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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a major comorbidity of cancer.
Multiple clinical interventions have been studied to effectively treat CIPN, but the results have been
disappointing, with no or little efficacy. Hence, understanding the pathophysiology of CIPN is
critical to improving the quality of life and clinical outcomes of cancer patients. Although various
mechanisms of CIPN have been described in neuropathic anti-cancer agents, the neuroinflammatory
process involving cytotoxic/proinflammatory immune cells remains underexamined. While mast
cells (MCs) and natural killer (NK) cells are the key innate immune compartments implicated in the
pathogenesis of peripheral neuropathy, their role in CIPN has remained under-appreciated. Moreover,
the biology of proinflammatory cytokines associated with MCs and NK cells in CIPN is particularly
under-evaluated. In this review, we will focus on the interactions between MCs, NK cells, and
neuronal structure and their communications via proinflammatory cytokines, including TNFα, IL-1β,
and IL-6, in peripheral neuropathy in association with tumor immunology. This review will help lay
the foundation to investigate MCs, NK cells, and cytokines to advance future therapeutic strategies
for CIPN.

Keywords: natural killer cells; mast cells; proinflammatory cytokines; TNFα; IL-1β; IL-6; chemotherapy-
induced peripheral neuropathy

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a major comorbidity of can-
cer. The prevalence of CIPN is estimated at 30–40% of patients treated with neurotoxic
agents [1]. Common chemotherapeutic drugs causing CIPN include proteosome inhibitors
(e.g., bortezomib) [2], taxanes (e.g., paclitaxel) [3], platinum compounds (e.g., cisplatin) [4],
and vinca alkaloids (e.g., vincristine) [5]. In addition, there has been increasing literature
data reporting CIPN induced by newer classes of anticancer drugs such as brentuximab
vedotin [6] and immune checkpoint inhibitors [7,8]. For example, brentuximab-induced
neuropathy was reported in 56% of Hodgkin lymphoma patients, and a meta-analysis of
twenty-three clinical trials reported that 4.2% of patients receiving an immune checkpoint
inhibitor develop peripheral neuropathy [9]. Unfortunately, CIPN is often the dose-limiting
factor of anticancer treatment, which often compromises the chemotherapeutic efficacy, re-
sulting in poor cancer-related clinical outcomes [10,11]. Conversely, the improved survival
of cancer patients with advances in cancer therapeutics intensifies the healthcare burden of
CIPN [12]. Hence, developing therapeutic strategies for CIPN is critical to improving the
quality of life of cancer survivors as well as the outcomes of cancer survival by enhancing
tolerability to chemotherapeutics. There have been multiple clinical studies to advance
therapeutic interventions including exercise, acupuncture, vitamins, minerals, antidepres-
sants, topical agents, and gabapentinoids for CIPN, but the results have been disappointing
with no or limited efficacy [13,14]. For example, gabapentin was not only ineffective in
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CIPN treatment with little improvement in quality of life [15], but the increased risks of
falls and fractures associated with its use have been consistently reported [16,17].

The peripheral sensory network is a highly complex system with multiple non-sensory
networks, including immune and non-immune cells such as epidermal keratinocytes, in
cross-talk with sensory nerve endings in the skin [18]. An in vitro study using a cocul-
ture system of keratinocytes with sensory neurons has demonstrated that keratinocyte
membranes directly depolarized by mechanical stimulation can propagate inward currents
in the adjacent sensory neurons [19,20]. Keratinocytes are a major inadvertent target of
chemotherapeutics, including immune checkpoint inhibitors [21], and cutaneous toxicities
are known to be the most common adverse effect of checkpoint inhibitors [22]. Lichenoid
dermatitis with dyskeratotic keratinocytes [23] and Steven-Johnson syndrome with apop-
totic/necrotic keratinocytes [24] have been reported in patients treated with checkpoint
inhibitors blocking CTLA-4, PD-1, and PD-L1, indicating that the unfitness of keratinocytes
can be an important mechanism of immunotherapy-induced CIPN.

