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Abstract: Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for
the enzymatic process since immobilizing TGM plays an important role in different technologies
and industries. TGM can be used in many applications. In the food industry, it plays a role as
a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used
in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are
enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound
or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-
bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of
proteins through either intramolecular or intermolecular crosslinking, which improves the use of the
respective proteins significantly.

Keywords: transglutaminase; industrial enzyme; protein-modifying enzyme; crosslinker; antibody–
drug conjugation; immobilization

1. Introduction

Enzymes were used long before the development of modern DNA technology as
fermenting microorganisms or crude preparations of different fruits. However, with the
development of advanced bioprocesses using recombinant DNA technology, enzymes
are being purified and produced on a larger scale, which has allowed their use and their
applications in different industrial technologies, such as in the chemical, food, textile,
cosmetic, pulp, and paper industries [1–4]. They are nutrients that play an important role
in the physical properties of different foods. As such, they have been used widely in many
industrial processes for the production of different products. Concerns regarding global
food shortages and population growth, as well as the use of advanced food proteins, are
increasing constantly in recent years. Moreover, the importance of protein modification
technology is gaining much interest in order to meet the ever-challenging needs of a
growing population [1,5–7].

The development of protein engineering with site-directed evolution has enabled
novel enzymes with enhanced activities for many new processes, which makes industrial
enzymes that are needed in everyday life more accessible to various industries [8,9]. Among
the most-used industrial enzymes are hydrolases and carbohydrases. Hydrolases, such as
lipases and proteases, are the dominant type used in many food industries, mostly dairy,
as well as in the detergent and chemical industries. Carbohydrases include amylases and
cellulases and are also used extensively. Table 1 lists some industrial enzymes with their
significant industrial applications.
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Table 1. Industrial enzymes and their significant applications.

Enzyme Substrate Industrial Application

Amylase Carbohydrate Detergents, Paper and pulp, Textile,
Baking, Starch, Fuel

Laccase Benzenediol Textiles, Paper and pulp, Food

Lipase Fat, oil Detergents, Oil and fat, Food and baking,
Paper and pulp, Fine chemicals

Pectinase Pectin Food, Beverages, Textiles

Protease Protein, polypeptide Detergents, Food and Leather processing,
Water treatment, Animal feeds

Pullulanase Polysaccharide Food, Starch
TGM Protein, amine Cosmetics, Textiles, Food

Xylase Xylan Animal feeds, Baking and food, Paper
and pulp

Drastic savings in resources were achieved by applying industrial enzymes in vari-
ous processes; for example, energy efficiency and water and raw material consumption
have improved significantly. Among other approaches, when compared to chemical mod-
ifications, applying enzymes in protein modification displays many advantages, which
include high reaction specificities and low side-reaction frequencies, with the lack of need
for high-pressure and high-temperature conditions. Such advantages make the protein
modification technology effective, mostly in the food industry [10–14]. In terms of applying
hydrolases in industry, proteases were the main protein-modifying enzymes. With the
emergence of the enzyme TGM, which is involved in protein crosslinking, the protein mod-
ification technology possibilities have expanded enormously [15–18]. TGM (EC 2.3.2.13)
belongs to the transferase family, distributed widely in nature. TGM is responsible for acyl
transfer, deamidation, and crosslinking of intra- or inter-chain glutamine peptide moiety,
which is the acyl donor and lysine peptide moiety, which is the acyl acceptor. The enzyme
TGM catalyzes the addition of free amines into proteins by joining the glutamine residue.
When the amine is absent, water becomes the acyl acceptor, and the γ-carboxamide groups
deamidate to glutamic acid residues. The transamidation reaction occurs when the ε-amino
groups of lysine residues in proteins act as acyl acceptors. In such cases, the acyl transfer
onto a lysine residue forms intra-molecular and inter-molecular covalent crosslinks of
ε-(γ-glutamyl)lysine, which is enriched with essential amino acids [19,20].

TGMs can be found in plants, such as soy, topinambour, and fodder beet; in animals,
such as animal body fluids and fish; as well as in microorganisms. TGMs from mammalian
sources are Ca2+-dependent, while microbial TGMs are Ca2+-independent and have smaller
MW. Due to their Ca2+ independency, microbial TGMs are considered to be more cost-
effective and eco-friendly, while their characteristics can prevent changes in formation of
by-products, which occurs in Ca2+ protein complexes [21,22]. Moreover, their source origin
also dictates their activities, which varies depending on their origin. The main differences
between microbial TGM and existing TGMs from animal sources are presented in Table 2.

Table 2. Properties and differences in TGMs from different sources.

Condition TGM from Microbial Sources TGM from Animal Sources

Temperature (◦C) 45–55 50–55
pH 5–8 6

Isoelectric point 9 4.5
MW (kDa) 37,800 76,600

TGM-catalyzed reactions result in functional property changes, such as solubility
foaming, viscosity, elasticity, water holding capacity, emulsifying capacity, gelation, and
thermal stability of different food proteins [23–25]. TGM was also found to be involved in
many physiological processes, such as in coagulation antibacterial immune reactions and in
photosynthesis. TGM is an extracellular enzyme and was isolated from Streptoverticillium
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sp. And Physarum polycephalum. It can also be biosynthesized by many microorganisms,
such as Streptoverticillium sp., Streptoverticillium cinnamoneum, Streptomyces netropsis, Strep-
toverticillium ladakanum, Streptomyces lydicus, and Bacillus subtilis.

