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Abstract: Cisplatin is a first-line clinical agent used for treating solid tumors. Cisplatin damages the
DNA of tumor cells and induces the production of high levels of reactive oxygen species to achieve
tumor killing. Tumor cells have evolved several ways to tolerate this damage. Extracellular vesicles
(EVs) are an important mode of information transfer in tumor cells. EVs can be substantially activated
under cisplatin treatment and mediate different responses of tumor cells under cisplatin treatment
depending on their different cargoes. However, the mechanism of action of tumor-cell-derived EVs
under cisplatin treatment and their potential cargoes are still unclear. This review considers recent
advances in cisplatin-induced release of EVs from tumor cells, with the expectation of providing a
new understanding of the mechanisms of cisplatin treatment and drug resistance, as well as strategies
for the combined use of cisplatin and other drugs.
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1. Introduction

Cancer is one of the most prominent health problems worldwide, with approximately
19.3 million new cancer cases and nearly 10 million cancer-related deaths reported in
2020 [1]. Chemotherapy has been used to treat cancer for nearly a century and remains an
effective and widely used cancer treatment. Cisplatin is among the most effective metal-
based chemotherapeutic agents, from 1965, when Dr. Barnett Rosenberg discovered that
cisplatin could inhibit cell division [2], to 1978, when the Food and Drug Administration
approved cisplatin for treating testicular cancer, to the present day, when cisplatin is used
in nearly 50% of tumor patients [3]. Cisplatin has become the first line of defense against
many solid forms of cancer and sarcomas. Studies have confirmed that cisplatin exerts
its anti-tumor effects through multiple pathways [4]. Cisplatin usually bind to genomic
DNA (gDNA) and mitochondrial DNA (mtDNA), induces DNA cross-linking, prevents
DNA replication while blocking mRNA and protein production, and activates multiple
transduction pathways that ultimately lead to necrosis or apoptosis [5,6]. The intense
DNA toxicity of cisplatin damages the already unstable genome of tumor cells, producing
more immunogenic DNA fragments that may play important role in treating tumors with
cisplatin [7].

Current evidence suggests that tumor-secreted extracellular vesicles (EVs) are key
mediators of intercellular communication between tumor cells in both local and distant
microenvironments [8,9]. EVs regulate tumor progression by delivering specific cargoes
to induce tumor cell tolerance to multiple therapeutic modalities [10]. Chemotherapy-
induced EVs (chemo-EVs) are thought to carry a different cargo from non-chemotherapy-
induced EVs. In addition to drug resistance, there is growing evidence that chemo-EVs
can determine tumor behavior, particularly metastasis, immune response, and cancer stem
cells (CSCs) [11]. Cisplatin-induced immunogenic DNA fragments can be released through
the EV pathway [12]. Therefore, it is particularly important to probe the mechanism of the
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release of EVs from tumor cells induced by cisplatin and the role of the cargo they contain
in tumor development, and to adopt a more rational drug combination strategy to improve
the therapeutic efficacy of cisplatin.

2. Action Mechanism of Cisplatin

Decades of research have elucidated the detailed mechanisms of action of platinum
derivatives, such as cisplatin [13,14]. Monohydrated platinum formed after cisplatin en-
ters cells is a strong electrophilic reagent that reacts with nucleophilic reagents, such as
sulfhydryl groups of proteins and nitrogenous bases of nucleic acids [15]. This affinity for
proteins and bases forms the basis of the mechanism of action of cisplatin. DNA is the
primary target of cisplatin’s anticancer activity [16,17]. When cisplatin binds to DNA bases
to form crosslinks at a rate exceeding the capacity of the DNA damage repair (DDR) system,
cell proliferation is impaired [15,18]. This includes strong inhibition of replicative DNA
polymerases to induce apoptosis [18], and cisplatin adducts to promote cell death by inhibit-
ing gene transcription by blocking elongated RNA polymerases [19]. Oxidative stress is
another important mechanism by which cisplatin exerts its antitumor effects [20]. Cisplatin
reduces intracellular antioxidant levels by strongly binding to sulfhydryl-containing an-
tioxidants and reductases, such as glutathione (GSH) and thioredoxin reductase (TrxR) [21].
Glutathione-platinum (GS-Pt) generated from cisplatin and GSH also inhibit the activ-
ity of intracellular thioredoxin (Trx) systems that include Trx, Trx receptor (TrxR), and
NADPH [22], which further amplifies damage to the antioxidant system. In addition,
the formation of cisplatin-toxic adducts induces the production of high levels of reactive
oxygen species (ROS) production, making it easier to overcome the reducing systems
present in cells and promoting more severe oxidative stress. High levels of ROS, directly
or through cisplatin interactions, cause severe mitochondrial damage and ultimately ac-
tivate the endogenous mitochondrial apoptotic pathway, accompanied by the activation
of autophagy [23,24]. Notably, increased ROS levels due to mitochondrial damage are the
primary mechanism underlying cisplatin-mediated nephrotoxicity [25–27]. Markus et al.
found that cisplatin-sensitive advanced plasmacytoid ovarian cancer cell lines have higher
mitochondrial content and higher levels of mitochondrial ROS than cisplatin-resistant
cells [28]. These findings suggest that mitochondria play an “effector amplifier” role in
cisplatin-mediated oxidative stress and may be a potential way to enhance sensitivity to
cisplatin-based anticancer therapies by increasing mitochondrial content or mitochondrial
ROS production. In addition, Amélie et al. found that cisplatin inhibits Na+/H+ exchange
proteins (NHE) in the membranes of colon cancer cells, leading to intracellular acidosis,
increasing membrane fluidity by promoting lipid rafts, and ultimately inducing extrinsic
apoptosis via the Fas pathway [29]. Because the membrane is the first barrier that cisplatin
must cross to enter cells, NHE may be the first target of cisplatin action, suggesting that
cross-linking of cisplatin to proteins may occur earlier than cross-linking with DNA.