Although various mechanisms of CIPN have been described in neuropathy-causing
anticancer agents, the common pathway involved in CIPN is tightly interdigitated with
immunological underpinnings where cytotoxic cells of innate immunity play a key role
in propagation of neuroinflammation via neuro-immune synapse formation and release
of proinflammatory cytokines [7,13,25]. Although innate immune cells such as mast cells
(MCs) and natural killer (NK) cells are profoundly implicated in the pathogenesis of
peripheral neuropathy, their roles in CIPN have remained under-appreciated. Moreover, as
the current paradigm of oncological therapeutics has shifted from cytotoxic agents to cancer
immunotherapy along with targeted therapy [26,27], MCs and NK cells have emerged as
the key cellular components in cancer treatment responses and clinical outcomes [1,28–31].
In this review, we will focus on the interactions between mast cells, NK cells, and neuronal
structure in peripheral neuropathy and their association with tumor immunology. This
review will help lay the foundation to investigate MCs and NK cells in order to advance
future therapeutic strategies for CIPN.

Cytokines are the main humoral vehicle of communication between immune cells,
including MCs and NK cells, and neurons. Particularly, proinflammatory cytokines such as
TNFα, IL-1β, and IL-6 are well known to play a pivotal role in the progression of CIPN by
inducing sensitization of nociceptors and axonal mitochondrial dysfunction and generating
reactive oxygen stress in a neuroimmune environment [32]. In this review, we will focus
on the interactions between MCs, NK cells, and neural structure and the role of cytokines
and soluble factors in peripheral neuropathy in association with tumor immunology. This
review will help lay the foundation to investigate MCs, NK cells, and cytokines to advance
future therapeutic strategies for CIPN.

2. Mast Cells

Mast cells (MCs) are a part of the innate immune system, acting as the first and fastest
responders to pathogens and allergens, and are distributed as tissue-resident myeloid cells
primarily in body surfaces exposed to the external environment, including skin tissue and
mucosa of the gastrointestinal tract [33,34]. MCs play an important role in both the tumor
microenvironment (TME) and the CIPN. MCs are one of the primary innate immune cells
in TME, attracted by stem cell factor (SCF) released by tumor cells [35]. MCs orchestrate
proinflammatory immune responses by recruiting neutrophils, macrophages, eosinophils,
T and B cells, and releasing a variety of inflammatory cytokines, including IL-1, IL-4, IL-6,
and TNFα [36]. Moreover, MCs are an important source of angiogenic cytokines such as
IL-8, VEGF, and FGF-2 and facilitate tumor invasion and metastasis by producing matrix
metalloproteinases (e.g., MMP-2, MMP-9) [28]. Morphine, a narcotic substance commonly
used for cancer-related pain, induces tumor progression by increasing tumor angiogenesis
and mast cell activation, leading to poorer survival in a transgenic mouse model with breast
cancer [37,38]. Recently, MCs in TME were reported to be a detrimental factor for treatment
with a checkpoint inhibitor [29]. The presence of intratumoral MCs was associated with a
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poor immune response to anti-PD-1 therapy, and depletion of MCs by imatinib or sunitinib
restored the efficacy of anti-PD-1 therapy, resulting in complete tumor regression in a
murine melanoma model [29].

Similar to the detrimental effects of MCs in TME, inflammation induced by MCs plays
an important role in peripheral neuropathy [33,39,40]. MCs in the epidermis are colocalized
with the nerve terminals of unmyelinated small-diameter C-fibers and myelinated A-delta
fibers, key neurons that convey pain stimulation to the trigeminal and dorsal root ganglions
and brain [33,41]. The role of MCs in neuropathic pain is well described in a robust murine
model of sickle cell anemia, a prototypical disease of severe pain episodes induced by
inflammation, oxidative stress, and ischemia-reperfusion injury [42]. Vincent et al. reported
that MC inhibition by treatment with cromolyn sodium or imatinib significantly reduces
neuroinflammation, and genetic depletion of MCs in sickle cell mice attenuates chronic
hypoxia-induced hyperalgesia [43]. Additionally, cannabinoids can alleviate neurogenic
inflammation and hyperalgesia while mitigating mast cell activation in sickle cell mice [44],
again highlighting the important role of mast cells in painful neuropathy.