2. Enzymatic Properties of TGMs

TGM modifies proteins with amine incorporation and crosslinking, where TGM cat-
alyzes the reaction of the acyl transfer between the γ-carboxyamide group of peptides,
which is bound with glutamine residue acyl donors and primary amines receptors of
different compounds. The reaction can be found in Figure 1a. As presented in Figure 1b,
the ε-amino group of lysine reacts as a receptor, which forms intra-molecular and inter-
molecular crosslinks of ε-(γ-glutamyl)lysine isopeptides. When the lysine residue is absent,
or when the protein system is free, water reacts as the receptor for the acyl groups, and
the carboxyamide groups of the glutamine residues are deamidated, which, consequently,
forms glutamic acid and ammonia residues that can modify protein charges and protein
stability. The reaction is presented in Figure 1c.
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Figure 1. TGM-mediated reactions: (a) acyl transfer reaction, (b) protein crosslinking reaction,
(c) deamidation.

The TGM crosslinking reaction occurs before the acyl transfer and deamidation re-
actions in food systems, which results in the formation of glutamyl lysine isopeptides
and polymers with high molecular weight. Consequently, it changes the functional prop-
erties of the proteins, resulting in improved rheology and other quality properties for
various food products (Figure 2) [26]. The properties and structure of TGM were studied by
many researchers, where it was reported that the MW of microbial TGM is approximately
38,000 kDa and is only half of its MW when originating from an animal source [27,28]. The
microbial TGM consists of 331 amino acids in only one polypeptide chain. The secondary
structure of TGM consists of eight β-strands, which are surrounded by eleven α-helixes.
Different 3D structures of TGM from different sources are presented in Figure 3. Microbial
TGM has a stabile catalytic activity over a wider range of pH values in comparison to
animal TGM. The optimal pH activity of microbial TGM is in the range 5–7 and has the
isoelectric point of 8, while the optimal catalytic activity of TGM lies in the temperature
range from 40–50 ◦C, at pH 6. When the temperature increases over 70 ◦C, the activity
decreases drastically, resulting in activity loss [26,29,30].
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Figure 2. TGM-promoted crosslinks based on low and high substrate concentrations that can produce
proteins with new and unique functional properties.

The protein crosslinking reaction, called polymerization, can result in dimer, trimer,
and polymer formation. For identifying these crosslinked formations, commonly used
techniques are gel electrophoresis (GE), size exclusion chromatography (SEC), and isopep-
tide content quantification (ICQ). GE allows identification of casein molecules’ crosslinks,
such as aS1-, aS2-, and κ-casein, whereas high-MW polymers with over 250 kDa cannot
go through the gel [31]. The quantification of monomer conversions to dimer, trimer, and
oligomer is identified by SEC, which provides an estimation of the polymerization degree
(PD), also considered the crosslinking degree. The PD is the ratio between the dimer, trimer,
and oligomer sum and the monomer, dimer, trimer, and oligomer sum. The ICQ technique
can also quantify the crosslinking reaction since the isopeptide bonds form during the
crosslinking reaction and do not succumb to protein hydrolysis [32,33].



Int. J. Mol. Sci. 2023, 24, 12402 5 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 3. TGMs and their 3D structures from animal source (Pagros major), microbial source (Strep-
tomyces mobaraensis), and plant source (Phytophthora sojae) (RCSB Protein Data Bank [34]). 

3. Origins of TGMs 
Based on the similarities of catalytic properties and mechanism of TGM reactions, 

TGMs are believed to be evolutionary, close to thiol-like proteases. Clusters of TGM-like 
domains can be identified in eucaryotic TGMs that are found in all archaea and some yeast 
and bacterial species [35–37]. TGMs are enzymes found both on the inside and outside of 
the cell, which determines the versatility of their functions. Enzymatic activity of TGM 
was found in microorganisms, plant, and animal tissues. They all exhibit similar catalytic 
activity with biochemical properties, although those from plant and animal sources have 
less homology in the composition of amino acids [38–40]. TGMs from animal sources take 
part in many physiological processes, such as participating in skin formation, blood coag-
ulation, and in antimicrobial immune reactions. Additionally, TGMs from plant sources 
play a role in the process of growth and development[41,42]. A specific feature of TGMs 
from plant sources is their sensitivity to light. This property applies especially to chloro-
plast TGM, which has been investigated by many studies [43,44]. Isolation and purifica-
tion of TGM from microbiological sources has allowed its application in many processes 
and its simplification, which has provided economical savings with lower energy con-
sumption. Gene transfer technology provided many possible TGM productions, where 
the expression of genes in E. coli has increased the production of TGMs and their efficiency 
immensely. Such enzymes are consumer-friendly and biodegradable, which offers a great 
advantage over many other chemical substances [45–47]. TGM is well-known for intra-
molecular and inter-molecular formations of covalent bonds of glutamine and lysine, 
which initiate high-MW peptides, such as monomers, dimers, trimers, and oligomers. The 
digestibility of such crosslinked peptides has raised nutritional concerns. After ingesting 
crosslinked peptides, the dipeptide (glutamine–lysine) is cleaved by the activity of two 
enzymes. γ-glutamylamine cyclotransferase is a kidney enzyme cleaving the glutamine–
lysine isopeptide, which yields free lysine and 5-oxo-proline, and is later metabolized to 
glutamate by 5-oxo-prolinase. γ-glutamine transpeptidase can be found in the intestinal 
membrane, kidneys, and blood. Microbial TGM is cultivated from Streptoverticillium 
strains [48–51]. However, the large amount of highly expensive nutrients makes its pro-
duction not attractive from the economical angle. Many researchers have studied the use 
of agricultural waste materials as a source of carbon for TGM production. The media used 
to produce microbial TGM contain yeast extract, peptone, potassium and sodium phos-
phate, magnesium sulfate, and a source of carbon. The source of carbon may be xylose, 

