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Abstract: The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over
the past decades despite the exploitation of multimodal treatment approaches, allowing long-term
survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemothera-
peutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as
a complementary or alternative treatment modality is advancing rapidly in general, but its potential
against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint
inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific
antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, os-
teosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no
identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells,
neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to
derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy
in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and
execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summa-
rize the challenges encountered, and explore combination strategies to overcome these hurdles, with
the ultimate goal of curing osteosarcoma with less acute and long-term side effects.

Keywords: chimeric antigen receptor; immune checkpoint inhibitors; myeloid-derived suppressor
cells; osteosarcoma; T cell engaging bispecific antibody; T cell immunotherapy; tumor microenviron-
ment; tumor-associated macrophage; vascular endothelial growth factor

1. Introduction

Bone sarcomas represent about 6% of all pediatric cancers, of which osteosarcoma
makes up the majority (56%), making it the most common primary bone malignancy
for children and young adults. The patients diagnosed with metastatic or relapsed os-
teosarcoma still have dismal outcomes despite multimodal treatment approaches such as
conventional multi-agent chemotherapy, surgery, or high-dose chemotherapy with stem
cell transplantation, achieving long-term survival in less than 30% of cases [1]. Moreover,
given the young age of onset for osteosarcoma, the side effects of these treatments can be
devastating and long-lasting. Even patients in remission can suffer from long-term compli-
cations including secondary malignancies, disfigurement (from surgery), and psychosocial
trauma [2,3]. As such, there is a desperate need for more effective and less toxic therapy for
both localized and metastatic high-risk osteosarcoma. Immunotherapy may offer viable
alternatives. Since the reports of Dr. Coley on bacterial toxins inducing tumor regression [4],
many immunotherapy attempts have been made in soft tissue and bone sarcomas, but so far
without consistent or durable response [5,6]. Although interferons (IFN) are well known to
have anti-angiogenic, anti-tumor, and immune-stimulating properties [5], the EURAMOS-1
clinical trial incorporating IFN-α2b as a maintenance therapy failed to show clinical bene-
fit [7]. Monoclonal IgG antibodies targeting specific tumor surface antigens have also been
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tested, including trastuzumab to target HER2 (human epidermal growth factor receptor
2) [8], cetuximab to target epidermal growth factor receptor (EGFR) [9], glembatumumab
vedotin (GV) to target glycoprotein nonmetastatic B (gpNMB) [10], denosumab to target the
cytokine RANKL (receptor activator of NFκB ligand) (NCT02470091), and dinutuximab to
target disialogangliosides (GD2) (NCT 02484443), but anti-tumor effects have been transient
or inconsistent [11–13]. Recently, trastuzumab deruxtecan (an antibody-drug conjugate
consisting of trastuzumab and topoisomerase I inhibitor deruxtecan) was FDA approved
in patients with HER2-low metastatic breast cancer [14]. A phase 2 study of trastuzumab
deruxtecan is ongoing for the treatment of HER2(+) osteosarcoma (NCT04616560), but
the preliminary results are disappointing: seven out of eight patients showed progressive
disease, while one showed a stable disease [15].

T cell immunotherapy has proven activity for many high-risk malignancies, but their
efficacy against osteosarcoma remains largely unexplored. Although preclinical studies
using immune checkpoint inhibitors (ICIs), antigen-specific chimeric antigen receptor
(CAR), or bispecific antibody (BsAb) have demonstrated the impressive anti-tumor capacity
of T cells, immunosuppressive tumor microenvironment (TME) remains a major barrier.
Bone tumors, including osteosarcomas, grow in a bone microenvironment, unique among
primary tumors while common for metastases with preference for the bony niche. This TME
is composed of a variety of cells including bone cells (osteoblasts, osteoclasts, osteocytes),
stromal cells (mesenchymal stromal cells, fibroblasts), vascular cells (endothelial cells and
pericytes), immune cells (dendritic cells (DCs), T cells, tumor-associated macrophages
(TAMs), myeloid-derived suppressive cells (MDSCs), and NK cells), and a mineralized
extracellular matrix (ECM). Cross-talks between osteosarcoma and the TME are channeled
through diverse environmental signals such as cytokines, chemokines, and soluble growth
factors [13] that promote tumor growth and metastasis while simultaneously thwarting
immune surveillance. This osteosarcoma-specific TME impedes T cell infiltration into
tumors, accelerates immune effector cell exhaustion and anergy, and derails anti-tumor
immunity, creating both a major roadblock and a potential tumor vulnerability.

Herein, we review the promise and the limitations of T cell immunotherapies for
osteosarcoma, focusing on ICIs, BsAbs, and CAR T cells, and osteosarcoma-specific TME.
We explore strategies to overcome the immune-hostile TME and combination approaches
to create synergy with T cell immunotherapy for osteosarcoma.

2. Immune Checkpoint Inhibitors for Osteosarcoma

Upregulation of programmed cell death-1 receptor (PD-1) on CD8(+) T cells promotes
T cell exhaustion and dysfunction in chronic inflammation [16–19]. PD-1 and tumor PD-L1
interaction promotes T cell tolerance through suppressing release of immunostimulatory
cytokines while directly inhibiting T cell cytotoxicity [20]. ICIs reverse this process by
reinvigorating cytotoxic T lymphocytes (CTLs), reviving immune response directed at
neoantigens distinct from those on host tissues [21,22]. Despite the low tumor mutational
burden (TMB) in pediatric cancers in general, neo-epitopes arising from genetic instability
in osteosarcoma could offer potential targets for T cell-mediated cytotoxicity, potentially
exploitable by ICI therapies [23–25].