MCs excrete or degranulate multiple substances that mediate communication with the
neural system. Histamine, an inflammatory substance from MC degranulation, stimulates
C fibers to release substance P (SP) [45,46], which is also directly released from MCs and
activates adjacent nerve fibers [33]. Conversely, calcitonin gene-related peptide (CGRP), an
algogenic substance released from sensory nerves, induces MCs to produce histamine [47].
Not surprisingly, the administration of antihistamine agents is well established to treat and
prevent CIPN in clinical practice [48]. Antihistamines along with high-dose dexamethasone
are also proven to be efficacious in preventing hypersensitivity (mast cell-mediated acute
infusion reactions) induced by oxaliplatin, a platinum agent [49]. Tryptase, a serine pro-
teinase, released from MC granules activates proteinase-activated receptor 2 (PAR-2) [50]
that induces neurokinin-1 receptor-dependent hyperalgia [51]. Activation of PAR-2 by
tryptase further stimulates afferent neurons to release proinflammatory neuropeptides,
including CGRP and SP [52]. (Figure 1A,B) In a murine model, thermal hyperalgesia and
tactile allodynia induced by repeated paclitaxel administration correlated with mast cell
tryptase activity in peripheral tissue [53]. Treatment with FSLLRY-NH2, a PAR antagonist,
or blocking PAR2 downstream signaling, including PLCβ, PKCε, and PKA, diminished
paclitaxel-induced neuropathic pain [53]. Another important algogenic mediator released
from MCs is sphingosine-1-phosphate (S1P). S1P is the product of sphingosine catalyzed
by sphingosine kinases (SphK), activated by crosslinking of FcεRI, IgE receptor [54,55]. S1P
binds to its receptors S1P1 and S1P2 in an autocrine manner [55]. S1P mediates mast cell
degranulation and migration toward antigens. Furthermore, the pharmacological blockade
of S1P on S1P1 mitigated cancer-induced bone pain and neuropathy in a murine model [56],
indicating that the S1P pathway can be a major target for CIPN treatment. Additionally,
a murine model demonstrated that fingolimod, an S1P1 modulator, attenuates paclitaxel-
and oxaliplatin- induced neuropathy and reduces neuroinflammation [57].
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Figure 1. The potential role of mast cells (MCs) and NK cells in the pathobiology of CIPN. (A). Intact 
neuron prior to insults by mast cells (B). Mast cells induce neuroinflammation by MC release of 
mediators and neuropeptides, which in turn mediate releases of algogenic substances from neuronal 
endings. (C). 161533 TriKE augments ADCC of NK cells against CD33 expressing MCs. (D). NK 
cells release cytotoxic granules, which results in complete loss of neuropathic nerve fibers, which 
can mitigate neuropathic symptoms. 

3. Natural Killer (NK) Cells 
NK cells are cytotoxic lymphocytes of innate immunity. Unlike T cells, lymphocytes 

of adaptive immunity, NK cells do not require major histocompatibility complex (MHC) 
restriction for target killing [58]. The interaction between inhibitory killer immunoglobu-
lin-like receptors (KIR) on NK cells and HLA class I molecules on target cells generates 
inhibitory signals to NK cells via tandem immunoreceptor tyrosine-based inhibitory mo-
tifs (ITIMs) [31,59]. NK cells are educated by KIR-HLA interaction, which leads to en-
hanced NK cell cytotoxicity against foreign, malignant, or virally transformed cells lack-
ing the normal expression of HLA class I (i.e., “missing self”) [60]. The importance of KIR-
HLA genotype in the clinical outcomes of cancer treatment has been well described in 
allogeneic hematopoietic stem cell transplantation (allo-HCT). The KIR genotype can be 
simply categorized into haplotypes A and B according to the gene contents within the 
haplotypes. Donors with KIR haplotype B significantly improve disease-free survival in 
patients with acute myeloid leukemia [61–63] and non-Hodgkin lymphoma [64]. Moreo-
ver, AML patients’ HLA-C haplotypes confer a significant clinical benefit in allo-HCT [65]. 
Another potent mechanism of NK cytotoxicity is antibody-dependent cell-mediated cyto-
toxicity (ADCC). Monoclonal antibodies (moAb) bind to antigens expressed on the sur-
face of tumor cells via the antigen-binding portion (Fab fragment). The other end of moAb 
is the Fc portion that is recognized FcγRIIIA/CD16a on NK cells. The ligation of CD16a 
with the Fc portion of the moAb generates potent activating signals to NK cells via the 
immunoreceptor tyrosine-based activation motif (ITAM) [66,67]. The development of 
moAb has revolutionized the landscape of cancer treatment [68]. Novel molecules such as 
bispecific or trispecific killer engagers (i.e., BiKE, TriKE) demonstrated promising 