Figure 3. TGMs and their 3D structures from animal source (Pagros major), microbial source (Strepto-
myces mobaraensis), and plant source (Phytophthora sojae) (RCSB Protein Data Bank [34]).

3. Origins of TGMs

Based on the similarities of catalytic properties and mechanism of TGM reactions,
TGMs are believed to be evolutionary, close to thiol-like proteases. Clusters of TGM-like
domains can be identified in eucaryotic TGMs that are found in all archaea and some
yeast and bacterial species [35–37]. TGMs are enzymes found both on the inside and
outside of the cell, which determines the versatility of their functions. Enzymatic activity
of TGM was found in microorganisms, plant, and animal tissues. They all exhibit simi-
lar catalytic activity with biochemical properties, although those from plant and animal
sources have less homology in the composition of amino acids [38–40]. TGMs from animal
sources take part in many physiological processes, such as participating in skin formation,
blood coagulation, and in antimicrobial immune reactions. Additionally, TGMs from plant
sources play a role in the process of growth and development [41,42]. A specific feature
of TGMs from plant sources is their sensitivity to light. This property applies especially
to chloroplast TGM, which has been investigated by many studies [43,44]. Isolation and
purification of TGM from microbiological sources has allowed its application in many
processes and its simplification, which has provided economical savings with lower energy
consumption. Gene transfer technology provided many possible TGM productions, where
the expression of genes in E. coli has increased the production of TGMs and their effi-
ciency immensely. Such enzymes are consumer-friendly and biodegradable, which offers
a great advantage over many other chemical substances [45–47]. TGM is well-known for
intra-molecular and inter-molecular formations of covalent bonds of glutamine and lysine,
which initiate high-MW peptides, such as monomers, dimers, trimers, and oligomers. The
digestibility of such crosslinked peptides has raised nutritional concerns. After ingesting
crosslinked peptides, the dipeptide (glutamine–lysine) is cleaved by the activity of two
enzymes. γ-glutamylamine cyclotransferase is a kidney enzyme cleaving the glutamine–
lysine isopeptide, which yields free lysine and 5-oxo-proline, and is later metabolized
to glutamate by 5-oxo-prolinase. γ-glutamine transpeptidase can be found in the intesti-
nal membrane, kidneys, and blood. Microbial TGM is cultivated from Streptoverticillium
strains [48–51]. However, the large amount of highly expensive nutrients makes its produc-
tion not attractive from the economical angle. Many researchers have studied the use of
agricultural waste materials as a source of carbon for TGM production. The media used to
produce microbial TGM contain yeast extract, peptone, potassium and sodium phosphate,
magnesium sulfate, and a source of carbon. The source of carbon may be xylose, which is
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a hemicellulose sugar used for bacterial proliferation [52]. The biosynthesis of TGM can
be performed on different batch cultures, where the medium contains saccharose, glucose,
starch, or dextrins as a carbon source. The culture Streptovitricillium mobaraense was found
to be the most suitable medium, which contained corn steep, aminobac, and yeast extract
as a source of nitrogen [53–56]. However, peptone, yeast extract, urea, and casein are used
commonly as sources of nitrogen that are used in TGM biosynthesis. However, nowadays,
TGM is usually produced by Streptovitricillium mobaraense in fermentation systems, which
are followed by the downstream process presented in Figure 4. The main advantages of
TGM production from microorganisms, compared to production from animal and plant
sources, are the purity and high productivity since there is no need for difficult separation
and filtration processes.
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As eucaryotic TGMs are found in phylogenetic taxonomic groups, such as plants,
animals, and fungi, the procaryotic TGMs are found in microorganisms. TGM was first
isolated from S. mobaraensis in 1989, and later found in many other strains, listed in Table 3.

Table 3. Various microbial strain sources for the isolation of TGM.