After T cell receptor (TCR) activation, cytotoxic T-lymphocyte-associated protein
4 (CTLA4) (CD152), type I transmembrane glycoprotein, is upregulated and constitu-
tively expressed on CTLs and regulatory T cells (Tregs), and after binding to CD80 and
CD86 with higher affinity and avidity than CD28 results in T cell suppression and DC
dysfunction [26–29]. Blockade of the CTLA4 receptor increased the number of CD8(+)
T cells while reducing Tregs, and combination with tumor lysate-loaded DC inhibited
metastasis and prolonged survival of mice with fibrosarcoma [30].

PD-1 is also expressed on T cells following TCR engagement and activation. PD-1
and PD-L1 ligation exerts inhibitory signals for T cell activation (Figure 1) [29]. Overex-
pression of PD-1 and PD-L1 and their interactions are well-characterized immune escape
mechanisms of osteosarcoma [29,31,32]. Besides the direct inhibition of effector T cells,
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PD-1/PD-L1 interactions reduce the capacity of CD4(+) T cells to secrete IL-21 necessary for
CTL response [33] and affect cytotoxicity of NK cells by reducing granzyme B secretion [34].
PD-1 was increased in circulating T cells in osteosarcoma patients, and PD-L1 expression
in osteosarcoma was related to early metastasis and poorer outcome [32,35,36]. While
PD-L1 density in osteosarcoma cell lines varies widely from low to high, the drug-resistant
variants trend towards higher values compared to their parent counterparts [37]. A study
using CRISPR/Cas9 system to target the PD-L1 gene in osteosarcoma cells revealed that
PD-L1 regulates osteosarcoma growth and drug resistance [38]. The expression levels of
PD-L1 correlated with TILs [37], and the blockade of PD-1/PD-L1 interactions improved
the activity of osteosarcoma-reactive CTLs, resulting in an improved outcome in preclinical
models [39,40]. PD-1 inhibitor could effectively control osteosarcoma pulmonary metastasis
by increasing CD4(+) and CD8(+) TILs and enhancing the cytolytic activity of CD8(+) T
cells in the lung [41]. Both human and murine metastatic osteosarcomas express the PD-L1,
which could functionally impair tumor-infiltrating CTLs by engaging their surface PD-1.
This model was supported by studies where the PD-L1 blockade improved the function
of osteosarcoma TILs in vivo, decreasing tumor burden and increasing survival of mice
carrying metastatic osteosarcoma [39]. The combination of triple antibodies, anti-PD-1,
anti-PD-L1, and anti-OX-40 agonistic antibody, led to a prolonged survival of mice in
preclinical studies, suggesting the therapeutic potential of the PD-1/PD-L1 pathway for
high-risk osteosarcoma [40].

However, clinical studies of ICIs have failed to produce satisfactory results in osteosar-
coma. Phase I study of ipilimumab in pediatric patients with advanced or relapsed solid
tumors including eight osteosarcomas failed to show clinical benefit as a single agent,
despite observing an increase in activated HLA-DR(+) Ki67(+) T cells without concomitant
upregulating Tregs among the patients [42]. A recent phase II clinical trial of anti-PD1
pembrolizumab for advanced sarcomas reported that 7 out of 40 patients with soft tissue
sarcoma (18%) and only 2 out of 40 patients (5%) with bone sarcomas had objective re-
sponses [43]. The study included twenty-two patients with osteosarcoma; one patient (5%)
had a partial response, six patients (27%) had a stable disease, and fifteen patients (68%)
showed disease progression. Another study of pembrolizumab in advanced osteosarcoma
also failed to show clinical benefit despite high PD-L1 expression in tumors (11 of 12 pa-
tients): median progression-free survival (PFS) was 1.7 months and median overall survival
(OS) was 6.6 months [44]. A clinical trial of the PD-L1 inhibitor (avelumab) for recurrent or
progressive osteosarcoma was no more successful, where 17 out of the 18 treated patients
showed disease progression while on study (NCT03006848). The low clinical activity of
single PD-1 or PD-L1 blockade in most sarcoma subtypes suggests that PD-1 or PD-L1
inhibitor alone cannot adequately revive exhausted or tolerized effector T cells in these
patients. These results contrast with undifferentiated pleomorphic sarcomas showing good
clinical response accompanied by high numbers of TILs [43], emphasizing the need to de-
velop strategies to enhance T cell infiltration. Although the combination of two ICIs acting
through different mechanisms, such as anti-CTLA4 and anti-PD-1, has shown synergy in
preclinical models of osteosarcoma as well as in those of melanoma [40,45], such combina-
tions have had mixed response so far in bone sarcomas. A combination of nivolumab and
ipilimumab failed to show efficacy in patients with osteosarcoma [46], and a combination of
durvalumab (anti-PD-1) and tremelimumab (anti-CTLA4) resulted in two partial responses
out of five osteosarcoma patients treated [47]. Several cases reported that the combination
of anti-CTLA4 and anti-PD-1 antibodies induced remission and tumor stabilization in pa-
tients with metastatic osteosarcoma [48,49], while the addition of camrelizumab (anti-PD-1
inhibitor) to the inhibition of vascular endothelial growth factor receptor 2 (VEGFR2)]
using apatinib (tyrosine kinase inhibitor (TKI)) was shown to prolong PFS of patients with
advanced osteosarcoma compared with apatinib alone [50]. The overall findings suggest
that a combination strategy rather than a stand-alone therapy may be the path to the future.
The data on clinical trials of ICIs for osteosarcoma are summarized in Table 1.
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Table 1. Clinical trials of immune checkpoint inhibitors (ICIs) in osteosarcoma.