Figure 1. The potential role of mast cells (MCs) and NK cells in the pathobiology of CIPN. (A). Intact
neuron prior to insults by mast cells (B). Mast cells induce neuroinflammation by MC release of
mediators and neuropeptides, which in turn mediate releases of algogenic substances from neuronal
endings. (C). 161533 TriKE augments ADCC of NK cells against CD33 expressing MCs. (D). NK
cells release cytotoxic granules, which results in complete loss of neuropathic nerve fibers, which can
mitigate neuropathic symptoms.

3. Natural Killer (NK) Cells

NK cells are cytotoxic lymphocytes of innate immunity. Unlike T cells, lymphocytes
of adaptive immunity, NK cells do not require major histocompatibility complex (MHC)
restriction for target killing [58]. The interaction between inhibitory killer immunoglobulin-
like receptors (KIR) on NK cells and HLA class I molecules on target cells generates
inhibitory signals to NK cells via tandem immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) [31,59]. NK cells are educated by KIR-HLA interaction, which leads to enhanced
NK cell cytotoxicity against foreign, malignant, or virally transformed cells lacking the
normal expression of HLA class I (i.e., “missing self”) [60]. The importance of KIR-HLA
genotype in the clinical outcomes of cancer treatment has been well described in allogeneic
hematopoietic stem cell transplantation (allo-HCT). The KIR genotype can be simply catego-
rized into haplotypes A and B according to the gene contents within the haplotypes. Donors
with KIR haplotype B significantly improve disease-free survival in patients with acute
myeloid leukemia [61–63] and non-Hodgkin lymphoma [64]. Moreover, AML patients’
HLA-C haplotypes confer a significant clinical benefit in allo-HCT [65]. Another potent
mechanism of NK cytotoxicity is antibody-dependent cell-mediated cytotoxicity (ADCC).
Monoclonal antibodies (moAb) bind to antigens expressed on the surface of tumor cells via
the antigen-binding portion (Fab fragment). The other end of moAb is the Fc portion that
is recognized FcγRIIIA/CD16a on NK cells. The ligation of CD16a with the Fc portion of
the moAb generates potent activating signals to NK cells via the immunoreceptor tyrosine-
based activation motif (ITAM) [66,67]. The development of moAb has revolutionized the
landscape of cancer treatment [68]. Novel molecules such as bispecific or trispecific killer
engagers (i.e., BiKE, TriKE) demonstrated promising antitumor activities by harnessing the
ADCC of NK cells [30,69–71]. Disintegrin and metalloprotease-17 (ADAM17) expressed on
activated NK cells cleaves CD16, which in turn attenuates ADCC activity in NK cells [72].
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Inhibition of ADAM17 to prevent CD16 shedding significantly enhanced ADCC mediated
by rituximab, a monoclonal anti-CD20 antibody against CD20-expressing tumor cells [72],
which indicates that ADCC of NK cells plays a pivotal role in therapeutic efficacy of mono-
clonal antibodies in cancer treatment. Lastly, the NKG2D pathway is another important
mechanism of NK cell activation. Ligands for NKG2D, an activating NK receptor, are
often expressed by tumor cells, transformed cells, or infected cells [73]. NKG2D ligands
include the RAE (α–ε) encoded by Raet1 genes, H60 (a–c), and MULT1 families in mice
and MICA/MICB and ULBPs (1–6) in humans [74,75]. The NKG2D signaling pathway
is regarded as the primary host defense mechanism for eradicating “dangerous” cells, as
NKG2D ligands can be overexpressed in malignant or infected cells that are subsequently
eliminated by NK cells [74]. Shedding MICA/B on tumor cell surfaces and subsequent
soluble MICA/B can downregulate NKG2D expression on NK cells, which promotes tumor
immune escape by impairing NK cell antitumor activity [76,77]. On the other hand, pro-
longed activation of NK cells by NKG2D signals results in NK cell exhaustion [78], another
potential mechanism of tumor immune evasion. Besides, NK cell cytotoxicity is further
determined by the overall balance between inhibitory and activating signals generated by
NK cell receptors and ligands expressed on target cells or from soluble factors [31,79,80].