3. Cisplatin Resistance

The main disadvantage of cisplatin therapy is resistance development in cancer cells.
Cisplatin resistance involves four main aspects. First, plasma albumin, transfer protein,
and cysteine can strongly bind to cisplatin, leading to the inactivation of a large amount of
cisplatin and a significant reduction in the amount of cisplatin that directly enters tumor
cells [30,31]. Second, reduced drug accumulation in tumor cells occurs due to decreased
cisplatin influx and increased efflux [32,33]. Third, cisplatin is inactivated intracellularly by
binding to GSH and metallothionein in cells and is subsequently excreted out of cells [34,35].
Fourth, tumor cells are protected against cisplatin toxicity by overactivation of multiple
DDR systems including nucleotide excision repair (NER) and homologous recombination
(HR) to promote survival [36–38]. Detailed mechanisms of platinum resistance, such as
cisplatin resistance, can be found in the excellent review by Zhou et al. [39] and are not
repeated here.
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4. Extracellular Vesicles (EVs)
4.1. Overview of EVs

EVs are generally defined as a heterogeneous group of cell-released, 150–1000 nm
vesicles with a bilayer structure [40]. EVs include exosomes, microvesicles (MVs), and
apoptotic vesicles, which are loaded with proteins, nucleic acids, and lipids, and which
are important in intercellular communication [41,42]. The signaling molecules inside EVs
are protected by membranes that are less susceptible to enzymatic degradation and can
carry messages to more distant sites, making other types of intercellular communication
more advantageous. The biogenesis of EVs has been described in detail [43–46]. Briefly,
the biogenesis of exosomes is the inward budding of late endosomes containing intralu-
minal vesicles (ILVs), which are called multivesicular bodies (MVBs). The cargo of MVBs
is partitioned into ILVs. If the product is destined for degradation, the MVBs combine
with lysosomes and the cargo is digested. If they act as exosomes, the MVBs will fuse
with the plasma membrane and their internal ILVs will be released into the extracellular
space [47–49]. The inward budding of late endosomal membranes is a critical step in the
formation of ILVs, and can depend on either endosomal sorting complex required for trans-
port (ESCRT)-dependent or ESCRT-independent mechanisms required for transport [50].
Four complexes underlie the ESCRT mechanism and are responsible for sorting the cargo
to be loaded (ESCRT-0), promoting membrane invagination (ESCRT-I and II), and releasing
ILVs in the late endosomal lumen (ESCRT-III) [51]. These findings suggest that proteins and
lipids are involved in the ESCRT-independent mechanism of exosome release. For example,
Zoraid et al. demonstrated that tetraspanin-rich membrane microstructure domains are
involved in exosome biogenesis by aggregating into ordered structures [52]. Inhibition
of neutral sphingomyelinase 2 (n-SMase2) has been shown to decrease ceramide levels,
thereby reducing exosome release [53], while enzymes that regulate phospholipid and
lysosomal phosphatidic acid levels, such as phospholipase, are also involved in influencing
the release of exosomes [54].

4.2. Chemotherapy Affects the Release of Tumor Cell-Derived EVs

EVs released from tumor cells collectively support tumor progression by participat-
ing in tumor microenvironment (TME) formation [55], epithelial–mesenchymal transition
(EMT) [56], angiogenesis [57], modulation of the immune system [58], and drug resis-
tance [59]. Notably, tumor cells show enhanced effects on EVs secretion after chemotherapy,
which correlates with tumor progression [60–62]. For example, Lv et al. found that
chemotherapeutic agents such as paclitaxel, irinotecan, and carboplatin apparently in-
creased the levels of HepG2-releasing exosomes [63], and that treatment failure and disease
progression in patients undergoing neoadjuvant chemotherapy for breast cancer were asso-
ciated with elevated levels of EVs [64]. Shyam et al. found that when myeloma cells were
exposed to anti-myeloma drugs, they secreted significantly more exosomes and had a differ-
ent proteomic profile than cells not exposed to the drugs, including acetyl heparinase levels
of significantly elevated acetylheparinase, which degrades the surrounding extracellular
matrix and translocates between cells, ultimately leading to altered tumor behavior [60].
Helier et al. showed that, compared with normal lung cancer A549 cells, EVs released from
constructed cisplatin-resistant lung cancer A549 cells were enriched in extracellular matrix
components, cell adhesion protein complement factors, histones, proteasome subunits,
and membrane transport proteins [65]. In contrast, patients with acute myeloid leukemia
receiving chemotherapy had substantially lower exosomal protein concentrations [66].
Ludwig et al. showed similar results, with lower exosomal protein levels in patients with
head and neck cancer treated with oncology [67]. These differences may be due to tumor
cell type specificity and drug or time dependence [11]. First, for tumor cells exposed to
chemotherapeutic drugs for the first time, it is difficult to resist the intense cytotoxicity,
resulting in reduced numbers and lower levels of EVs. Drug-resistant tumor cells formed
by prolonged stimulation with chemotherapeutic drugs release large amounts of EVs to
remodel the TME in response to survival pressure. For example, Li et al. found that serum
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levels of miR-106a-5p-containing exosomes were higher in chemotherapy-resistant patients
than in non-resistant patients [68]. Second, the conflicting results may also be due to the
lack of a harmonized way to quantify EVs from different sources. Finally, the biological
properties of the cargo loaded with EVs affect, to some extent, the subsistence of tumor
cells, and differences in the number of EVs alone are not sufficient to generalize tumor
cells in response to chemotherapeutic agents. Overall, although the chemotherapy-induced
release of EVs needs to be studied in more detail, it has been widely proven that tumor
cells display a stronger potential for EVs release in response to chemotherapeutic drugs.