Clinical Trial Target Eligibility
(Age) Phase Status Reference

Pembrolizumab in patients with
advanced sarcomas PD-1 inhibitor >12 phase 2 completed NCT02301039

[43,51]

Nivolumab with or without ipilimumab in
treating recurrent or refractory solid tumors

or sarcomas

PD-1 inhibitor +
CTLA-4 inhibitor >1 phase 1 and 2 active, not

recruiting
NCT02304458

[52]

Nivolumab with or without ipilimumab for
patients with metastatic sarcoma

PD-1 inhibitor +
CTLA-4 inhibitor >18 phase 2 active, not

recruiting
NCT02500797

[46]

Atezolizumab in pediatric and young adult
patients with solid tumors PD-L1 inhibitor <30 phase 1 and 2 terminated NCT02541604

[53]

Durvalumab plus tremelimumab in multiple
sarcoma subtypes

PD-L1 inhibitor +
CTLA-4 inhibitor >18 phase 2 active, not

recruiting
NCT02815995

[47]

Avelumab in patients with recurrent or
progressive osteosarcoma PD-L1 inhibitor 12–49 phase 2 active, not

recruiting NCT03006848

Pembrolizumab in patients with relapsed or
metastatic osteosarcoma PD-1 inhibitor >18 phase 2 terminated NCT03013127

[44]

Nivolumab plus ABI-009 (nab-sirolimus) for
advanced sarcoma and certain cancers PD-1 inhibitor >12 phase 1 and 2 completed NCT03190174

Sunitinib and/or nivolumab plus
chemotherapy in advanced soft tissue and

bone sarcomas
PD-1 inhibitor 20–80 phase 1 and 2 recruiting NCT03277924

[54]

Apatinib plus camrelizumab for
advanced osteosarcoma PD-1 inhibitor phase 2 completed NCT03359018

[50]

Nivolumab plus ipilimumab in non-resectable
sarcoma and endometrial carcinoma

PD-1 inhibitor +
CTLA-4 inhibitor >18 phase 2 unknown NCT03449108

Nivolumab and azacitidine for recurrent,
resectable osteosarcoma PD-1 inhibitor <39 phase 1 and 2 recruiting NCT03628209

Socazolimab in high-grade osteosarcoma PD-L1 inhibitor 18–55 phase 1 and 2 recruiting NCT03676985

Famitinib plus camrelizumab and famitinib
alone and famitinib plus ifosfamide in

advanced osteosarcoma
PD-1 inhibitor >12 phase 1 and 2 withdrawn NCT04044378

Multi-antigen autoimmune cell injection
(MASCT-I)combined with apatinib and/or

anti-PD1 antibody in the treatment of
tissue sarcoma

PD-1 inhibitor 14–70 phase 1 active, not
recruiting NCT04074564

Camrelizumab in combination with
neoadjuvant chemotherapy in osteosarcoma PD-1 inhibitor 14–65 phase 2 recruiting NCT04294511

MAPI + camrelizumab vs. API + apatinib vs.
MAPI in patients with a poor response to

preoperative chemotherapy for newly
diagnosed high-grade osteosarcoma

PD-1 inhibitor >12 phase 2 unknown NCT04351308

Socazolimab for maintenance therapy in
patients with high-grade osteosarcoma PD-L1 inhibitor >12 phase 3 not yet

recruiting NCT04359550

Niraparib and dostarlimab in pediatric
participants with solid tumors PD-1 inhibitor 0.5–17 phase 1 recruiting NCT04544995

Oleclumab and durvalumab for the treatment
of recurrent, refractory, or metastatic sarcoma PD-L1 inhibitor >12 phase 2 recruiting NCT04668300



Int. J. Mol. Sci. 2023, 24, 12520 5 of 20

Table 1. Cont.

Clinical Trial Target Eligibility
(Age) Phase Status Reference

Bempegaldesleukin (BEMPEG: NKTR-214) in
combination with nivolumab in recurrent or

treatment-resistant cancer
PD-1 inhibitor <30 phase 1 and 2 terminated NCT04730349

Regorafenib and nivolumab in refractory or
relapsed osteosarcoma PD-1 inhibitor >5 phase 2 active, not

recruiting NCT04803877

Atezolizumab and cabozantinib for recurrent
or metastatic Osteosarcoma PD-L1 inhibitor >12 phase 2 not yet

recruiting NCT05019703

Combination of pembrolizumab and
cabozantinib in patients with

advanced sarcomas
PD-1 inhibitor >18 phase 2 recruiting NCT05182164

Tislelizumab combined with chemotherapy in
bone metastatic sarcoma PD-1 inhibitor >18 phase 2 recruiting NCT05241132

Neoadjuvant dual checkpoint inhibition and
cryoablation in relapsed/refractory pediatric

solid tumors

PD-1 inhibitor +
CTLA-4 inhibitor >1 phase I and 2 recruiting NCT05302921

3. Adoptive T Cell Immunotherapy for Osteosarcoma

While ICIs are nonspecific, adoptive T cell immunotherapy (ATC) using CAR or
BsAb is tumor-antigen-specific, directly driving T cells to the tumors and inducing potent
cytotoxicity. CAR and BsAb are engineered to recognize tumor-associated antigens (TAAs)
and exert T cell-mediated cytotoxicity in a major histocompatibility complex (MHC)-
independent manner. Although CAR T cells achieved extraordinary clinical success in
hematologic malignancies receiving FDA approvals, they exhibit generally inconsistent
and non-durable effects on solid cancers due to tumoral heterogeneity, physical barrier,
aberrant vasculature, and the immunosuppressive TME [55–58]. Anti-tumor efficacy of
ATC primarily derives from recognition by VH (variable region of heavy chain) and VL
(variable region of light chain) of target antigen-specific antibodies. Ideal TAAs carry
epitopes exclusively expressed on tumor cell surface to allow engineered antibodies or
receptors to drive T cells selectively into tumors while minimizing off-tumor toxicities. To
avoid tumor escape, TAA should be ideally expressed homogenously within and between
tumors among patients. The targets reported so far for ATC in osteosarcoma include HER2,
GD2, B7-H3 (CD276), interleukin-11 receptor α-chain (IL-11Rα), insulin-like growth factor
1 receptor (IGF1R), receptor tyrosine kinase-like orphan receptor 1 (ROR1), erythropoietin-
producing hepatocellular class A2 (EphA2), natural killer group 2D ligand (NKG2DL),
activated leukocyte cell adhesion molecule (ALCAM, CD166), folate receptor-α (FRα),
chondroitin sulfate proteoglycan 4 (CSPG4), and CD151 [59–61]. Among them, HER2, GD2,
and B7H3 have been studied the most for osteosarcoma [62–67].