The effect of NK cell cytotoxicity on neuronal degeneration has been described in
multiple murine models. In 1982, chronic administration of guanethidine, an adrener-
gic blocking agent, caused extensive destruction of sympathetic nerves and resulted in
“small cell” infiltration [81]. Pretreatment with immunosuppressive agents or irradiation
effectively protected against neuronal destruction, indicating that neuronal destruction is
mediated by immune mechanisms [81]. Guanethidine administration induced neuronal
destruction by infiltration of mononuclear cells even in athymic nude rats, indicating T
cell-independent immune-mediated neuronal destruction [82]. A subsequent study re-
vealed that syngeneic IL-2-activated NK cells directly killed embryonal dorsal root ganglia
(DRG) neurons via perforin-dependent cytotoxicity, whereas NK cell-mediated lysis was
not observed in hippocampal neurons [83]. RAE-1 (an NKG2D ligand) was selectively
expressed in embryonal DRG neurons, and anti-NKG2D monoclonal antibodies impaired
NK cell-mediated destruction of DRG neurons, which indicates that NKG2D-dependent
NK cell cytotoxicity contributes to the degeneration of DRG neurons. NKG2D-dependent
NK cell destruction of injured peripheral nerves has been well described [84]. In contrast to
embryonal DRG neurons, adult DRG neurons do not express RAE1 as much [84]. How-
ever, following axonal injury of peripheral nerves, RAE1 is re-expressed in adult DRG
cells, allowing augmented cytotoxicity by activated NK cells via the NKG2D signaling
pathway [84]. Although the increased content of granzyme B released from NK cells was
identified in injured peripheral nerves, the mere presence of granzyme B in in vitro culture
media by separating NK cells from embryonic DRG neurons did not further degenerate the
DRG neurons [84]. Hence, the neuro-immune synapse formation of NK cells with nerve
fibers is critical for NK cell-induced nerve degeneration. Interestingly, in vivo endogenous
NK cytotoxic responses to crushed nerve injury paradoxically reduced chronic neuropathic
hypersensitivity in a murine model via the clearance of partially injured sensory axons
by activated NK cells [84]. (Figure 1D) Alleviation of neuropathic pain with further de-
generation of partially injured exons by NK cytotoxicity is supported by another murine
study, where partial sensory fiber loss induced hyperalgesia but more severe axonal loss
mitigated hypersensitivity responses [85]. In another murine model of neuropathic pain,
electroacupuncture, an effective treatment for neuropathic pain, increased NK cell per-
centages in the spleen and peripheral blood and NK cell activity measured by the methyl
thiazolyl tetrazolium (MTT) assay [86]. However, electroacupuncture treatment did not
induce the analgesic effect in mice with in vivo depletion of NK cells, suggesting that
NK cells play an important role in the treatment of neuropathic pain [86]. A prospec-
tive cohort study reported a significant inverse correlation between the frequency of NK
cells in CSF and mechanical pain sensitivity in patients with herpes zoster neuralgia and
polyneuropathy (P = 0.004, r = −0.596), indicating a protective role of NK cells in chronic
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neuropathy [87]. Moreover, the severity of neuropathy inversely correlates with NK cell
numbers and NK cell-specific transcription levels in the peripheral blood of patients with
chronic inflammatory demyelinating polyneuropathy, again implying the protective role of
NK cells in neuropathy [88].

4. Communication between Mast Cells and NK Cells

There is a paucity of data on the interaction between MCs and NK cells specifically in
CIPN, although both immune cell groups play significant roles in peripheral neuropathy
as described above. However, the communication between MCs and NK cells has been
described in other clinical contexts. MCs are shown to attract NK cells via the production
of chemokines and cytokines. For example, MCs recruit NK cells to enhance viral clearance
during dengue infection [89]. MCs produce CXCL8 in response to reovirus, resulting in NK
cell chemotaxis [90] and activating NK cells via the type I interferon response [91]. On the
other hand, a hepatocarcinoma murine model demonstrated that tumor-infiltrating mast
cells activated by tumor-derived stem cell factor (SCF) augment immunosuppression, and
adenosine released by MCs suppresses NK cell activity with the reduction of interferon
gamma release in TME [35].

