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Abstract: Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the
most common form of primordial dwarfism. MOPD clinical features include severe prenatal and
postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for
cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic
variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the
past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed
for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In
this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII
with the aim of exploring whether differentially expressed genes and previously uncharacterized
gene variants, in addition to PCNT pathogenic variants, could be associated with the complex
phenotype of this disease. We discovered a downregulation of key factors involved in growth, such
as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist
of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that
Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular
characterization of the complex genotypic background of MOPDII.

Keywords: ES; RNA-Seq; MOPDII; Majewski; pathogenic variants

1. Introduction

Majewski Osteodysplastic Microcephalic Primordial Dwarfism type II (MOPDII;
OMIM #210720) is a rare, autosomal recessive skeletal dysplasia characterized by se-
vere prenatal and postnatal growth retardation, severe postnatal microcephaly, abnormal
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dentition, skeletal anomalies, and increased risk for cerebrovascular disease and insulin
resistance [1–3]. The majority of MOPD II cases are associated with biallelic loss-of-function
of genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 [4,5].
PCNT is an integral component of the centrosome and has important roles in various in-
dispensable cellular processes, such as microtubule organization, cell division, cell cycle
progression, and assembly of cilia, working as a multifunctional scaffold for the assembly
of different proteins [6]. Accordingly, in MOPDII subjects with a dysfunctional PCNT,
cellular proliferation is probably impaired, explaining a reduction in the number of cells
and the substantial growth failure observed in these patients [7].

Over the past decade, the development of the Next Generation Sequencing (NGS)
technologies has resulted in the widespread usage of large scale “omics” assays in clinical
practice. Exome sequencing (ES) is one of the most popular NGS applications for diagnos-
tics and clinical screening [8]. ES has been successfully employed both for the discovery
of novel disease genes, associated with pathological conditions [9], and expanding the
genotypes of well-known diseases [10].

Recent studies [11] have demonstrated that, in addition to the delineation of genetic
profiles of affected individuals, the characterization of the transcriptome profile by massive
RNA sequencing (RNA-Seq) can be even more important for precision medicine applica-
tions, since it can capture a higher level of complexity, thus helping us to better understand
the molecular mechanisms that underlie complex pathologies.

To date, no large-scale analysis of MOPDII disease cases has been reported in the
literature. We performed the RNA-Seq and ES of three patients affected by MOPDII. The
aim of this study was to explore whether differential gene expression and/or previously
uncharacterized gene variants, in addition to PCNT pathogenic variants, could explain the
multifaceted clinical symptoms of this disease. Our analysis showed, in all three patients,
a dramatic downregulation of the key factors involved in prenatal and postnatal growth,
such as IGF1R, IGF2R, and RAF1, and, in two cases, also CREBBP.

Furthermore, ES allowed us to identify heterozygous variants in several genes that
could be implicated in some clinical features of MOPDII.

2. Results
2.1. Array CGH and Exome Sequencing

Array CGH was performed in addition to the conventional karyotype in order to
determine if small, submicroscopic genomic deletions and/or duplications (1 kb to 10 Mb)
were present in Patient 1. No significant unbalanced rearrangements were found.

To investigate the genetic background of MOPDII cases, we performed ES of Pa-
tient 1 (age 8 years) and his healthy parents. Afterwards, we extended the ES to the other
two MOPDII patients (cases 2–3).

Coverage statistics (Supplementary Table S1) suggest that more than 95% of the target
regions display a coverage of 20X or greater in all the samples analyzed, in line with
the recommendations for the applications of targeted resequencing approaches in clinical
studies [12].

A total of 171,352 genetic variants were identified in the exomes of the five individuals
included in our study (three patients and the two parents of one of them). Among these,
170,962 were already included in the dbSNP database (build 151) or in other publicly
available resources of human genetic variants. A total of 94,918 genetic variants were in
exons of Refseq gene models (release 106) of the human hg19 genome assembly, while
76,434 variants were associated with introns. Of note 97.96% of intronic variants were
found within a distance of 100 bp from a splicing donor or acceptor site, suggesting that,
consistent with previous reports [13], the vast majority of intronic variants identified by ES
lies in the vicinity of exon–intron boundaries.