Although osteosarcoma cell lines and tissue sections were HER2-positive by immuno-
histochemistry or flow cytometry [11,62], HER2 gene amplification was rarely observed in
osteosarcoma, and the expression levels were much lower than those of HER2(+) breast
cancers [68], accounting for the clinical insensitivity of OS to trastuzumab [8]. Despite its
HER2 antigen density being too low for conventional IgG-mediated cytotoxicity, osteosar-
coma was effectively killed by HER2-CAR T cells, which, when injected intratumorally,
induced the regression of established osteosarcoma xenografts, prolonging survival of the
mice [11]. HER2-CAR T cells also decreased the sarcosphere forming capacity and bone
tumor generating ability, suggesting the potential to target osteosarcoma stem cells [65].
A phase I/II study of HER2-CAR T cells without lymphodepletion resulted in a stable
disease in 3 and progressed disease in 12 among 16 patients with recurrent/refractory
HER2(+) osteosarcoma (NCT00902044). Although these results were modest, HER2-CAR
T cells could traffic to tumor sites and persist for more than 6 weeks in a dose-dependent
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manner [64]. In the same trial, five osteosarcomas, three rhabdomyosarcomas, one Ew-
ing sarcoma, and one synovial sarcoma were treated with HER2-CAR T cells following
lymphodepletion. Among them, three had a stable disease, five had a progressive disease,
while one rhabdomyosarcoma and one osteosarcoma patient had complete remission for
12 months and 32 months, respectively [69].

GD2, another promising target for CAR and BsAb, is overexpressed in many cancers
including osteosarcoma while being limited in normal tissues [62,70,71]. GD2 has a role in
signal transduction and cell adhesion, and overexpression of GD2 increases the phosphory-
lation of paxillin and focal adhesion kinase (FAK), promoting migration and invasion of
osteosarcoma cells [72]. The third-generation GD2-CAR T cells using anti-GD2 clone 14G2a
successfully recognized GD2(+) sarcoma cell lines and showed cytotoxicity in vitro, but
the accumulation of myeloid-derived suppressor cells (MDSCs) attenuated the anti-tumor
effect of GD2-CAR T cells in vivo [73]. This inhibition phenomenon was observed in a
clinical trial of GD2-CAR T cells in neuroblastoma: GD2-CAR T cells with or without
lymphodepletion resulted in modest antitumor responses, with a striking expansion of
CD45/CD33/CD11b/CD163 (+) myeloid cells in all patients [74]. The fourth-generation
GD2-CAR T cells using the hu3F8 clone can also effectively target osteosarcoma cells and
induce PD-L1 on tumor cells and PD-1 on GD2-CAR T cells, limiting T cell activity. Combi-
nation with low-dose doxorubicin decreased PD-L1, enhancing the potency of GD2-CAR T
cells on osteosarcoma in vitro [66]. Recently, Del Bufalo et al. reported exceptional results
of GD2-CAR T cells in patients with relapsed or refractory neuroblastoma. Twenty-seven
patients were treated with third-generation GD2-CAR T cells, and the overall response was
63%; nine patients had a complete response, eight had a partial response; toxicities were
tolerable, and the inducible caspase 9 suicide gene was needed only in one patient (GD2-
CART01) [75]. Another third-generation GD2-CAR T cells combined with a safety switch
(GD2-CAR.OX40.28.z.ICD9) are being tested for solid tumors including osteosarcoma in a
phase I clinical trial (NCT02107963).

B7-H3 (CD276) CAR T cells are also being tested for the treatment of osteosarcoma.
B7-H3 is a checkpoint molecule expressed at high levels on pediatric solid tumors including
osteosarcoma [76,77], and it contributes to tumor immune evasion and metastasis, correlat-
ing with poor prognosis [78]. B7-H3-targeting CAR T cells have shown anti-tumor activity
in osteosarcoma xenograft models [67,79]. A phase I clinical trial is currently recruiting
patients with solid tumors that express B7-H3 (NCT04483778).

On the other hand, T-BsAb represents another promising alternative which effectively
drives T cells to the tumor sites with less toxicity. T-BsAbs are also mostly known for their
use in hematological malignancies similarly to CAR T cells, and blinatumomab (a CD3 ×
CD19 BsAb built on scFv framework) was FDA approved in 2014 and has been successful
against relapsed or refractory acute lymphoblastic leukemia (ALL) [80,81]. For solid
tumors, catumaxomab (CD3xEpCAM BsAb) targeting epithelial cell adhesion molecule
(EpCAM)-positive cancers showed benefit in reducing malignant ascites secondary to
epithelial cancers, with an acceptable safety profile [82–84]. To improve efficacy and to
reduce clinical toxicities, BsAb-armed T cells, using chemically conjugated BsAb, anti-GD2
× anti-CD3 [hu3F8 × mouse OKT3 (NCT02173093)], anti-HER2 × anti-CD3 [trastuzumab
× mouse OKT3 (NCT00027807)], or anti-EGFR × anti-CD3 [cetuximab × mouse OKT3
(NCT04137536)], were developed and tested in clinical studies, proven effective and safe
in breast, neuroblastoma, prostate, and pancreatic cancers [85–88]. GD2-BsAb-armed
T cells were tested for their efficacy on GD2-positive tumors and induced a significant
PET response in one out of three osteosarcoma patients (NCT02173093) [89]. To harness
the potential of BsAb against solid tumors, the BsAb structural format was found to
be critical [90,91]. Despite similar in vitro anti-tumor properties of GD2-BsAb formats,
including monomeric BiTE, dimeric BiTE, IgG heterodimer, IgG-[H]-scFv, or chemical
conjugate, the IgG-[L]-scFv format, where the anti-CD3 (huOKT3) scFv was attached to
the light chain of a tumor binding IgG, proved the most effective in vivo, driving more T
cells into tumors and producing more durable anti-tumor responses [91]. For osteosarcoma