Although NK cells are potent cytotoxic lymphocytes, MCs seem resistant to NK cell
cytotoxicity [69,92]. Yun et al. demonstrated that NK cells can successfully irradiate
MCs through enhanced ADCC in an in vitro NK cytotoxicity assay [69]. Trispecific killer
engager (TriKE), a construct combining a single chain variable fragment (scFv) against
CD33 highly expressed on the surface of MCs [93], a scFv against CD16 expressed on
NK cells, and IL-15, a key cytokine for NK cell survival, activation, and proliferation,
inserted in between as a linker (termed 161533 TriKE), was used to target MCs in this
study [69]. 161533 TriKE potently induced NK cell cytotoxicity against MCs, indicating the
great therapeutic potential of 161533 TriKE to target MCs by augmenting NK ADCC [69].
(Figure 1C) Investigating the therapeutic potential of 161533 TriKE is warranted in mast
cell-associated peripheral neuropathy, especially in the context of CIPN, as NK cell activity
is tightly linked to cancer control as well as peripheral neuropathy.

5. Proinflammatory Cytokines

Treatment with cytotoxic chemotherapeutic agents results in cell deaths in neoplastic
and normal tissue, which leads to systemic tissue damage and proinflammatory cytokine
releases by immune cells (Figure 2) [94,95]. In addition, chemotherapy can directly induce
inflammatory responses in the neuronal structure (e.g., dorsal root ganglia) by augmenting
the expression of proinflammatory cytokines such as TNFα [96].

As chronic inflammation is a key risk factor for developing various malignancies,
inflammatory mediators, including IL-6 and TNFα are known to be involved in carcino-
genesis and cancer progression (Figure 2) [97]. Proinflammatory cytokines contribute
to generating reactive oxygen species (ROS), and the level of ROS highly correlates with
proinflammatory cytokines including TNFα, IL-6, and IL-1β [98,99]. TNFα promotes tumor
progression by inducing ROS via cytosolic phospholipase A(2) [100], causing DNA damage,
a major carcinogenesis process [101]. Aquaporin (AQP)-3 and AQP-5-mediated diffusion of
H2O2, a prototypic ROS molecule, facilitates pancreatic cancer cell migration [102], which
characterizes cancer invasion and metastasis. In addition, proinflammatory cytokines serve
as growth factors for various types of cancer. For example, metastatic tumor growth can
be induced by TNFα release from host hematopoietic cells that mediates NF-κB activation
in tumor cells [103]. Activation of the IL-6/STAT3 signaling pathway promotes tumor
metastasis [104], and IL-17 released from CD8+ T cells also stimulates cutaneous tumor
growth [105]. Multiple in vitro studies have demonstrated that the process of epithelial-to-
mesenchymal transition (EMT), a pivotal step for cancer progression with tumor invasion
and distant metastasis, is activated by proinflammatory cytokines including TNFα, IL-6, IL-
8, and IL-1β [106–110]. ROS also contributes to the EMT process [111], which can be another
potential mechanism of proinflammatory cytokine-induced EMT. The protumorigenic effect
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of inflammation can be mediated by the promotion of angiogenesis, the process of new
blood vessel formation to supply oxygen and nutrients to the malignant tissue. Vascular
endothelial growth factor (VEGF) is the key molecule for angiogenesis secreted by cancer
cells [112]. IL-6-induced STAT3 phosphorylation is associated with increased expression of
VEGF and VEGFR2 [113,114]. Moreover, tumor angiogenesis was completely abrogated by
a TNFα-neutralizing antibody, indicating that TNFα promotes tumor angiogenesis [115].

MCs are one of the major sources of proinflammatory cytokines. Activated mouse
MCs by stem cell factor (SCF) via an interaction with c-kit highly express and release
IL-6 [116,117]. MCs produce IL-1 when activated, whereas TNFα is stored in MCs as
a preformed mediator [118]. Moreover, MCs can stimulate macrophages to produce IL-
1β, as seen in rheumatoid arthritis [119]. Conversely, proinflammatory cytokines affect
the function and development of MCs. Based on a murine model, IL-6 and TNFα may
contribute to the development of MCs from mast cell precursors [120]. In addition, IL-6
promotes MC survival [121,122]. Under hypoxic conditions, treatment with neutralizing
anti-IL-6 antibodies compromised mast cell survival [123]. IL-1, another proinflammatory
cytokine, induces IgE-activated MCs to release IL-6 and TNFα along with Th2-related
cytokines [124].