Among the genetic variants associated with exons, 49,196 (51.83%) were in untrans-
lated regions (3′ or 5′ UTR), 38,422 (40.48%) were in protein-coding exons, and 7300 (7.6%)
were associated with exons of long non-coding RNA genes. A similar proportion of syn-



Int. J. Mol. Sci. 2023, 24, 12291 3 of 14

onymous and nonsynonymous substitutions was observed in protein-coding genes: 49.9%
and 46.15% of the total number of variants, respectively.

A total of 623 (0.36%) variants were predicted to have a potentially disruptive effect
on a gene, and 233 of these (37.4%) were in the proximity of a splice site, while 390 (62.6%)
were associated with the insertion of a premature stop codon, or with frameshifts in the
protein-coding sequence.

A total of 172 and 150 variants had a minor allele frequency (MAF) ≤ 1 × 10−5, were
homozygous in Patient 3 and Patient 2, respectively, and not homozygous in the healthy
parents of Patient 1 (New Supplementary Table S3). The equivalent figure of Patient 1 is
of only eight variants, suggesting that approaches based on the sequencing of complete
trios [14] are highly effective for filtration of candidate genomic variants. When only
the genetic variants associated with a radical effect on the gene product were considered
(frameshift insertions/deletions, splice site variants, stop-gain/stop-loss variants, deleteri-
ous non synonymous substitutions), the number of candidate disease-causing variants was
reduced to three for Patient 3, one for Patient 1, and five for Patient 2 (Table 1).

No de novo disease-causing variants or compound heterozygous variants were iden-
tified in Patient 1, for whom genetic profiles of the parents were also available. On the
contrary, rare, potentially deleterious compound heterozygous variants, compatible with
the incidence of MOPDII, were detected in Patient 2 and Patient 3 (* in Table 1)at the
ZNF846 and DST genes, respectively (Table 1).

Importantly, this reduced list of candidate variants contained both the disease-causing
variants in the PCNT gene that were previously characterized by Sanger sequencing in
Patients 1 and 2 [4,7].

The three candidate disease-causing variants in Patient 3 were not subjected to further
analyses since defects in these genes (Table 1) were considered unlikely to underlie the
severe phenotype associated with MOPDII (Supplementary Table S2). We noticed that
between 6.76% (Patient 3) and 14.08% (Patient 1) of the functionally relevant regions (here
defined as the complete set of the Refseq exons plus 50 bp upstream and downstream) of
the PCNT gene are covered by less than 10 reads, suggesting that our observations with
respect to the absence of potentially disease-causing variants in Patient 3, based on ES
alone, cannot be considered conclusive. However, a targeted Sanger resequencing of PCNT
exons in the same patient confirms that there are no uncovered candidate disease-causing
variants. Patient 3, despite the lack of known or novel candidate pathogenic variants in the
PCNT gene, lacks the protein (Figure 1). The RNA-Seq analysis shows that PCNT transcript
reads cover a high number of exons (29 of 48 exons) and, importantly, all the last exons,
thus indicating that the entire gene is transcribed.

The absence of PCNT protein needs further investigations.
To identify possible genetic determinants of the comorbidities associated with MOPDII,

we performed variant filtration and identified genes associated with rare, disruptive ge-
nomic variants in two or more patients. A total of 82 variants were retrieved by our
filters (AF <= 1 × 10−4, deleterious effect on the gene function, not homozygous in the
healthy parents of Patient1) (new Supplementary Table S4); four genes carried disruptive
low-frequency variants in two or more patients (Table 2).

All of these genes have an important role in fetal development: RAD17 is essential for
sustained cell growth; NPRL3 has a role in neuronal development; BCLAF1 (also reported
in Table 1 because it mutated in Patient 3) and PRIM2, respectively, have a function as a
transcriptional repressor in the first and as a factor of DNA synthesis in the second, playing
essential roles in the development of the placenta.
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Table 1. Disease-causing variants with a minor allele frequency (MAF) ≤ 1 × 10−5. ACMG Criteria Used for Classification of Pathogenicity score: C3 = Variant of
Uncertain Significance, C4 = Likely Pathogenic; C5 = Pathogenic. * = potentially deleterious compound heterozygous variants.