Int. J. Mol. Sci. 2023, 24, 12520 7 of 20

cell lines that are HER2-positive and/or GD2-positive, IgG-[L]-scFv GD2-BsAb (hu3F8 ×
huOKT3) or HER2-BsAb (trastuzumab × huOKT3) administered intravenously successfully
drove T cells into tumors to exert potent cytotoxicity in vivo [62]. T cells armed ex vivo
(EAT) with the IgG-[L]-scFv-formatted GD2-BsAb (GD2-EATs) or HER2-BsAb (HER2-EATs)
also successfully ablated both osteosarcoma cell-line-derived xenografts (CDXs) and patient-
derived xenografts (PDXs) with significantly lower cytokine release while increasing the
overall survival [62,91]. Although a phase I/II study of this IgG-[L]-scFv-formatted GD2-
BsAb (Nivatrotamab) in patients with relapsed/refractory neuroblastoma, osteosarcoma,
and other GD2(+) solid tumors was temporarily suspended because of company business
priorities (NCT03860207), clinical results are anticipated. The results of clinical trials of
BsAb or CAR T cell therapy for osteosarcoma conducted to date are summarized in Table 2.

Table 2. Clinical trials of adoptive T cell therapy for osteosarcoma.

Clinical Trial Target Eligibility (Age) Phase Status Reference

HER2 chimeric antigen receptor
expressing T cells in advanced sarcoma HER2-CAR T cells Child, adult,

older adults phase 1 active, not
recruiting

NCT00902044
[64]

Humanized 3F8 bispecific antibody
(Hu3F8-BsAb) in

relapsed/refractory neuroblastoma,
osteosarcoma and other solid

tumor cancers

Humanized 3F8
bispecific antibody 1–17 phase 1

and 2 terminated NCT03860207

iC9-GD2-CAR-VZV-CTLs in refractory
or metastatic GD2-positive sarcoma

and neuroblastoma

GD2 T cells, VZV
vaccine, CPM,

fludarabine

child, adult,
older adult phase 1 active, not

recruiting
NCT01953900

[92]

Haploidentical transplant and donor
NK cells for solid tumors Donor NK cell child, adult,

older adult phase 2 active, not
recruiting NCT02100891

T cells expressing an anti-GD2 CAR in
GD2+ solid tumors GD2-CAR T cell 1–35 phase 1 completed NCT02107963

Activated T cells armed with GD2
bispecific antibody in neuroblastoma

and osteosarcoma
GD2 BsAb armed T cell 1–29 phase 1

and 2 unknown NCT02173093
[91]

Aβ CD19+ depleted haploidentical
transplantation plus zometa for

pediatric hematologic malignancies
and solid tumors

TCRαβ+/CD19+
depleted haploidentical

stem cells
0.5–21 phase 1 recruiting NCT02508038

Treatment of relapsed or refractory
neuroblastoma and osteosarcoma with

expanded haploidentical NK Cells
and Hu14.18-IL2

Ex vivo expanded and
activated haploidentical

donor NK cells, and
Hu14.18-IL2

0.5–26 phase 1 withdrawn NCT03209869

Fourth-generation safety-engineered
CAR T cells targeting sarcomas

Sarcoma-specific
CAR-T cells 1–75 phase 1

and 2 recruiting NCT03356782

Anti-GD2 CAR T cells in high-risk
and/or relapsed/refractory

neuroblastoma or other GD2-positive
solid tumors

GD2-CART 01 1–25 phase 1
and 2 recruiting NCT03373097

LN-145 or LN-145-S1 in relapsed or
refractory cancers

Autologous tumor
infiltrating lymphocytes

LN-145 or LN-145-S1
16–70 phase 2 recruiting NCT03449108

NY-ESO-1-specific T cell receptor (TCR)
T cell in sarcoma

NY-ESO-1(TCR affinity
enhancing T cell 14–70 phase 1 recruiting NCT03462316
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Table 2. Cont.

Clinical Trial Target Eligibility (Age) Phase Status Reference

EGFR806 CAR T cell immunotherapy
for recurrent/refractory solid tumors

EGFR
806CAR(2G)-EGFRt,
CD19CAR(2G)-T2A-

HER2tG

1–30 phase 1 recruiting NCT03618381

C7R-GD2.CAR T cells for patients with
relapsed or refractory neuroblastoma

and other GD2-positive cancers
C7R-GD2.CART cells 1–74 phase 1 recruiting NCT03635632

Study of CAR T cells targeting the GD2
with IL-15+i caspase 9 for

relapsed/refractory neuroblastoma or
relapsed/refractory osteosarcoma

iC9.GD2.CAR.IL-15
T cells >1.6 phase 1 recruiting NCT03721068

Combination immunotherapy
targeting sarcomas

Multiple
sarcoma-specific CAR-T

cells and
sarcoma vaccines

1–75 phase 1
and 2 recruiting NCT04433221

B7H3 CAR T cell immunotherapy for
recurrent/refractory solid tumors

B7H3-specific CAR,
bispecific

B7H3xCD19 CAR
<26 phase 1 recruiting NCT04483778

GD2-targeted modified T cells
(GD2CART) in relapsed/refractory
osteosarcoma and neuroblastoma