Microorganism Reference

Bacillus subtilis [57–60]
Escherichia coli [46,47,61]
Kutzneria albida [62,63]

Physarum polycephalum [64–67]
Pseudomonas aeruginosa [68]

Sterptoverticilliu mobaraensis [69–72]
Streptomyces hygroscopicus [73–78]

Streptomyces ladakanum [79,80]
Streptomyces libani [81]

Streptomyces nigrescens [82]
Streptomyces platensis [80,83,84]

Streptomyces sioyaensis [85]
Streptoverticillium cinnamoneum [86–88]

Microbial TGM from S. mobaraensis is used widely in different food industries, where it
is applied in the reconstruction and manufacturing of meat, texturization of dairy products
(yoghurt [42,89–92] and cheese [42,93–96]), or in different materials sciences, where it is
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used for the stabilization of wool and leather [97,98]. Due to the various applications
of TGM, different grades of enzyme are available commercially. For biotechnological
technologies, highly pure enzyme TGM is recommended to surpass by-products that can
appear during side-reactions.

4. Applications of TGM

Enzyme TGM gained much attention due mainly to its potential for industrial ap-
plications. In their earlier uses, TGMs focused mostly on the cheesemaking processes,
mainly improving the characteristics of the cheese itself. Later on, beverage properties were
being improved by decreasing viscosity and solubility increases, as well as reduction in
yoghurt syneresis. Therefore, the majority of investigations of applying TGMs in different
processes focused mostly on improving the functional properties of proteins that can be
utilized to develop improved food ingredients, such as crosslinked milk powders and
high-added food products [33]. Such improvements were also possible due to the different
immobilization techniques of TGM.

4.1. TGM Immobilization

The immobilization of TGM on solid supports is a widely used method to increase
TGM stability and improve its spectrum of use and reuse. Site-specific modification is
needed for such applications, especially when unstable targets are in question. Harsh
conditions are usually applied during chemical immobilization. If compared to enzymatic
catalysis, selective and fast performance in aqueous media is performed under mild process
conditions, which has many advantages. Immobilizing the enzyme onto a given matrix is
benefiting the enzyme with a stabile structure, which provides an advantage in resisting
temperature and pH alterations by retaining catalytic activities [99–102]. Immobilized en-
zymes are more stable and have improved properties and features in terms of their kinetic
aspects when compared to the free form of the enzyme. The enzymes’ improved features
are due to the conformational changes that happen in the enzyme structure as a result of
the chosen and most suitable immobilization method. In this manner, enhanced activity,
stability, and selectivity can be observed [103–106]. For larger-scale applications, immobi-
lized enzymes are the considered subject of choice. Not many studies were reported on
immobilizing TGM. However, immobilized TGM was investigated on a few supports, such
as thermo-responsive carboxylated poly (N-isopolylacrylamide), agarose beads, polypropy-
lene microporous membranes, and various nanomaterials, such as magnetic nanoparticles
(MNPs) or carbon nanotubes (CNTs), as well as in the form of crosslinked enzymes ag-
gregates (CLEAs). For example, TGM was immobilized on multi-walled CNTs for tissue
scaffold designing. The highest immobilization efficiency of 58% was achieved and a
4.8 fold increase in catalytic efficiency was observed [107]. Gianetto et al. reported on a new
amperometric immunosensor, which was based on the covalent immobilization of TGM
onto functionalized gold nanoparticles, and used for the determination of anti-tissue TGM
antibodies in human serum [108]. Another piezoelectric immunosensor was developed for
the detection of anti-tissue TGM antibodies as specific biomarkers for early diagnosis of
celiac disease by Manfredi et al. [109]. Leitgeb et al. studied and investigated the immo-
bilization of TGM onto surface-modified MNPs with carboxymethyl dextran for cleaner
production technologies. In this case, the TGM was hyperactivated and exhibited 99%
immobilization efficiency with 110% residual activity. It showed excellent thermal stability
at 50 ◦C and at 70 ◦C [110]. Another TGM investigation by the same group reported on the
synthesis of TGM immobilized in the form of CLEAs and magnetic CLEAs (mCLEAs). The
TGM was precipitated in 2-propanol and later crosslinked with glutaraldehyde (GA), which
resulted in 63% and 73% of residual activity for TGM CLEAs and mCLEAs, respectively.
The CLEAs and mCLEAs showed great immobilization efficiency as well (95% and 90%
for CLEAs and mCLEAs, respectively) [111]. Zhou et al. reported on TGM immobilized
covalently on thermo-responsive carboxylated poly(N-isopropylacrylamide), where the
immobilized TGM exhibited reversible solubility in an aqueous solution with a low critical
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solution temperature of 39 ◦C. Such immobilized TGM can be used to modify proteins in
food processing and biomedical engineering [112]. The Wen-qiong report showed immobi-
lization of TGM on an ultrafiltration polyethersulfone membrane surface, where it retained
50% of residual activity after 20 days. Additionally, the TGM-immobilized membrane had
a higher relative membrane flux of 0.15 MPa in a membrane reactor [113].

4.2. Food Related Industries

As proteins are important food components, which play an important role in the phy-
isicochemical properties of food, the usage of TGM to crosslink food proteins to change their
functional characteristics has been in progress for more than 30 years [114–116]. Enzymatic
preparations of TGM have an important role in the food industry due to their practical
utilization. Many reports describe the use of TGM in various food-related industries for
the crosslinking of proteins, as in meat, cheese, yogurt, or bread (Figure 5).
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Figure 5. Opportunities for applications of TGM in the food industry.