Case Refseq Gene Genotype Exon/
Intron

cDNA
(HGVS)

Protein
Change
(HGVS)

Mutation
Type

Gnom
AD dbSNP ACMG Class Gene Function

1 NM_006031.6 PCNT Hmz Intron 18 c.3608-2A>G - splicing - - PVS1, PM2 C4

The protein encoded by this gene binds to calmodulin
and is expressed in the centrosome. It is an integral

component of the pericentriolar material (PCM). The
protein interacts with the microtubule nucleation

component gamma-tubulin and is likely important to
normal functioning of the centrosomes, cytoskeleton, and

cell-cycle progression. MutationPathogenic variants in
this gene cause Seckel syndrome-4 and microcephalic

osteodysplastic primordial dwarfism type II

2

NM_006031.6 PCNT Hmz Exon 10 c.1523dupA p.(Thr510AsnfsTer4) indel 0.0000319 rs1369869782 PVS1, PM2,
PP5 C5

NM_031419.4 NFKBIZ Hmz Exon 11 c.1635+2-
ACTTTTAGAA - splicing 0.0000489 - PP3, PM2 C3

This gene is a member of the ankyrin-repeat family and
is induced by lipopolysaccharide (LPS). The C-terminal

portion of the encoded product which contains the
ankyrin repeats, shares high sequence similarity with the
I kappa B family of proteins. The latter are known to play

a role in inflammatory responses to LPS by their
interaction with NF-B proteins through ankyrin-repeat

domains. Studies in mouse indicate that this gene
product is one of the nuclear I kappa B proteins and an

activator of IL-6 production

3

NM_014739.3 BCLAF1 Hmz Intron 10 c.2397+1G>C - splicing - - PVS1, PM2 C4

This gene encodes a transcriptional repressor that
interacts with several members of the BCL2 family of

proteins. Overexpression of this protein induces
apoptosis. The protein localizes to dot-like structures

throughout the nucleus, and redistributes to a zone near
the nuclear envelope. Diseases associated with BCLAF1

include Emery-Dreifuss Muscular Dystrophy and
Uterine Adnexa Cancer. Among its related pathways are
Interactome of polycomb repressive complex 2 (PRC2).

NM_002723 PRB4 Hmz Exon 3 c.363_364ins
GACGACCC. . . - frameshift

insertion - - PVS1_Moderate
+ PM1 + PM2 + PP3 -

This gene encodes a member of the heterogeneous family
of basic, proline-rich, human salivary glycoproteins. The
encoded preproprotein undergoes proteolytic processing
to generate one or more mature peptides before secretion

from the parotid glands.

NM_000552 VWF Hmz Exon 28 c.4165_4166ins
ACCAGCGAGGTC. . . - stopgain - - PVS1 -

This gene encodes a member of the heterogeneous family
of basic, proline-rich, human salivary glycoproteins. The
encoded preproprotein undergoes proteolytic processing
to generate one or more mature peptides before secretion

from the parotid glands.
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Table 1. Cont.

Case Refseq Gene Genotype Exon/
Intron

cDNA
(HGVS)

Protein
Change
(HGVS)

Mutation
Type

Gnom
AD dbSNP ACMG Class Gene Function

2 * NM_001077624.3 ZNF846 Het c.885_886insGA p.Tyr296AspfsTer63 Frameshift 0 - PM2 3

This gene encodes a predicted protein to enable
DNA-binding transcription repressor activity, RNA

polymerase II-specific and RNA polymerase II
transcription regulatory region sequence-specific DNA
binding activity. Predicted to be involved in negative

regulation of transcription by RNA polymerase II.

2 * NM_001077624.3 ZNF846 Het c.884C>A Ser295Leu Missense 0.000008 rs765545468 PM2 3

3 * M_001374736.1 DST Het c.9207A>T Arg3069Ser Missense 0 rs1364606135 PM2, BP1 3

This gene encodes a member of the plakin protein family
of adhesion junction plaque proteins. Multiple

alternatively spliced transcript variants encoding distinct
isoforms have been found for this gene, but the

full-length nature of some variants has not been defined.
It has been reported that some isoforms are expressed in
neural and muscle tissue, anchoring neural intermediate

filaments to the actin cytoskeleton, and some isoforms
are expressed in epithelial tissue, anchoring
keratin-containing intermediate filaments to

hemidesmosomes. Consistent with the expression, mice
defective for this gene show skin blistering and

neurodegeneration.