GD2-CAR T cell <35 phase 1 suspended NCT04539366

Clinical study of CD276 targeted CAR
T cell in CD276-positive advanced

solid tumor
CD276 CAR T cells 1–70 phase 1 not yet

recruiting NCT04864821

B7-H3-CAR T cell therapy for pediatric
patients with solid tumors B7-H3 CAR T cell <21 phase 1 recruiting NCT04897321

HER2 CAR T cells in combination with
checkpoint blockade in patients with

advanced sarcoma

HER2-CAR T cell +
pembrolizumab

or nivolumab
1–25 Phase 1 recruiting NCT04995003

Fluorescein-specific (FITC-E2) CAR T
cells in combination with

folate–fluorescein (UB-TT170) for
osteogenic sarcoma

SCRI-E2CAR_EGFRtv1
+ UB_TT170 15–30 phase 1 recruiting NCT05312411

T cell membrane-anchored tumor
targeted IL12 (Attil12)-T cell therapy in

advanced/metastatic soft tissue and
bone sarcoma

autologous
tumor-targeted IL12

T cells
>12 phase 1 not yet

recruiting NCT05621668

CAR.70-engineered IL15-transduced
cord blood-derived NK cells in

conjunction with lymphodepleting
chemotherapy for advanced renal cell

carcinoma, mesothelioma
and osteosarcoma

CAR.70/IL15-
transduced CB-derived

NK cells
18–80 phase 1

and 2
not yet

recruiting NCT05703854

4. Tumor Microenvironment in Osteosarcoma

Despite the excitement regarding the clinical utility of T cell immunotherapy, the
overall response rate of ICIs is around the 20% range across solid tumors [93], where the
promise of ATC remains elusive as well. The challenges of successful T cell immunotherapy
in osteosarcoma include poor immunogenicity, paucity of neoantigens and TILs, obvious
tumor heterogeneity, and the osteosarcoma-specific, immunosuppressive TME [94].

As a seed, osteosarcoma flourishes in soil called the TME. The TME of osteosarcoma
consists of a special, complex, and highly structured osseous environment, populated
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by osteocytes, stromal cells, vascular cells, immune cells, and mineralized architecture,
ECM [95] (Figure 1). Bone matrix remodeling is a unique feature of osteosarcoma. The
activation of the RANK-RANKL signaling pathway leads to osteoclast activation, resulting
in excessive bone resorption and the release of bone matrix growth factors such as trans-
forming growth factor-β1 (TGFβ1), insulin-like growth factor-1 (IGF1), fibroblast growth
factor (FGF) or bone morphogenetic protein (BMP), which in turn promote tumor cell
proliferation and further bone destruction [96]. These growth factors not only inhibit os-
teogenic differentiation but also prohibit T cell proliferation and differentiation, sabotaging
host immune surveillance [97]. Bone marrow mesenchymal stem cells (MSCs) secrete cy-
tokines, chemokine ligand 5 (CCL5), IL-6, and VEGF that promote growth, metastasis, and
angiogenesis of osteosarcoma, while the MSC-derived osteoblasts deposit and mineralize
the ECM [98]. This osteoid tumor matrix not only fuels tumor growth and metastasis but
also limits the trafficking and infiltration of T cells, playing a role as an ideal milieu for
osteosarcoma progression while putting up a potentially insurmountable barrier to T cell
immunotherapy [99,100].
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Figure 1. Tumor microenvironment of osteosarcoma. Osteosarcoma tumor tissues have large popula-
tions of tumors infiltrating myeloid cells (TIMs), including MDSCs and TAMs. Immunosuppressive
TIMs and dense ECM around osteosarcoma cells impede T cell infiltration and cytotoxic activity.
Tumor infiltrating T cells express PD-1, and the interactions between PD-1 and PD-L1 expressed on
tumor cells and TIMs exhaust cytotoxic CD8(+) T cells, inducing tumor-immune tolerance. Regulatory
T cells (Tregs) release TGF-β and convert ATP to adenosine via CD39 and CD73, inhibiting T cell
cytotoxicity and promoting tumor progression [101]. M2 polarized TAMs and MDSCs also release
immune-suppressive cytokines and chemokines including TGFβ, TNF-α, IL-10, prostaglandins,
arginase, and VEGF, inducing osteosarcoma progression and immune evasion [102].

Targeting the building blocks and the regulatory elements of the ECM has been
explored for osteosarcoma. These targets include collagens, fibronectin, laminins, and
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proteoglycans [103]. Losartan, the angiotensin II receptor blocker, inactivates cancer-
associated fibroblasts (CAFs), decreases stromal collagen and hyaluronan production, and
reduces TGFβ1, connective tissue growth factor (CCN2, cellular communication network
factor 2), and endothelin-1 (ET-1), thereby lowering mechanical compression in tumors
and increasing vascular perfusion [104]. Losartan treatment leads to a dose-dependent
reduction in stromal collagen in desmoplastic models of human breast, pancreatic and skin
cancers, and enhanced the efficacy of chemotherapy in multiple cancer models [105,106]. It
also blocks monocyte migration into osteosarcomas and shows significant benefit against
canine metastatic osteosarcoma in combination with TKI toceranib [107].

Besides the mechanical stroma, activated VEGF pathway also plays a pivotal role
in osteosarcoma progression. Cancer cell metabolism is characterized by an enhanced
uptake and utilization of glucose [108], and the persistent activation of aerobic glycolysis in
cancer cells is linked to the activation of oncogenes or loss of tumor suppressors [109,110].
Heightened metabolism of cancer cells creates a hypoxic and acidic TME, increasing the
expression of hypoxic inducible factors (HIFs), VEGFs, and other pro-angiogenic factors,
which promote abnormal angiogenesis contributing to chaotic tumor microvasculature [95].
In osteosarcoma, hypoxia and lactic acidosis promote highly vascularized TME, accelerate
hypoxic nutrient consumption and waste accumulation, which combine to suppress CTL
proliferation and activity [95]. Chemokines (CCL3 and CCL5) and other proangiogenic
factors also upregulate VEGF and promote neovasculature in osteosarcoma [111–113], and
high expression of VEGF and VEGFR2 is associated with poor prognosis [114–116]. Dual
silencing of the VEGF and Survivin genes effectively inhibited the proliferation, migration,
angiogenesis and survival of the osteosarcoma cells [117], suggesting a potential of VEGF
pathway blockade as another therapeutic maneuver to salvage T cell immunotherapy
against osteosarcoma.