4.3. Oxidative Stress: A Potential Mechanism by Which Cisplatin Affects the Release of EVs from
Tumor Cells

Oxidative stress is a complex cellular process that regulates EVs release. Excess ROS
can affect cellular signaling by altering the number and molecular cargo of EVs [51]. Yarana
reported that the mechanism by which adriamycin promotes the release of EVs is mainly
based on oxidative stress. The concept can be applied to other chemotherapeutic agents, in
which oxidative stress is the main mechanism [69]. Similarly, platinum compounds, such
as cisplatin, can promote the release of multiple EVs from tumor cells during chemother-
apy [70,71], and thus may be related to their induced increase in the level of oxidative stress.
Xia et al. showed that cisplatin-induced endoplasmic reticulum (ER) stress induced the
release of exosomes encapsulating ER-resident protein 44 (ERp44) from nasopharyngeal
carcinoma cells to promote drug resistance in nasopharyngeal carcinoma [72]. Cisplatin-
induced increases in total exosomal protein concentration and exosome counts in human
ovarian cancer cells (SKOV3) were associated with enhanced levels of oxidative stress and
ER stress [73]. In contrast, antioxidants (e.g., thiols or vitamin E) counteract the oxidative
stress-induced release of EVs [74,75]. Mechanistically, cisplatin activates p53 [76,77], a
major DNA damage response factor that upregulates tumor suppressor activation pathway
6 (TSAP6), an endosomal membrane protein involved in MVB formation [78]. It inhibits
the influx of cytoplasmic Ca2+ into mitochondria to maintain high levels of cytoplasmic
Ca2+, which is essential for promoting membrane blebbing and fusion of MVBs with the
plasma membrane [79]. Additionally, cisplatin induces autophagy [80,81]. Autophagy is a
process closely associated with exosomes biogenesis [82]. Indeed, promoting autophagy
will cause MVBs to fuse with lysosomes instead of the plasma membrane, resulting in
reduced exosome release [83]. In contrast, inhibiting autophagy increases exosomes re-
lease [84,85]. Thus, cisplatin can strongly induce autophagy while promoting exosome
secretion, a paradoxical result that deserves further exploration. One of the features of
cisplatin-resistant tumor cells is altered vesicular compartment function. This includes a
reduction in lysosomal compartments by downregulating Lysosomal-associated membrane
protein 1 (LAMP-1) and -2 [86]. Simultaneously, abnormal function and reduced number
of lysosomal H+ pumps in cisplatin-resistant cells result in reduced lysosomal acidification
capacity [87]. This ultimately leads to inadequate lysosomal enzyme processing, affects
lysosome number, localization, transport, and fusion, and promotes drug accumulation
within lysosomes [86–89]. Therefore, lysosomal function determines the final outcome of
MVB and explains the occurrence of paradoxical phenomena. Structurally and functionally
impaired lysosomes in cisplatin-resistant cells may be unable to fully digest the vesicles
generated by cisplatin-induced oxidative stress, ultimately leading to the release of high
levels of exosomes (Figure 1). This idea is supported by the data obtained by Flora et al. [88].
RAB7 is a small guanosine triphosphatase (GTPase) that plays an important role in several
steps of the late endocytic pathway, including endosome maturation, transport from early
endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and
lysosomes in the perinuclear region, and lysosomal biogenesis [90]. Down-regulation of
RAB7A expression was found to be responsible for the emergence of resistance in cisplatin-
resistant cells, mechanistically linked to increased secretion of cisplatin-loaded EVs [88].
In addition, the process of cisplatin-induced oxidative stress that promotes the release of
EVs may also be lipid-related. Ceramide is a membrane lipid that deforms the membrane,
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thereby initiating inward membrane budding [91]. Neutral sphingomyelinase (n-SMase)
catalyzes the conversion of sphingolipids to ceramide [92]. Inhibition of n-SMase is usually
effective in reducing EV release [53]. Studies have shown that intracellular n-SMase activity
is enhanced in the presence of cisplatin, ceramide levels are significantly increased, and
total exosome protein concentrations and exosome counts are elevated. These events are
associated with increased levels of oxidative and ER stress [73,93]. However, the blockade
of n-SMase did not inhibit the release of EVs in any cell type, as demonstrated in the PC-3
prostate cancer cell line [94]. The effect of ceramide may be cell-type-dependent because
of the observed variability in the subcellular localization of n-SMase [94,95]. These results
suggested that oxidative stress affects the release of EVs, which was closely related to the
type of cells and the cell state.
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Figure 1. Mechanism of cisplatin-induced release of EVs. Cisplatin promotes the formation of
MVBs through oxidative stress, while inhibiting the maturation of lysosomes and the formation of
autophagic lysosomes, leading to the release of increased ILVs into the extracellular space. Illustration
was made using Figdraw.