It can also be used to produce composite edible films. TGM catalyzes the formation of
crosslinks within a molecule as well as between molecules of other proteins. This feature
impacts the changes in protein functionalities, such as solubility, foaming, emulsifying
capacity, and gelation. As TGM has broad substrate specificity, Table 4 shows the reactivity
of microbial TGM, which was investigated on different types of proteins that were derived
from various foods [117–120].

Table 4. Reactivity of microbial TGM in relation to different food proteins.

Food Protein Improved Functional Properties Reactivity

Egg Ovalbumin (egg white) Depending on condition
Egg yolk protein Well

Meat

Myoglobin Depending on condition
Gelatin Very well
Collagen Well
Myosin Very well
Actin Does not react

Milk

Casein Very well
α-lactalbumin Depending on condition
β-lactoglobulin Depending on condition
Sodium caseinate Very well
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Table 4. Cont.

Food Protein Improved Functional Properties Reactivity

Soybean 11S Globulin Very well
7S globulin Very well

Wheat
Gliadin Well
Glutenin Well

Some examples of the TGMs used in the food industry are listed below.

4.2.1. Dairy Industry

TGM uses proteins such as casein or whey proteins as substrates to improve the
foaming, emulsifying, and gelling properties of different foods. Casein is a major milk
protein, which is a great substrate for TGM in dairy products due to its low degree of
tertiary structure, flexibility, and the absence of disulfide bonds, which allows the exposure
of reactive groups to TGM. On the other hand, the globular whey proteins, which do contain
disulfide bonds, are poor substrates for TGM in the crosslinking process and therefore
require modifications. Such modifications can be performed with reducing agents or
increasing the pH value. They can also be achieved by heat denaturation or application of
high hydrostatic pressure. However, such alterations in treatment can affect the interactions
between the enzyme TGM in the TGM inhibitors that are present in milk serum and can
also induce denaturation and result in cleavage of disulfide bonds, which later leads to
unfolding of the proteins [26]. For example, the enzymatic crosslinking of casein was more
resistant to digestion in comparison to the non-crosslinked casein. This suggests that the
development of new types of products can offer carious food with improved structural
characteristics, such as the polymerization of milk proteins with TGM results in protein
film formation, which improves the functional properties of dairy products [121,122].

In the dairy industry, TGM has been introduced in many products. In yoghurts, it is
used to prevent syneresis and for texture firming or softening since TGM-modified casein
allows the manufacture of dairy products with a more consistent structure. The result of
this reduced syneresis is a firmer and more homogeneous product. Various methods and
protocols were also carried out investigating the use of TGM to increase cheese yield while
enhancing the quality of low-fat cheese. TGM is also used in cheese manufacturing, where
three methods are performed, including TGM:

- the addition of TGM to milk, followed by heating for pasteurization and deactivation
of enzymes, concluded with the addition of rennet to the milk;

- the addition of rennet to the milk, followed by the addition of TGM;
- the addition of TGM and rennet at the same time.

However, the reported investigations confirmed that the addition of TGM before the
rennet prevented the coagulation of milk, while the simultaneous addition of both resulted
in reduced resistance and hardness of the cheese [123]. By improving the cheese yield,
textural properties, and its water-holding capacity, the use of TGM in cheese production is
crucial. Other investigations reported on the improved heat stability and consistency of
processed cheese after implementing TGM into the production [124–128].

Microbial TGM was used to treat the rheological and microstructural properties
of yoghurt, where it was applied to milk before the fermentation. The TGM-mediated
treatment decreased the ropiness of yoghurts and contributed to the acceptability of their
texture, a study by Marhons suggests [129]. Salunke et al. investigated the use of micellar
casein concentrate and milk proteins that were treated with TGM in different imitation
cheese products. As TGM has the potential to modify the surface properties of milk protein
concentrate and micellar casein concentrate, it may also improve functionality in imitation
cheese, such as mozzarella [130]. Another study by the same group investigated the
melt and stretch properties of dairy-based imitation mozzarella cheese, where the effect
was studied of TGM-treated concentrates. The results demonstrated that TGM treatment
modifies the investigated stretch and melt functionalities of milk protein concentrate and
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micellar casein concentrate [95]. Another study by Monsalve-Atencio et al. investigated the
effect of TGM and its interaction with another enzyme, phospholipase, on the composition,
yield, texture, and microstructure of semi-soft fresh cheese. The interaction of TGM with
phospholipase showed the highest content of moisture in cheese value, which suggests
an economically improved application of TGM in cheesemaking [131]. The addition of
microbial TGM in quark cheese was studied, where the physicochemical, textural, sensory,
and microbial properties of cheese were studied as well [132].

