse tail blood were collected daily and mixed with 498 µL of
Drabkin solution (1 mM potassium ferrocyanide, 7.6 mM potassium cyanide and 11.9 mM
sodium bicarbonate (Sigma-Aldrich)). The mixture was incubated at room temperature for
5 min. The absorbance was measured at 540 nm on a plate reader (Multiskan GO, Thermo
Fisher Scientific, Inc., Waltham, MA, USA). To calculate the hemoglobin concentration, a
curve was prepared with a rat hemoglobin standard (Sigma-Aldrich).
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4.7. Extraction of Sex Hormones from Plasma Samples

On day 8 post infection, mice were sacrificed, and blood was collected into heparinized
tubes and centrifuged at 2000× g for 15 min. Plasma was stored in aliquots at −70 ◦C until
use. For extraction of sex steroids, 100 µL of plasma, 900 µL of PBS and 5 mL of ethyl ether
(JT Baker, Fisher Scientific SL, Phillipsburg, NJ, USA) were mixed vigorously for 5 min.
The aqueous phase was frozen in a dry ice bath with 96% ethanol. The organic phase was
transferred to a glass tube and evaporated in a water bath at 37 ◦C for 48 h. Samples were
diluted with 1000 µL of 0.1% PBS/gelatin (Sigma-Aldrich).

4.8. Quantification of DHEA in Plasma

The commercial DHEA kit EIA-3415 (DRG International, Springfield NJ, USA) was
used. Ten microliters of plasma extract were mixed with 200 µL of DHEA-conjugated
horseradish peroxidase and incubated for one hour at room temperature. The plates were
washed 4 times. and 100 µL of tetramethylbenzidine (H2O2-TMB 0.26 g/L) was added. The
plates were incubated for 15 min at room temperature protected from light. The reaction
was halted with stop solution, and the plates were gently shaken and read at 450 nm on
a Multiskan Ascent 96 plate reader (Thermo Fisher Scientific, Waltham, MA, USA). The
DHEA concentration was calculated using a standard curve included in the kit.

4.9. Quantification of Cell Populations in the Spleen

Quantification of cell populations was performed by flow cytometry as previously
described [7]. Briefly, on day 8 post infection, mice were sacrificed, the spleen was dis-
aggregated on nylon mesh, cells were washed with PBS and erythrocytes were removed
with a lysis solution (Beckton and Dickinson, Franklin Lakes, NJ, USA). Cells were washed
with sterile staining buffer (PBS, 1% bovine albumin, 0.1% NaN2), and the cells were
stained with the following dilutions of fluorochrome-coupled anti-mouse antibodies: CD3-
FITC clone 17A2 (1:250), CD4-APC clone RM4-5 (1:1000), CD8-PE clone 53-6.7 (1:1000),
CD107b-PE clone M3/84 (1:125), CD19-APC clone 1D3/CD19 (1:1600) and CD16/32-PE
clone 93 (1:150). We used three antibody combinations: the first for total T cells (CD3+),
T-helper cells (CD3+/CD4+) and cytotoxic T cells (CD3+/CD8+). The second combina-
tion identified B cells and macrophages (CD19+ and CD107b), respectively, and the third
(CD19−CD3−CD16+/CD32+) identified NK cells. The cells were incubated for 30 min
at room temperature and protected from light. The cells were then washed with PBS
and suspended in 100 µL of FACS solution and acquired on a FACS Aria II cytometer
(BD Biosciences, San Jose, CA, USA). From this region, we selected the CD3+ population
by plotting SSC vs FITC-CD3+ and calculated the percentage positive for the first gate
(to exclude CD19+ and NK cells). Two dot plots corresponding to CD4+ and CD8+ cells
were generated from the first region (SSC vs. APC-CD4+ and SSC vs. PE-CD8+), and
the percentages were calculated according to the lymphocytes in the first gate. The sum
of CD4+ and CD8+ lymphocyte percentages is the total CD3+ lymphocyte count. In the
second combination, CD19+ and CD107b cells were identified with APC-antiCD19 and
PE-antiCD107b, respectively. The CD19+ cells were then selected using the SSC dot plot vs
APC-CD19. Macrophages were selected based on the FSC and SSC dot blot, which corre-
sponded to 100%. This procedure excludes CD3+, CD19+ and NK cells from macrophages
that were selected by plotting SSC vs. PE-antiCD107b. Finally, the third combination was
used to identify NK cells and four dot plots were used: in the first, we selected lymphocytes
and NK cells by drawing SSC vs. FSC; in the second dot blot we used FITC-antiCD3 to
select the CD3− population; in the third dot blot, we plotted APC-antiCD19 and selected
CD19− cells; and in the fourth dot blot, we plotted SSC vs PE-CD16+/32+. The first step to
analyze the results was to define the negative and positive regions of the fluorescence in
each dot plot, using the control of cells stained with a single antibody. Subsequently, the
fluorescence of each tube containing only one fluorochrome and the isotype controls were
used to determine the positive region for each antibody. For each mixture, 10,000 cells were
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acquired. All antibodies were purchased from BioLegend (San Diego, CA, USA). Data were
analyzed using FlowJo 2.5.1 software (Beckton and Dickinson, Ashland, OR, USA).