4.4. Cisplatin-Induced EVs Released from Tumor Cells May Inhibit Antitumor Effects

As previously described, cisplatin-induced oxidative stress alters the function, loca-
tion, and aggregation of proteins toxic to the cells. To counteract toxic protein damage, cells
initiate protein quality control mechanisms to reduce the accumulation of toxic proteins [96].
The massive release of EVs by cisplatin-induced tumor cells may be a protective mech-
anism against oxidative damage by scavenging drugs and oxidized proteins. However,
these vesicles containing proteotoxic cargoes can be transferred to neighboring or distant
cells to trigger intercellular oxidative stress responses. For example, Malik et al. demon-
strated that ROS induced after treatment of rat cardiomyocytes with ethanol or transient
hypoxia/reoxygenation resulted in the release of HSP60-containing exosomes, which in
turn spread to neighboring cells and activated Toll-like receptor 4 (TLR4) in the recipient
cells, causing apoptosis in the cardiomyocytes [97,98]. Another issue is that the activation
of antioxidant systems or the upregulation of other pro-survival systems must accompany
cells under oxidative stress. Thus, these oxidized-protein-containing EVs may act as a
“vaccine” for other cells, upregulating the expression of antioxidant systems in advance to
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protect against drug damage. For example, Eldh et al. reported that hydrogen peroxide
(H2O2) treatment of mast cells leads to changes in the mRNA profiles in the exosomes
released from them, and these mRNAs increase the tolerance of mast cells to H2O2 [99].
Similarly, the release of exosomes containing vascular endothelial growth factor receptor
and mRNA for this protein from retinal pigment epithelial cells after ethanol treatment
promoted angiogenesis [100]. The reason for this difference in cellular responsiveness to
EVs may be related to the type of cells, amount and type of cargo within the EVs, and the
duration of action. Considering that tumor cells have a greater ability to cope with injury
than normal cells, the oxidative stress products carried by the cisplatin-induced production
of EVs may promote the survival or migratory behavior of other tumor cells, or act as
damage-associated molecular patterns (DAMPs) to participate in infiltration of immune
cells in TME. Priya et al. showed in in vitro experiments that ovarian cancer cells undergo
activation of the stress-related c-Jun, N-terminal kinase pathway after cisplatin treatment,
while released EVs can induce increased invasiveness and drug resistance in bystander
cells, implying that EVs released after cisplatin-mediated stress underlie the induction of
further invasion [101]. Similarly, Nelly et al. found that cisplatin modulated the release of
exosomes from ovarian cancer cells with CSC characteristics and promoted the tumorigenic
activity of bone marrow mesenchymal stem cells (BM-MSCs) [102].

5. Cisplatin and the cGAS-STING Signaling Pathway
5.1. Cisplatin-Induced Production of Micronuclei (MNi) and mtDNA Is an Activator of Cyclic
GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) Signaling in Tumor Cells

One characteristic of tumor cells is that many chromosomes replicate in the nucleus,
which may lead to DNA leakage into the cytoplasm [103]. When the mitotic process is
disrupted, some chromatin fragments may be mis-segregated into the cytoplasm, either
passively or actively, forming one or more small, spatially separated nuclei called MNi [104].
Thus, MNi is the result of many different endogenous and exogenous damages to DNA
and chromosomes. Emary et al. found that most MNi can undergo spontaneous rupture
of the nuclear envelope [105] and that ruptured MNi constitutes the major cytoplasmic
self-DNA, mainly double-strand DNA (dsDNA) [106]. cGAS is a dsDNA sensor in most
mammalian cell types and is responsible for monitoring changes in cytoplasmic DNA
content [107]. Notably, it was recently shown that cGAS is constitutively present in the
nucleus, and its activation accelerates genomic instability, micronucleus formation, and cell
death under stressful conditions by inhibiting the HR pathway [108]. This dual function
of cGAS in cytoplasmic lysis, as an innate immune sensor and a negative regulator of
DNA repair in the nucleus, emphasizes the importance of cGAS. In addition, numerous
studies have shown that mtDNA is a potent inducer of cGAS-STING signaling and can
activate the cGAS-STING pathway under a variety of pathogenic conditions [109,110]. This
could be because mtDNA has a high copy number, an inefficient repair system, and is
easily damaged. Therefore, mtDNA activates cGAS more strongly than nuclear DNA [109].
Mechanistically, binding of dsDNA or mtDNA to cGAS induces dimerization of cGAS and
stimulates the enzymatic activity of the cGAS dimer to synthesize 2′3′-cyclic GMP-AMP
(cGAMP) from GTP and ATP [111,112]. cGAMP binds to STING as a second messenger
and STING subsequently undergoes conformational and positional changes. Recruitment
and activation of TANK-binding kinase 1 (TBK1) during STING transfer to the ER–Golgi
intermediate compartment, in turn, phosphorylates TBK1 and interferon regulatory factor
(IRF3) [113]. IRF3 dimerizes and translocates to activate the type I interferon (IFN) response
and interferon-stimulated genes (ISGs).