Beyond mechanical stroma and angiogenesis, the immunosuppressive TME is another
challenge. The osteosarcoma TME is mainly orchestrated by MDSCs and M2 macrophages.
While immune-inflamed ‘hot’ tumors have significant numbers of CD8(+) T cells in the
tumor stroma and express pro-inflammatory cytokines, responding well to T cell im-
munotherapies, osteosarcoma belongs to ‘cold’ tumors characterized by the paucity of
TILs, accompanied by immunosuppressive tumor infiltrating myeloid cells, such as TAMs
and MDSCs, as well as regulatory T cells (Tregs) [118–120]. Tumors secrete high levels of
colony-stimulating factor 1 (CSF-1), which converts M1 macrophages (classically activated
and tumoricidal) to M2 macrophages (alternately activated, tumor-promoting) along with
Th2 cytokines (e.g., IL-4, IL-10, TGFβ1, and PGE2) and stimulates tumor growth and
metastasis [121,122]. CD14/CD68 double-positive TAMs are the main immune infiltrates
in osteosarcoma, and RNA analyses revealed that type 2 TAMs are the most abundant
immune infiltrates [123]. M2 TAMs release proangiogenic factors, such as FGF, matrix met-
allopeptidase 9 and 12 (MMP-9, MMP-12), and VEGF to increase angiogenesis and vascular
extravasation while suppressing CTLs and maintaining Tregs [124–126]. TAM-modulating
agents including mifamurtide (MTP-PE), ATRA, metformin, gefitinib, esculetin, zoledronic
acid, and CAR-macrophages have been tested in osteosarcoma with promising results in
preclinical studies [127].

In addition, despite the limited efficacy of radiotherapy in treating osteosarcoma,
there have been reports of immunomodulatory effects of radiation on the TME as well
as its promising synergy with T cell immunity [128–130]. Radiotherapy has the potential
to ignite tumor immune recognition by generating immunogenic signals and releasing
neoantigens [130]. It triggers recruitment of CD11b (+) myeloid cells and reprogramming
of macrophages toward the M2-phenotype [131], simultaneously increasing CD4(+) and
CD8(+) T cells in the TME [132]. In two recent preclinical studies, 90Y-NM600 activated
the STING-IFN1 signaling pathway and increased proinflammatory cytokines [133,134].
Radionuclide therapy also enhanced infiltration of immunostimulatory CD4(+) and CD8(+)
T cells, APCs, NK cells, and other innate immune cells into the TME and affected TAMs and
Tregs, having the potential to target TME by radioimmunotherapy [133–136]. Lutetium-177
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(177Lu) is a promising therapeutic radionuclide with suitable β(-) energy and physical
half-life. When targeted to mineralized bone cells, it could induce apoptotic osteosarcoma
cell death while being effective for cancer bone pain palliation [137,138]. 177Lu-PSMA
increased T cell infiltration into tumors and induced immunogenic cancer cell death and
modulated TME, improving progression-free and overall survival in metastatic castration-
resistant prostate cancer [139]. Phase 1 clinical trial of pretargeted radioimmunotherapy
(PRIT) using GD2-specific Self-Assembling Disassembling (GD2-SADA) BsAb platform to
deliver 177Lu-DOTA payload in patients with recurrent or refractory GD2(+) solid tumors
including osteosarcoma is ongoing (NCT05130255) [140].

5. Combination Strategies to Overcome the Limitations of T Cell Immunotherapy
against Osteosarcoma

Among the latest trends in T cell immunotherapy, various combination approaches
are actively explored. First, strategies that combine ATC with ICI may encourage functional
persistence of BsAb- or CAR-driven T cells in osteosarcoma. CAR or BsAb drives TILs
to exert highly specific anti-tumor immune responses [62,141], which can be theoretically
amplified by the addition of ICIs to reinvigorate exhausted T cells [142]. In a HER2(+) breast
cancer model, HER2-CAR T cells upregulated PD-1 after incubation with target cells, and
the PD-1 blockade did increase CAR T cell proliferation, IFN-γ production, and granzyme
B expression in vitro while enhancing in vivo cytotoxicity [143]. The third-generation
GD2-CAR T cells had highly potent immediate cytotoxicity, but significant activation-
induced cell death (AICD) was observed after chronic antigen stimulation, where the
PD-1 blockade enhanced GD2-CAR T cell survival and cytotoxicity against melanoma
cell lines [144]. Cherkassky et al. also reported that PD-1 inhibitors rescued the effector
function of exhausted mesothelin-specific CAR T cells and improved the potency of CAR T
cells in a model of pleural mesothelioma [145]. However, the clinical study of GD2-CAR T
cells combined with the PD-1 inhibitor failed to achieve the intended synergy; the PD-1
inhibitor did not further enhance GD2-CAR T cell expansion or persistence, laying the
blame on tumor-infiltrating macrophages [74]. A phase I clinical study of HER2-CAR T cells
in combination with PD-1 antibody to test safety and efficacy in patients with advanced
sarcoma is ongoing (NCT04995003).