4.10. Plasma Th1/Th2/Th17 Cytokine Quantification

Groups of intact males or females or Gx mice were treated with DHEA and infected
with P. berghei ANKA. On day 8 post infection, blood was drawn and plasma was separated
and frozen at −70 ◦C until use. The cytokine levels of IFN-γ, TNF-α, IL-2, IL-4, IL6, IL-10
and IL-17 were quantified in plasma using the Cytometric Bead Array (CBA) Mouse (BD
Mouse Th1/Th2/Th17 cytokine CBA Kit Biosciences-Pharmingen, Heidelberg, Germany).
Briefly, 25 µL of plasma or 25 µL of the standards were incubated with 50 µL of beads
coated with antibodies directed against IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10 and IL-17.
Each sample was incubated with 50 µL of detection reagent (phycoerythrin) for 2 h at room
temperature and protected from light. One milliliter of wash solution was added, and
samples were centrifuged at 200× g for 5 min. The supernatant was removed, and the
beads were suspended in 100 µL of wash solution. Finally, the samples were evaluated
in a FACSAria II cytometer, and the results were analyzed with the FCAP array program.
A standard curve was used to quantify the concentration of each cytokine. The detection
levels in the kit used were as follows: IL-2 (0.1 pg/mL), IL-4 (0.03 pg/mL), IL-6 (1.4 pg/mL),
IL-17 (0.8 pg/mL), IFN-γ (0.5 pg/mL) and TNF (0.9 pg/mL).

4.11. Quantification of IgM and IgG Antibody Concentrations

Antibody levels were assessed as described previously [75]. Briefly, 96-well plates
(Corning, NY, USA) were incubated with 100 µL of P. berghei ANKA antigen solution
(10 µg/mL) and blocked with 10% serum at 4 ◦C overnight. The plate was washed
and incubated with the test plasma samples for 2 h at 37 ◦C. Pre calibrated dilutions of
biotinylated antibodies specific for IgM, IgG, IgG1, IgG2a, IgG2b and IgG3 (Zymed, South
San Francisco, CA, USA) diluted in PBS tween 0.05% milk 0.02% were added and incubated
for 1 h at 37 ◦C. The plate was washed and incubated with streptavidin–peroxidase solution
(Sigma-Aldrich) diluted 1:2500 in PBS tween 0.05% for 1 h at 37 ◦C. After washing, the
plate was incubated with 100 µL orthophenylenediamine (OPD) and 0.03% H2O2 diluted in
citrate buffer (Sigma-Aldrich). Finally, the reaction was halted with 100 µL of 0.1 N H2SO4,
and the absorbance at 450 nm was measured on a Multiskan GO plate spectrophotometer
(Thermo-Fisher Scientific, Inc.). Since there are no commercial standards to be used as
positive controls, optical density at 450 nm was used to denote antibody levels.

4.12. Statistical Analysis

Parasitemia, body weight, temperature, hemoglobin concentration, steroid concen-
tration, cell populations, cytokine concentration and antibodies, for calculations two-way
ANOVA was performed using Statgraphics XVI (The Plaines, VA, USA) p ≤ 0.05 with a
Bonferroni post hoc test p ≤ 0.05.

5. Conclusions

In contrast to our expectations, DHEA increased parasitemia in intact males, and its
immunomodulatory effects depended on sex, parasite infection and DHEA concentration.
Our results explain, at least in part, the sexual dimorphism in the immune response in
malaria since DHEA administration decreased IFN-γ and IL-10 concentrations only in
intact females. In contrast, in gonadectomized males, DHEA increased the number of
CD8+ T cells without infection. Interestingly, in infected Gx males, DHEA increased IgG1,
IgG2a, IgG2b, IgG3 and IL-4 levels, corresponding to both Th1 and Th2 responses (Figure 8).
However, the molecular mechanisms involved are unknown. Therefore, it is essential to
explore in depth the protective mechanisms of DHEA in cerebral malaria, where a Th2-type
response could counteract the inflammatory process of this complication. Finally, this work
helps to explain at least in part the sexual dimorphism of the immune response in malaria,
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which will be useful for the future development of therapies that are specific to men and
women, as they respond differently to DHEA administration.
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Figure 8. Effect of DHEA concentration on sexual dimorphism in the immune response of male and
female CBA/Ca mice infected with P. berghei ANKA. The blue box represents DHEA concentration-
induced changes in males, while the pink box represents changes in females. The green arrows
indicate the effects of lowering DHEA concentration by gonadectomy and red arrows represent the
effect of increasing DHEA concentration on the corresponding variables. Administering DHEA to
intact males increased their parasitemia, which eliminated the dimorphic pattern present in intact
mice treated with vehicle. In contrast, in the group of intact female mice, the administration of DHEA
decreased the concentration of IFN-γ, which generated a dimorphic pattern and intact males pre-
sented a higher concentration of INF-γ than females under the same conditions. In addition, DHEA
decreased IL-10 concentration in intact females; possibly, this is associated with IL-10 modulating
IFN-γ secretion in Plasmodium infections. Interestingly, DHEA administration generated a dimorphic
pattern in IL-2 and IL-4 concentrations in which Gx males presented a higher concentration of these
cytokines than Gx females. Additionally, gonadectomy increased the number of CD8+ lymphocytes in
both sexes; likewise, DHEA administration increased the number of this cell population. Furthermore,
gonadectomy decreased the number of B cells in females, possibly by decreasing the IL-10 concentra-
tion. Reconstituting Gx females with DHEA did not restore B-cell number or IL-10 concentration. In
contrast, reconstituting Gx males with DHEA increased the levels of IgG antibodies, corresponding
with the higher IL-4 concentration in Gx males. The figure was created with BioRender.
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