The activation of the cGAS-STING pathway in tumor cells in response to cisplatin sug-
gests that this signaling pathway may play an important role in tumor progression [114,115].
Cisplatin, a toxic agent targeting DNA, can further exacerbate nuclear and mtDNA dam-
age and cytoplasmic leakage. Vandana et al. found that cisplatin treatment of cutaneous
squamous cell carcinoma induced massive MNi formation [116]. Similar results were
reported by Otto et al. in breast cancer cells treated with cisplatin [117]. Hiroshi et al. found
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that cisplatin induced mtDNA leakage into the cytoplasm of tubular epithelial cells and
subsequent activation of the cGAS-STING pathway, which triggered inflammation and
acute kidney injury in STING-deficient mice and knockout STING renal tubular cells [118].
Similarly, cisplatin dose-dependent escape of mtDNA from the mitochondria was described
in cervical cancer cells [119]. Notably, Tigano et al. [120] recently reported that damaged
mtDNA acts in synergy with MN to produce a stronger type I IFN response. The authors
used the inducible restriction endonuclease AsiSI to selectively induce DNA double-strand
breaks (DSBs) in nuclear DNA and radiation to induce DSBs in mtDNA and nuclear DNA.
Although AsiSi and radiation caused cells to produce similar levels of cGAS-positive MN
(~15%), cells that induced co-damage to nuclear DNA and mtDNA showed stronger ISG
activation than cells that induced damage to nuclear DNA alone, with a significant increase
in the transcriptional level of ISG. Indeed, compared to bare dsDNA, in vitro reconstructed
nucleosomes exhibit higher affinity but lower activation capacity for cGAS [121]. The exact
mechanism of how mtDNA interacts with micronuclear DNA to enhance the cGAS-STING
pathway remains to be determined, but structural differences between micronuclear DNA
and mtDNA (i.e., linear or circular DNA, short or long DNA, with or without histones)
appear to be critical. Different regions of cGAS might be involved in sensing micronuclear
DNA and mtDNA. For example, the N-terminus of cGAS is required for sensing nuclear
chromatin, but not mtDNA [122].

5.2. The cGAS-STING Signal: A Double-Edged Sword

Guo et al. reported the increased prevalence of MN in metastatic tumor cells than in
primary tumor cells, suggesting that MN may accelerate tumor metastasis [104]. Indeed,
nearly 55% of MN derived from metastatic tumor cells were reportedly cGAS-positive [123].
MtDNA from highly metastatic tumor cells to low metastatic tumor cells and stromal cells
via EVs may be a novel mechanism for enhanced metastatic potential [124]. Similarly,
mtDNA-containing EVs produced by breast cancer cells can enable the intercellular transfer
of invasive behavior to promote breast cancer invasion by activating Toll-like receptor 9
(TLR9) in recipient cells [12]. This raises the first question of whether cGAS, as a major
recognition factor for MN and mtDNA, is involved in mediating tumor metastasis and/or
pro-survival. MN can activate the cGAS-STING pathway and upregulate the downstream
noncanonical nuclear factor-kappa B pathway, thereby promoting enhanced fitness and
metastasis in chromosomally unstable tumor cells [123]. Vidhya et al. also showed that
cisplatin induced mitochondrial Lon, a chaperone and DNA-binding protein that plays
a role in PQC system and stress response pathways [125]. Persistently induced ROS can
trigger mtDNA damage and its release into the cytoplasm and can induce IFN signal-
ing via cGAS-STING, which in turn can upregulate the expression of programmed death
ligand-1 (PD-L1) and immune checkpoint indoleamine 2,3 dioxygenase (IDO-1) to suppress
T cell activation. In addition, Lon upregulation reportedly induces secretion of loaded
mtDNA and PD-L1 EVs and attenuates innate and CD8+ T cell immunity in the TME
by inducing IFN and IL-6 production by macrophages [126]. Grabosch demonstrated
cisplatin upregulation in vitro and in vivo via the cGAS-STING pathway PD-L1 expression;
the findings support the rationale for the combination of cisplatin with immune check-
point blockade [114]. Cisplatin can be synergized with PD-1/PD-L1 blocking therapies
to improve clinical efficacy; however, a preclinical trial by Liu et al. showed synergistic
effects of PD-1 blockade on oxaliplatin-based chemotherapy for gastric cancer, but not on
cisplatin-based chemotherapy [127]. This may be because oxaliplatin induces immunogenic
death (ICD) in gastric cancer cells more strongly than cisplatin does, making tumor cells
more sensitive to immune checkpoint inhibitors targeting PD-1/PD-L1. However, in lung
cancer, cisplatin alone reportedly induces the highest levels of ICD-associated DAMPs
compared to other chemotherapeutic agents [128]. These clinical findings emphasize the
importance of selecting an appropriate ICD-inducing cytotoxin depending on the type of
cancer and for the development of chemoimmunotherapy regimens.
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Fu et al. described cisplatin-induced dsDNA activation of cGAS-STING signaling in-
hibiting bladder cancer proliferation by increasing CD8+ T cell and dendritic cell infiltration
in a transplanted mouse tumor model [129]. This duality may be related to the degree of
cGAS activation under the action of cisplatin, that is, the level of intracellular recognizable
DNA fragments. Gusho et al. found substantially high levels of cGAS in cells infected
by the dsDNA human papillomavirus that stably maintain viral-free bodies [130]. More-
over, the combination of cGAMP and cisplatin produces a stronger antitumor effect [131].
Therefore, the STING-activated, but not fully activated, state seems to be more dangerous
and promotes immune escape from the tumor by reducing the infiltration of cytotoxic T
cells (CTL).