4.2.2. Baking Industry

The use of TGM in the baking industry is improving the quality of flour, and, con-
sequently, the texture and volume of bread as proteins from grains are good substrates
for crosslinkers by TGM. For example, rice flour is known to contain valuable nutrients,
such as proteins, vitamins B and E, as well as fiber. However, it can only be used in and
is limited to non-fermented bakery products. Investigations showed that the addition of
TGM to rice flour improved the rheological properties of dough, and, by that, increased
the content of triglycerides [133–136]. Similar studies were reported concerning cassava
and wheat flour [137,138]. A TGM-induced protein aggregation method to improve the
baking properties was investigated by Beck et al. [139], where the effect was studied of
microbial TGM on the properties of rye dough. It was reported that the addition of TGM
modified the rheological properties of rye flour dough, which resulted in a progressive
increase in shear modulus. The increased TG concentration also showed an increase in
crumb springiness and hardness, which demonstrated the improved breadmaking with the
use of TGM. Another study also reports on improved rheological properties of gluten-free
batter with the implementation of TGM. The crumb properties revealed that increased
TGM concentration increased crumb chewiness and firmness [140]. The use of varying
amounts of TGM also improved the baking quality of high-level sun pest wheat, where
it was observed that TGM plays an important role in the baking quality. Increasing TGM
activity caused increased bread characteristics of wheat, such as bread yield, height, crumb
softness, pore structure, as well as decreased weight loss and wideness of the bread samples.
The study concluded that the addition of TGM can restore the properties of bread and
improve its overall protein structure [141]. Lang et al. evaluated the influence of TGM on
the technological properties of gluten-free cakes of brown, black, and red rice. The effect of
baking on the phenolic compound content was investigated as well [135].

4.2.3. Meat Industry

Numerous reports and studies are available investigating the use of TGM in meat products
as one of the most widespread applications of TGM is in the restructuring of meat. Despite
improving the structure and texture of the meat product, the use of TGM also provides cohesion
without thermal processing or any additives, such as phosphates [59,142–145]. Studies show
that the crosslinking activity of TGM in meat depends strongly on the temperature, pH,
protein surface charge, and ionic strength. It was shown to improve other characteristics
as well, such as water-binding, gelation, and emulsion stability. With the use of TGM in
meat production, the secondary structure of a myosin heavy chain is changed by reduced
α-helix content and increasing β-sheet content, which results in the formation of high-
molecular-weight polymers. With such structural modifications, strong gels were formed
with compact structural properties, which allow cohesiveness and improve the hardness
of the meat. In addition, some studies also show that different degrees of gelation can
be observed when induced by the addition of TGM [146–148]. This is also valid for fish
skin gelatin. Namely, TGM-modified cold-water fish skin gelatin could be a potential
mammalian gelatin replacer [149]. The addition of TGM also improves the quality of
collagen, blood proteins, and provides higher nutritional value by supplementing with
respective amino acids, such as exogenous lysine. TGM has allowed the production of new
meat products, which use lower-quality raw materials instead of high-value meat products.
The impact of TGM on the protein of such raw materials (skimmed milk powder or soy
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powder) does not alter the appearance, smell, texture, or nutritional value from products
made with high-quality meat [150]. A study by Ribeiro et al. produced bovine meat with
different levels of TGM combined with papain. The effects were investigated on pH, water
activity, instrumental color, proximate composition, texture, and yield. It was concluded
that the addition of TGM increased the yield of meat loafs [147]. In an interesting study by
Wen et al., the enzyme TGM was used to develop 3D-printable meat analogs that imitate
the physiochemical properties of beef. The TGM improved the rheological properties of
raw meat, and provided a method for modifying the texture of meat analogs using TGM
catalysis [151].

As the majority of the population are omnivores, TGM is being used widely in plant-
based (PB) food industries, which are designing PB products that mimic the look, taste, and
feel of animal-sourced foods. Zhou et al. developed PB protein gels for meat analogues
that are created using slats, polysaccharides, and crosslinking enzymes, such as TGM, to
modulate their gelation and assembly properties. In their study, the TGM increased the
gel strength by forming covalent crosslinks between the potato protein molecules with
more meat-like structures [152]. Additionally, traditional sausage production technologies
can be used for PB analogues, such as a PB salami-type sausage analogue, which was
manufactured with TGM-mediated soy protein isolate gels as binders, investigated in a
study by Herz et al. [153].

In addition, the use of TGM is gaining much attention in the field of food packaging
products; e.g., hemp proteins were used as raw material to obtain biodegradable films since
they were demonstrated to act as both acyl donor and acceptor substrates of microbial TGM
crosslinking [154,155]. Because such bioplastics show higher gas permeability and greater
hydrophobicity, they may be useful as packaging systems for protecting food products
from physical contamination and, thus, for extending their shelf-life. In the crosslinked
gelatin-based films, food preservatives such as lysozyme or nisin may be incorporated
to extend the shelf life of perishable foods. It was demonstrated that microbial-TGM-
crosslinked gelatin-based films incorporated with lysozyme can control the release of this
food preservative effectively.