Like MCs, NK cell function is tightly associated with proinflammatory cytokines
(Figure 2). It is well known that NK cell cytotoxicity is compromised in hyperinflamma-
tory conditions including hemophagocytic lymphohistiocytosis [125], juvenile rheumatoid
arthritis, and macrophage activation syndrome [126]. IL-6, primary proinflammatory cy-
tokine implicated in hyperinflammation and cytokine release syndrome [127], impairs
NK cell cytotoxicity by downregulating the expression of cytotoxic granules, including
perforin and granzyme B [128]. NK cell cytotoxicity can be mediated by TNFα, or TNF-
related apoptosis-inducing ligand (TRAIL), a type II membrane protein with homology
to TNF [129], which generates apoptotic signaling in the target cells [130,131]. However,
TNFα can mediate detrimental effects on NK cell function and survival. Endogenous
TNFα induces functional anergy and apoptosis of NK cells activated by triggering CD16
signaling [132]. Proinflammatory cytokines can indirectly compromise NK cell function
through ROS induction as well. In an in vitro study, NK cell cytotoxicity was inversely
correlated with intracellular ROS production in tumor cells [133]. Moreover, phagocyte-
derived ROS impairs NK cell function by diminishing the expression of the NKp46 natural
cytotoxicity receptor and NKG2D, an NK cell-activating receptor [134]. ROS-induced NK
cell dysfunction can be mediated by A Disintegrin and Metalloprotease 17 (ADAM17),
also known as TNFα-converting enzyme (TACE). Oxidative stress and mitochondrial ROS
contribute to the increased activity of ADAM17 [135,136]. ADAM17 expressed on NK cells
cleaves CD16, leading to the shedding of CD16, the key molecule that mediates ADCC
by crosslinking [72,137]. Hence, ROS generated by inflammation can diminish NK cell
function by impairing ADCC of NK cells as well as downregulating NK cell-activating
receptors.

Neuroinflammation is a common denominator in CIPN, where proinflammatory cy-
tokines serve as messengers for neuro-immune communication [32]. Injury to nervous
tissue induces denervated Schwann cells to mount myelomonocytic responses by chemoat-
traction mediated via leukemia inhibitory factor (LIF) and monocyte chemoattractant
protein-1 (MCP-1) in an IL-6-dependent manner [138]. Moreover, activated glial cells
following nerve damage produce multiple proinflammatory cytokines, including TNFα,
IL-1β, and IL-6 [139,140]. Proinflammatory cytokines not only attract immune cells to the
neuroinflammatory tissue but also directly sensitize nociceptors (Figure 2). For example,
TNFα and IL-1β can stimulate A- and C- fibers [141]. In rat DRG neurons, the expression of
TNF receptors (TNFR1 and TNFR2), TNF-activated p38 mitogen-activated protein kinase
(p38MAPK), and c-jun N-terminal kinase (JNC) were observed in immunocytochemical,
analysis while TNF-evoked transient increases in [Ca2+] were detected [142]. In a murine
model, subcutaneous injection of TNFα resulted in mechanical sensitivity in C nociceptors
in a dose-dependent manner, accounting for the generation of hyperalgesia in inflamma-
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tion [143]. Furthermore, the plantar administration of IL-1β induced a hypersensitive
cutaneous reaction to mechanical stimulation [144]. IL-1 signaling impairment significantly
reduced pain sensitivity to mechanical and thermal stimulation [145]. Not surprisingly,
epidural administration of neutralizing anti-TNFα and anti-IL-1β antibodies markedly
diminished pain sensitivity in an additive manner [146]. Although the data had been
conflicting, there are multiple clinical studies demonstrating that blockade of proinflamma-
tory cytokines alleviates the symptoms of peripheral neuropathy. A retrospective study
demonstrated that perispinal administration of etanercept, a TNFα inhibitor, significantly
reduced pain, sensory disturbance, and weakness in patients with treatment-refractory
back and neck pain at 1 week, 2 weeks, and 1 month after the treatment [147]. In a ran-
domized, double-blind, placebo-controlled study, the epidural administration of etanercept
resulted in significant symptom improvement in patients with sciatica, although this study
was limited by a small sample size (n = 24) [148]. In addition to TNFα, targeting IL-6
has been studied in humans. A prospective study comparing the efficacy of epidural
administration of tocilizumab, an anti-IL-6 receptor monoclonal antibody, with dexametha-
sone treatment revealed that tocilizumab treatment was significantly more efficacious for
symptom alleviation in patients with lumbar spinal stenosis [149].