The second question is what prevents full activation of the cGAS-STING pathway in
the presence of cisplatin. Ubiquitination of cGAS-STING is required to initiate cytoplasmic
DNA-mediated activation [132]. Zhang et al. described the high expression of deubiq-
uitinase USP35 in cisplatin-resistant ovarian cancer cells, and demonstrated that USP35
directly deubiquitinated and inactivated STING, but not cGAS, reducing IFN signaling
and ultimately leading to reduced infiltration of CD8+ T cells [133]. Similarly, Shoji et al.
showed that ubiquinone protein 4 (UBQLN4) delivered STING to the proteasome for
degradation during cisplatin treatment and promoted cisplatin resistance in vitro and
in vivo [134]. Thus, the targeted degradation of STING by tumor cells “undoes”, at least
in part, the efforts of cisplatin-induced cGAS activation, leading to incomplete activation
of cGAS-STING in the direction of immunosuppressive TME, which ultimately requires
additional STING agonists to achieve the desired therapeutic effect.

However, the consequences of STING degradation are not limited to response impair-
ment of the IFN system. Thomas et al. reported that STING also promoted cell death by
regulating ROS and DNA damage, acting as a modulator of cellular ROS homeostasis and
tumor cell sensitivity to ROS-dependent DNA damaging agents [135]. Thus, the targeted
degradation of STING can not only affect the integrity of the cGAS-STING signaling but
also dysregulate the positive feedback system in which cisplatin and STING promote
each other, disrupting the tumor-killing effect of cisplatin with STING involvement. Thus,
the combination of cisplatin with STING agonists may also be a promising therapeutic
approach. Della Corte et al. found that STING activation was associated with higher levels
of intrinsic DNA damage, targeted immune checkpoints, and chemokines in patients with
primary and recurrent lung adenocarcinoma [136]. Harabuchi et al. increased the gene
expression of the chemokines CXCL9 and CXCL10 in tumor tissue using a combination
of cisplatin and cGAMP [131], which could promote the recruitment of more CD8+ T
cells from the circulation to the TME and achieve the transition from a “cold tumor” to a
“hot tumor”.

5.3. Activated cGAS and STING Can Be Delivered between Tumor Cells via the EV Pathway

Recent studies have shown that dsDNA and mtDNA can be released outside of tumor
cells. Pasquale et al. isolated the entire mitochondrial genome from circulating EVs of
cancer patients [137], even intact mitochondria [138]. Dennis et al. also demonstrated the
release of dsDNA from tumor cells in an autophagic and MVB-dependent manner [139].
Notably, activated cGAS and STING can also be transferred to recipient cells via the EV
pathway (Figure 2). James et al. showed that some dsDNA associated with activated cGAS
can be encapsulated within tumor microvesicles (TMVs) in a process regulated by the ARF6
GTP/GDP cycle and described that TMVs can transfer the contents into recipient cells,
affecting the behavior of the recipient cells [140]. STING activated by agonists or radiother-
apy can undergo RAB22A-mediated atypical autophagy, triggering intercellular transfer to
promote antitumor immunity. The RAB22A-induced atypical autophagosome fuses with
RAB22A-positive early endosomes, whereas RAB22A inactivates RAB7 and inhibits the
fusion of autophagosomes with lysosomes, thus allowing the release of endosomal vesicles
with activated STING into the extracellular compartment [141]. Liang et al. showed that
when the cGAS-STING signaling pathway is activated, STING oligomers are transported



Int. J. Mol. Sci. 2023, 24, 12347 9 of 19

to MVBs and EVs in an ESCRT non-dependent manner, ultimately inhibiting the innate
immune response that occurs in cells [142]. Thus, when cGAS-STING is activated, tumor
cells may alleviate the damage caused by interferon accumulation by releasing both acti-
vated and inactivated STING into the cellular foreign body. The released activated STING
may subject the surrounding tumor cells to unwarranted damage and promote antitumor
immunity or may be involved in the shaping of immunosuppressive TME, as previously
described, with the ultimate outcome depending on which of these STING actions are
operative in the tumor cells. However, regardless of the outcome, this direct intercellular
transfer of activators may exert a faster and more direct effect than transferring DNA,
which is also consistent with the view that the EV pathway is a toxic protein clearance
mechanism.
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6. Non-Coding RNAs (ncRNAs) Are an Important Cargo in EVs Released by
Cisplatin-Induced Tumor Cells