4.3. Biotechnology and Cosmetics

Microbial TGM is an interesting tool for protein modification, which catalyzes protein
crosslinking through isopeptide bond formation, which occurs between γ-carboxamide
groups of glutamine residues, which include the acyl donor, and primary amines, such as
ε-amino groups of lysine residues, which include the acyl acceptor. Therefore, research on
TGM use can be applied to biomedical, biomaterial, cosmetic, and feedstock technologies.
TGM can be used for modification of gelatin hydrogels and collagen for enhancing binding
in different tissues. Microbial TGM was used to prepare collagen-grafted chitosan, which
could serve not only to reduce the loss of moisture but also to absorb the moisture. With
such properties, it showed the potentiality to repair skin in the cosmetic, biomedical, and
pharmaceutical fields [156]. TGM-crosslinked whey proteins were also used to prepare
a D-limonene emulsion, which can solve the problems of easy oxidation and poor water
solubility of D-limonene. Limonene is an important ingredient in the formulation of
different cosmetic and personal care products, such as aftershave lotions, bath products,
cleansing products, eye shadows, hair products, lipsticks, shampoos, etc. [157]. Moreover,
microbial TGM, as a protein-crosslinking enzyme in the processing of hair, improved the
rigidity of hair fibers by 15.64% compared to a control when it was applied to damaged
hair [158].

It has also been applied for bioconjugation, in order to create antibody–drug conjugates
for various therapeutic applications. Additionally, new uses for TGM in the field of novel
biomaterials are suggested and can be generated via site-specific substrate binding by
proteins modified by TGM [159,160]. Regarding different feedstocks, TGM has shown
to improve the physical properties of fish feed, while, in cosmetics, the TGM-catalyzed
reactions between amino groups of starch and γ-carboxamide groups of collagen peptides
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were investigated and reported to increase the effectiveness of some synthesized materials,
such as drugs [156,161,162].

Fusion proteins with dual functions are important for immunochemical assays. Among
such assays are the enzyme-linked immunosorbent assay (ELISA) and Western blot assays.
In that manner, genetic fusion provides poor yields when large-sized hybrid molecules
are assembled. Therefore, TGM catalysis is considered as a method for the preparation
of protein–protein conjugates. It was demonstrated that the coupling of two functional
proteins, namely peroxidase and protein G, is possible through lysine and glutamine ac-
tive sites. As a result, only a small amount of the desired conjugate was yielded. Later,
when TGM-mediated conjugation was performed, only the desired conjugates were ob-
tained [163,164]. This finding provided TGM the recognition that respective tags can be
applied to recombinant production to terminal and internal sites. Therefore, acyl donor and
acceptor incorporation enable covalent linkage in the monomeric subunits, which enhances
the thermal stability of the dimer [165]. Native antibody site-specific modification enhances
the properties of antibody-based bioconjugates. However, such antibodies have a single
functionality. A work by Walker et al. addressed this limitation by designing heterofunc-
tional substrates for microbial TGM that can contain both azide and methyltetrazine “click
handles”, which present a powerful method in the toolbox for native antibody modifica-
tion [166–170]. Antibody–drug conjugates for cancer treatment have placed site-specific
TGM-catalyzed conjugation with cytotoxic properties at the very pinnacle of research.
TGM’s remarkable properties make it a versatile tool for post-translational modification of
various proteins (Figure 6). A few examples are PEGylation of small-protein drugs to ele-
vate their half-life, or immobilization of biocatalysts that are prone to aggregation in order
to increase their stability or covalent attachment of nucleic acids to proteins for combining
the properties of both biomolecules [171–174]. The reactivity of microbial TGM was investi-
gated at intrinsic lysine and glutamine sites of different antibodies [167,170,175–178]. The
amino component in N-terminal pentaglycyl was found to mediate protein modification
by TGM, which was performed by crosslinking of the enhanced green fluorescent protein.
Many other protein–protein conjugates were performed using TGM-catalyzed conjugation.
As reported by Bhokisham et al., attachment on solid supports occurred, which caused
optimization of the reaction stoichiometry [179].
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Covalent coupling of nucleic acid macromolecules, such as DNA and RNA, to pro-
teins is a powerful method in molecular biology since both components exhibit excellent
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functions [180–182]. Therefore, protein–oligonucleotide conjugates became valuable tools
in analytic and biomedical applications, for example, in drug delivery [183] and molecular
diagnostics [184].

Protein–oligonucleotide ligation often relies on chemical methods that include func-
tional groups of the desired target protein. As a result, partial functional loss may occur due
to the steric hindrance or protein treatment with organic solvents. Therefore, site-specific
coupling is performed to avoid residue modification, which is essential for protein function.
In that manner, innovative strategies were developed to include microbial TGM in the
modification process. Some research reports show aminated DNA, which was attached
chemically to the acyl donor substrate and further coupled to alkaline phosphatase [185].

A modern technique to improve the pharmacokinetic properties of pharmacophore is
PEGylation, where polyethylene glycol is attached to small-protein-based drugs. PEGylated
pharmaceutics usually reduce immunogenicity compared to the non-PEGylated counter-
parts due to the enlarged hydrodynamic radius and higher conformational stability [186].
With increased bioavailability, the intravenous administration of such protein-based drugs
can become more patient-friendly. The controlled conjugation strategies are very important
since the modifications at binding interfaces or active sites of residues can affect the in vivo
functions. Leading to undesired reactivity during conjugation, it can lead to a hetero-
geneous mixture of products with changed pharmacokinetic properties. Nevertheless,
PEGylated proteins that are synthesized by chemical derivatization are already available
on the market [186]. However, compared to chemical modification of such proteins, the site
selectivity of microbial TGM is accessing PEGylated derivatives of various drugs without
altering their properties [187].