Combinations of T-BsAb and PD-1/PD-L1 blockades have also been studied. T-BsAb
upregulates PD-1 on T cells and PD-L1 on tumor cells, and a combination of anti-CEA
(carcinoembryonic antigen) BsAb and PD-L1 inhibitor improved anti-tumor efficacy by
increasing the frequency of TILs when compared with each monotherapy in preclinical
models [146]. Anti-GD2 BsAb upregulated PD-1 on T cells and PD-L1 on osteosarcoma
tumor cells. Sequential combination of PD-1 or PD-L1 inhibitor enhanced GD2-BsAb-driven
T cell infiltration and survival of mice, and the tumor-suppressing effect was most effective
when anti-PD-1 or anti-PD-L1 antibody treatment was prolonged [62]. But the ATC and
ICI combinations have encountered key limitations including the short half-life of ICIs,
requiring multiple administrations, inconsistent tumor penetration by T cells, and the risk of
systemic on-target off-tumor toxicities [142,147]. Despite these concerns, clinical trials to test
the efficacy of combining ATC with ICIs are recruiting patients with ALL (NCT05310591),
sarcomas (NCT04995003), or relapsed/refractory Hodgkin lymphoma (NCT04134325).

Targeting TME is another promising strategy to overcome the limitations of T cell
immunotherapy, addressing both the physical barriers and immune-hostile TME of osteosar-
coma [95,99,148]. The majority of CAR T cell therapies have struggled with dose-limiting
toxicities and poor efficacy against solid tumors. CAR T cells could not efficiently infiltrate
the TME, requiring intratumoral injection to exert tumoricidal effects [11,65], and even then
unable to survive in the immunosuppressive and hypoxic TME. In addition, CAR T cells
or BsAb-driven T cells themselves recruited even more MDSCs and M2 macrophages into
tumors [74], compromising their own efficacy [73]. While M2 macrophages are consistently
correlated with fewer TILs, lung metastasis, and poor prognosis [149–151], the shift from
M2 to M1 phenotype induced the regression of metastatic lesions [148,152]. All-trans
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retinoic acid (ATRA) is known to restrict osteosarcoma initiation and prevent metastasis
by suppressing MDSCs and M2 polarization of macrophages, as well as disrupting TAM-
cancer stem cell pathways [73,153,154]. Combined therapy of GD2-CAR T cells with ATRA
significantly improved anti-tumor efficacy against sarcoma xenografts [73]. Trabectedin
also reprograms the TME by targeting macrophages and monocytes, thereby inhibiting
osteosarcoma tumor growth and lung metastases. Trabectedin combined with the PD-1
inhibitor significantly enhanced the number of CD8(+) TILs, improving treatment efficacy
against osteosarcoma [155]. MDSCs have also been shown to affect the potency of CAR T
cells, where targeting tumor MDSCs by anti-Gr1, anti-GM-CSF, or anti-PD-L1 antibody has
improved treatment efficacy of anti-CEA CAR T cells in colon cancers [156]. In similar stud-
ies, TME modulation has greatly improved outcomes of BsAb-based T cell immunotherapy,
where anti-Gr-1, anti-Ly6G, or anti-Ly6C antibodies to deplete MDSCs or clodronate lipo-
some or anti-CSF1R antibodies to deplete TAMs were effectively combined with GD2-EATs
or HER2-EATs for treating osteosarcoma [147]. MDSC depletion facilitated EAT trafficking
and infiltration into osteosarcoma, resulting in improved tumor control. Depletion of TAMs
was more effective than MDSC depletion to drive T cells into tumors, inducing more potent
in vivo anti-osteosarcoma response. In these studies, dexamethasone before GD2-EAT
injection predominantly depleted monocytes in the blood and macrophages in tumors
while promoting GD2-EAT infiltration and anti-tumor activity [147].

Besides ICI and TME modulation, targeting neovasculature is yet another potential
strategy to improve the efficacy of T cell immunotherapy in osteosarcoma. Bevacizumab
combined with chemotherapy has been FDA approved as first-line therapy in multiple
cancers including colorectal carcinoma, non-small cell lung cancer, ovarian carcinoma,
breast cancer, and hepatocellular carcinoma [157–159]. Combination of anti-angiogenic
therapy and ICI normalizes the vascular–immune cross-talk to potentiate cancer immu-
nity, becoming a compelling combination strategy in clinical trials [160]. Bevacizumab
has proven synergistic effects with the PD-1 inhibitor in advanced renal cell carcinoma
and hepatocellular carcinoma [161,162], and many clinical trials are testing the efficacy of
ICIs plus anti-angiogenic agents in a variety of solid cancers [50]. The addition of VEGF
blockade to T-BsAb has shown promising synergy against osteosarcoma. Anti-VEGF (beva-
cizumab) or anti-VEGFR2 antibodies (DC101) significantly enhanced the trafficking of EATs
into tumors and CD8(+) T cell infiltration, improving the in vivo anti-tumor effect. VEGF
blockade normalized tumor vasculature by inducing high endothelial venules (HEVs) and
increased CD8(+) TIL survival and dispersion while mitigating the immunosuppressive
TME. These findings suggest that the VEGF pathway plays a key role in developing the
immune-hostile TME of osteosarcoma, and targeting the VEGF/VEGFR2 pathway is an ef-
fective strategy to overcome TME and improve the clinical efficacy of T cell immunotherapy
in osteosarcoma [163].

6. Conclusions

With the arrival of T cell immunotherapy, ICIs and ATC using BsAb or CAR may
provide alternative options for relapsed or refractory osteosarcoma. In order to realize
the true potential of T cell immunotherapy, osteosarcoma TME needs attention: a dense
ECM, high densities of M2 macrophages and MDSCs, and abnormal tumor angiogenesis,
which create hypoxic and acidic tumor environment that sabotage T cell immune responses.
Targeting TME using the VEGF blockade, TAMs or the MDSC modulation or softening ECM
may provide promising options to overcome these hurdles for T cell immunotherapy in
osteosarcoma. By combining small molecule inhibitors with no cross-resistance or toxicities,
curing osteosarcoma may be even possible if these strategies can be adopted upfront before
tumors develop pan-resistance.
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