The role of ncRNAs in cisplatin resistance in various tumors has been widely demon-
strated [143,144]. Three representative ncRNAs are classified according to their length and
shape: microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) [145].
Recent studies have shown that ncRNAs can be carried in large quantities and released
extracellularly in the form of exosomes and are functionally involved in cancer initiation
and progression [146]. The types of ncRNAs secreted by tumor cell exosomes in response
to cisplatin and their major regulatory roles have been identified (Table 1).
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Table 1. Tumor cells secrete ncRNAs as exosomes in response to cisplatin.

ncRNA Expression Target Function PMID

Circ_0074269 + miR-485-5p Anti-apoptosis 35075616

Circ_0063526 + miR-449a Promote migration,
invasion and autophagy 36206102

Circ Foxp1 + CEB pg and
FMNL3

Promote proliferation and
cisplatin (DDP) resistance 32808501

Circ PVT1 + miR-30a-5p Anti-apoptosis, Promote
migration and autophagy 32799541

Circ VMP1 + miR-524-5p
Promote proliferation,

migration, invasion, and
DDP resistance

35467477

Circ cdr1a - miR-1270 Anti-apoptotic 31479922

lncRNA HOTTIP + miR-218 DDP resistance 31908497
lncRNA PICSAR + miR-485-5p DDP resistance 33817237

lncRNA HEIH + miR-3619-5p Promote proliferation and
DDP resistance 33130420

lncRNA UCA1 + miR-143 Anti-apoptosis 31234009

miR-193b-3p + ZBTB7A Promote proliferation and
Anti-apoptosis 36155593

miR-769-5p + CASP9 Anti-apoptosis 35522909

miR-425-3p + AKT1 Activate autophagy
process 31632022

miR-4443 + METTL3 Anti-apoptosis and
Ferroptosis 33781830

miR-155 + FOXO3a Promote EMT 32284792
miR-643 + APOL6 Anti-apoptosis 34071504
miR-27a + P53 Anti-apoptosis 31153637
miR-21 + PDCD4 Promote invasion 30840273

miR-1273a - SDCBP Anti-apoptosis 32901857
miR-30a - Beclin1 Anti-apoptosis 32499869

6.1. miRNAs Are Key Mediators in Cisplatin Resistance Transmission in Tumor Cells

miRNAs appear to be the most common ncRNAs packaged in exosomes [147]. miR-
NAs are a group of small endogenous single-stranded ncRNAs, 20–24 nucleotides (nt)
in length, that typically inhibit post-transcriptional protein synthesis by binding to the
3′-untranslated region (3′-UTR) of the target mRNA [148]. The action of cisplatin on tumor
cells often causes changes in miRNA levels within the tumor cells, and miRNA biosyn-
thetic pathways are critical for maintaining cisplatin-resistant phenotypes [149]. Qin et al.
found that cisplatin treatment resulted in the upregulation of miR-182 in human hepa-
tocellular carcinoma (HCC) tissues and HepG2 in HCC cells, and increased resistance
to cisplatin [150]. miR-182 can also be enriched and functionally regulated in tumor cell
exosomes [151]. A similar phenomenon has been observed in cisplatin-resistant breast and
lung cancers [152,153]. These results demonstrate that abnormal alterations in miRNA
levels in cisplatin-resistant tumor cells resist the toxic damage caused by cisplatin and
also affect neighboring or distant cells in the form of exosomes, which in turn increases
the apoptotic threshold of tumor cells, weakens the sensitivity to cisplatin, and promotes
migration of tumor cells to distant sites.

6.2. Cisplatin and miRNAs, and Oxidative Stress

Less is known about how cisplatin affects changes in miRNA levels in tumor cells.
One hypothesis is that this process may be related to cisplatin-induced oxidative stress.
Lots of evidence from previous studies shows that miRNA expression is altered by the
accumulation of ROS [154]. Transcription factors are upregulated in response to oxidative
stress and directly activate miRNA transcription, whereas ROS are directly involved in
epigenetic changes, such as DNA methylation and histone modifications, which control
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specific transcription of specific miRNAs [155]. The ribonuclease Dicer is a key protein in
the synthesis of mature miRNAs and is responsible for the cleavage of precursor miRNAs
in the cytoplasm [156]. Bu et al. found that small interfering RNA (siRNA) knockdown
of Dicer in MCF-7 breast cancer cells resulted in considerable G1 blockade and increased
sensitivity to cisplatin [157]. Similarly, Li et al. demonstrated that high expression of Dicer
in cisplatin-resistant non-small cell lung cancer (NSCLC) tissues and cells promoted au-
tophagy and drug resistance [12]. In contrast, increased activity of nuclear factor erythroid
2-related factor 2 (Nrf2) in the antioxidant pathway reportedly upregulated Dicer expres-
sion [158]. Thus, elevated miRNA levels after cisplatin treatment may be a byproduct of
the successful defense of tumor cells against the oxidative toxic damage caused by cisplatin
through antioxidant mechanisms, and cisplatin-induced oxidative stress is an important
prerequisite for the release of miRNA-containing EVs from tumor cells. Notably, substan-
tially downregulated miRNAs were also detected in cisplatin-treated and cisplatin-resistant
cells. miR-363 reportedly directly targeted the 3′-UTR of the anti-apoptotic Bcl-2 family
member Mcl-1 [159]. miR-363 expression levels were reduced in cisplatin-resistant HepG2
cells, and downregulation of miR-363 led to Mcl-1 activation in HCC and enhanced resis-
tance to cisplatin [160]. These events may be related to miRNAs and their corresponding
transcription factors because the expression of each miRNA gene is controlled by a specific
transcription factor [161]. Thus, the status and function of transcription factors under the
action of cisplatin may determine the trend of miRNA levels. Admittedly, the regulatory
process of miRNA is complex; whether it is early transcriptional events, subsequent shear-
ing and coupling, or epigenetic regulation, cisplatin may affect it. The mechanism of the
effect of cisplatin on miRNA needs to be further investigated.