Another mechanism by which proinflammatory cytokines trigger neuropathy is the
generation of ROS, the main byproduct of proinflammatory cytokines as well as cancer
cells [150] and the tumor microenvironment [151]. In fact, chemotherapeutic agents are
highly potent in generating ROS, causing multiple tissue damages [152]. The peripheral
nervous system is regarded as particularly susceptible to oxidative stress [153]. Naturally,
ROS is associated with the development and maintenance of peripheral neuropathy. For ex-
ample, Mitochondrial ROS production was markedly increased in neuropathic dorsal horns,
suggesting that increased neuronal ROS production may be involved in neuropathic sensiti-
zation [154], and increased spinal ROS levels due to the production of superoxide from the
mitochondria of dorsal horn neurons are associated with maintaining capsaicin-induced
hypueralgesia [155,156]. Moreover, inhibition of ROS-by-ROS scavengers including N-tert-
Butyl-α-phenylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-
POL) markedly reduced paclitaxel-induced painful peripheral neuropathy, indicating that
ROS plays a central role in the pathogenesis of CIPN [157]. Interestingly, chemotherapy
treatment induces an ROS-dependent DNA damage response, which results in upregu-
lation of NK cell ligands on the target cells, leading to NK cell activation [158]. As NK
cell-cytotoxicity can exert beneficial therapeutic effects for peripheral neuropathy [84], NK
cell-directed treatment can be especially effective in ROS generation-associated CIPN.

It is not surprising that anti-inflammatory cytokines counterbalance proinflammatory
cytokines and are associated with beneficial effects in peripheral neuropathy. For exam-
ple, intrathecal administration of plasmid DNA encoding IL-10 prevented and alleviated
paclitaxel-induced peripheral neuropathy in a murine model [159]. Notably, this IL-10-gene
therapy resulted in significant reduction in paclitaxel-induced mRNA expression of IL-1β
and TNFα in the lumbar DRG, indicating a pivotal role of proinflammatory cytokines
in eliciting CIPN. Transforming growth factor β (TGFβ) is another anti-inflammatory cy-
tokine associated with a reduction in neuropathic pain. A murine model demonstrated
that intrathecal treatment of TGFβ significantly reduced neuropathic pain by inhibiting the
activation of spinal microglia and astrocytes and mitigating spinal inflammatory responses
to nerve injury [160]. TGFβ treatment also reduced the expression of IL-1β and IL-6 in the
spinal cord with peripheral nerve injury [160].
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ciated with MCs and NK cells in CIPN is particularly under-evaluated. Based upon the 
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cell function in the neuro-immune microenvironment has the potential to improve CIPN. 
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thy (CIPN). Proinflammatory cytokines can exert negative multifaceted effects in CIPN by disease
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flammation and nociceptor sensitization.

6. Conclusions

CIPN is a major challenge in cancer treatment. However, the efficacy of therapeutic
interventions currently available for CIPN treatment is suboptimal. The biology of CIPN
is highly complex. Although MCs and NK cells are known to be highly implicated in the
pathogenesis of peripheral neuropathy, there is a paucity of studies on the pathobiology of
MCs and NK cells in CIPN. Moreover, the biology of proinflammatory cytokines associated
with MCs and NK cells in CIPN is particularly under-evaluated. Based upon the current
data, targeting mast cells, proinflammatory cytokines, and/or augmenting the NK cell
function in the neuro-immune microenvironment has the potential to improve CIPN.
Hence, further studies on the biology of mast cells, NK cells, and their interactions through
proinflammatory cytokines in CIPN are warranted.
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