Another way to manipulate specificity is covalent immobilization of TGM on solid
supports. In a study by Grigoletto et al., TGM was coupled to agarose beads through
an N-terminus to investigate its activity and substrate specificity. The immobilized TGM
exhibited changed enzymatic activity and kinetic parameters, which were the result of
chemical modification. Due to PEGylation, the immobilized TGM appeared more site-
selective [171]. A biodegradable alternative to PEG, hydroxyethyl starch, is a polymeric
molecule, which was used for microbial TGM-mediated protein conjugation and served
as an acyl donor/acceptor to ligate monodansyl cadaverine [188]. Moreover, microbial
TGM was also proved to be able to catalyze an acyltransfer reaction between the aminated
oligosaccharides and acyl donor molecules [189], while glycosylation of catalase and trypsin
was obtained by the transamidation of carboxamide functions.

Antibody–drug conjugates are promising tools for tumor treatments, where a chemother-
apeutic is bound covalently to immunoglobulin, with the intent to enlarge the therapeutic
range with the combination of powerful organic toxins and targeted specificity antibodies.
Cytotoxic drugs are used widely to treat malignancies and solid tumors, and have, under
specific clinical conditions, altered the natural course of certain diseases. Due to their in-
trinsic mode of active site, they are effective but can also cause significant on-target events
that could result in the discontinuation of medication, which would increase the risk of
recurrence of the tumor. For maintaining the efficiency of chemotherapeutics, efforts were
undertaken to investigate novel approaches. Among such approaches was the conjugation
of cytotoxic agents to antibodies. Many studies describe improved pharmacokinetics,
enhanced efficacy, and reduced toxicity of antibody–drug conjugates when they are ligated
site-selectively [190]. Non-directional methods generate heterogeneous products with sta-
tistically distributed coupling sites and fluctuating hydrophobic profiles, while site-specific
conjugation provides reproducible hydrophobic properties with antibody modification
restrictions (Figure 7).
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Most of the antibody–drug conjugates in clinical use nowadays are assembled by
random modification of cysteines and lysines. Many studies where an enzymatic approach
was developed to modify antibodies site-selectively were reported [191–196]. Such an
approach includes additional cysteine or selenocysteine residues [197,198]. Microbial TGM
shows incapability of labelling glutamines in native human antibodies efficiently, although
many Gln sites are exposed and available [199]. Therefore, a specific recognition tag is being
incorporated and is reported to be a powerful strategy in overcoming such limitations.
Research was performed at Pfizer, where a TGM recognition sequence was placed at various
surface-exposed regions of a specific growth factor receptor antibody, which facilitated
efficient labeling by microbial TGM [165].

In the synthesis process of an antibody–drug conjugate, all aspects must be taken
into consideration. The target, antigen, antibody, linker, and the cytotoxic load must be
evaluated for the targeted cancer indication. The antibodies with cytotoxic load must
obtain excellent targeting capabilities to distinguish between healthy and tumor cells.
In the process, antibodies that are engineered to follow a specific tumor antigen attach
themselves to the surface of tumor cells. When processing within lysosomes or endosomes
takes place, the antibody–drug conjugate releases its lethal load and destroys the targeted
tumor cells (Figure 8). Due to its highly targeted tumor antigen expression, recognition, and
requirements for effective internalization and processing, the antibody–drug conjugates
are believed to provide a broader therapeutic opportunity in the ever-growing field of
enzyme-mediated modification strategies [168].
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5. Conclusions

TGMs remain one of the most complex families of enzymes that possess various
structural and functional properties in mammalians, non-mammalian eucaryotes, and in
bacteria. As highly efficient enzymes with unique features, they are used in the develop-
ment and improvement of many versatile products. The extraordinary applicability of
TGMs in the formulation of different dairy, meat, and feedstock products has led to an
incredible enhancement in the food industries, where they have been proven to be efficient
and applicable tools for the development of new products. Aside from the extensive use
of TGM in food-related and manufacturing industries, multiple achievements have con-
tributed to biotechnological research, where it is used as an antibody–drug conjugate, and
such research has become a promising field for its refinement. Site-specific conjugation is a
widely developed strategy to customize the properties of target proteins towards various
applications in pharmaceutical and biomedical applications, by loading tumor-specific
antibodies with small cytotoxic molecules, in order to create antibody–drug conjugates. In
recent years, numerous studies have reported on the considerable impact that enzyme TGM
has in either immobilized or free form. For example, while compared to traditional conju-
gation methodologies, TGM-mediated catalysis has many beneficial advantages. TGM is a
powerful component in the biotechnological field, and an important tool in the bioconjuga-
tion process. Furthermore, TGM has the potential to be useful in many non-food-related
fields as well, where it will continue to contribute to new innovative products, including
using novel technologies for enzyme modifications by protein engineering and for cleaner
productions. Reducing the costs of production is essential and is aiming and guiding their
applications on a larger scale in various industrial sectors, such as in the design of different
biotechnological products.
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