6.3. lncRNAs and circRNAs Regulate miRNAs Levels Involved in Cisplatin Resistance

lncRNAs are ncRNAs that are greater than 200 nt in length, and deeply involved
in regulating tumor cell resistance to cisplatin [110,162,163]. lncRNAs can act as miRNA
sponges by acting as competitive endogenous RNA (ceRNAs) for miRNAs to promote
mRNA expression and reduce miRNA regulation of mRNAs [164]. Li et al. found that
long-stranded ncRNA uroepithelial carcinoma-associated 1 was upregulated in tissues
and serum exosomes of cisplatin-resistant patients and promoted proliferation and re-
sist cisplatin-induced apoptosis through the miR-143/FOSL2 signaling pathway [165].
Similarly, in cervical cancer tissues, lncRNA metastasis-associated lung adenocarcinoma
transcript 1 was abundantly expressed in cisplatin-resistant cells and exosomes and inhib-
ited cisplatin-induced apoptosis by targeting miR-370-3p [166]. Given that miRNA and
lncRNA interactions are involved in chemoresistance phenotypes, exploring the mecha-
nisms of miRNAs and lncRNAs in chemoresistance may help in the design of cisplatin
antitumor therapies to improve patient outcomes. Xie et al. showed that circVMP1 levels
were upregulated in cisplatin-resistant NSCLC cell lines compared to cisplatin-sensitive
cell lines, and were delivered via exosomes to promote NSCLC progression and cisplatin
resistance by targeting the miR-524-5p-METTL3/SOX2 axis [27]. These results suggest
that EVs containing lncRNAs and circRNAs secreted by cisplatin-activated tumor cells can
be taken up by surrounding tumor cells to propagate drug resistance through regulating
miRNAs or proteins in target cells.

7. Future Perspectives

Cisplatin is one of the most commonly used anticancer drugs for the treatment of solid
cancers (e.g., prostate, ovarian, head and neck, bladder, and lung cancers). However, toxic
side effects, drug resistance, and recurrence are the main challenges associated with its
clinical use. A series of platinum-based drugs have emerged, but usually have not shown
substantial advantages over cisplatin. Deeper understanding of the mechanism of action
and resistance to cisplatin may facilitate the development of more effective new drugs or
provide new therapeutic strategies that combine cisplatin. The use of cisplatin in combina-
tion with other drugs has shown some promise. The Food and Drug Administration and
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European Medicines Agency have also approved PD-1 blockade drugs in combination with
platinum-based chemotherapy. Targeting EVs released during cisplatin treatment may also
be a potential strategy, as cisplatin induces tumor cells to secrete a large number of EVs with
different expression profiles to propagate resistance. For example, curcumin can partially
modulate the composition of EVs released from cisplatin-resistant tumor cells to inhibit the
development of cisplatin resistance [167]. However, similar to the combination of cisplatin
and STING agonists, these regimens are currently in the experimental stage of research.
More effective and safer drug combinations need to be further explored in large clinical
trials. In addition, since ncRNAs are key regulators and predictors of cancer therapeutic
resistance and can be released via the EV pathway, they can be used as therapeutic adju-
vants and components of genetically and molecularly characterized therapeutic strategies
targeting tumors to improve the anticancer response to existing therapeutic modalities. De-
spite the remarkable progress in the field of ncRNA-based therapeutics, there are still many
challenges to be addressed. These include side effects caused by off-target effects, as well
as unexpected target effects when administered systemically to normal tissue, rather than
tumor tissue. Therefore, the specificity, delivery, and tolerability of therapeutic approaches
using ncRNAs require further improvement. Concerning the heterogeneity of ncRNAs in
tumors, the development of single-cell spatial non-coding transcriptomics and single-cell
sequencing technologies for ncRNAs will help address this issue. In a different tack, the
use of nanoparticles as a delivery system can increase the homogeneous distribution and
accumulation of drugs within the target tumor tissue. This approach offers considerable
advantages in reducing off-target effects and normal tissue damage. Nanoparticles can also
be directly applied to the transport of platinum-based drugs, such as cisplatin, to limit their
toxicity by increasing targeting to tumor cells and reducing their accumulation in normal
cells. Craig et al. doped cisplatin into gold nanoparticles via a thioglycol linker, which
improved targeting and cellular uptake, with more than 110-fold higher cytotoxicity than
cisplatin against A2780 and A2780/cp70 cancer cell lines [168].

Targeted drug combination therapy, based on the knowledge that cisplatin treatment
affects the release of EVs from tumor cells, will help expand the clinical application of
cisplatin. The refinement of more advanced drug delivery systems will allow cisplatin, a
classic anticancer drug, to continue to shine in the treatment of cancer.
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