3 * M_001374736.1 DST Het c.6371C>A p.Ala2124Glu Missense PM2, BP1 3
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Figure 1. PCNT protein expression in MOPDII Patient 3. Western blotting analysis of pericentrin in
cellular extracts from lymphoblastoid cell lines (LCLs) from PCNT wild-type control (lane 1); MOPD
II patient 3 (lane 2); PCNT homozygous for c.1523dup (lane 3).

Table 2. Genes with two or more rare, deleterious variants in MOPDII patients.

Case Gene Function

1-2-3 RAD17

Cell cycle checkpoint protein. Essential for sustained cell
growth, maintenance of chromosomal stability, and

ATR-dependent checkpoint activation upon DNA damage. Has
a weak ATPase activity required for binding to chromatin. May
also serve as a sensor of DNA replication progression, and may

be involved in homologous recombination.

2-3 NPRL3
As a component of the GATOR1 complex functions as an
inhibitor of the amino acid-sensing branch of the TORC1

pathway. Important role in cortical development.

2-3 BCLAF1
Death-promoting transcriptional repressor. Bclaf1 Promotes

Maintenance and Self-Renewal of Fetal Hematopoietic
Stem Cells.

3-1 PRIM2

Regulatory subunit of the DNA primase complex and
component of the DNA polymerase alpha complex (also known
as the alpha DNA polymerase-primase complex) which play an

essential role in the initiation of DNA synthesis.

2.2. Transcriptome Sequencing

Despite the extraordinary impact of whole-exome sequencing (ES) on the molecular
genetics of Mendelian disorders, over 50% of the patients do not receive a genetic diagnosis
after ES. This is probably due to the lack of a detailed functional annotation for synonymous
or non-coding variants. Many of these variants might affect the expression levels of isoform
abundances. Furthermore, ES regions cover only about 2% of the genome. For these
reasons, in addition to the ES analysis, we also performed a whole transcriptome analysis
of blood samples from Patient 1, and two healthy age- and sex-matched controls. The
analysis showed 56 up-regulated and 138 down-regulated genes, for a total of 194 genes
with significant changes in their level of expression (Supplementary Table S5).

The functional enrichment analysis of differentially expressed genes performed with
DAVID showed the enrichment of these genes in diverse molecular functions, biologi-
cal processes, and pathways (Supplementary Table S6). The most relevant result to our
aims is the statistical enrichment of the genes in the “Insulin-like growth factor-activated
receptor activity” (p-value = 0.03). Two key genes belonging to this category are IGF1R
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and IGF2R, which were both down-regulated in Patient 1 compared to controls (log2FC
−1.43 and −0.58, respectively, and adjusted p-value < 0.01). This result is particularly
relevant considering that the growth hormone (GH)–Insulin-Like Growth Factors (IGFs)–
Insulin-Like Growth Factors Binding Protein 3 (IGFBP3) axis is a key endocrine modulator
of prenatal and postnatal growth and metabolism, confirming an alteration of growth
pathways. [15,16].

Next, we investigated whether other genes belonging to the IGF1R and IGF2R pathway
were also differentially expressed in Patient 1. To this end, we used GenesLikeMe, which
calculated similarity scores between IGF1R or IGF2R and all remaining candidate genes
in the GeneCards database based on the SuperPaths attribute. Using the GenesLikeMe
database, we selected 100 correlated genes for IGF1R and IGF2R. By comparing them,
we identified 62 common genes. We searched for these 62 genes related to IGF1R and
IGF2R in our list of 194 differentially expressed genes obtained by the RNA-Seq experi-
ments. Interestingly we found that other two key genes involved in cell cycle division,
apoptosis, cell differentiation, and cell migration, namely RAF1 and CREBBP, were also sig-
nificantly down-regulated (log2FC -0.79 and -0.73 respectively, and adjusted p-value < 0.01;
HYPERLINK “http://david.ncifcrf.gov” (accessed on 15 November 2022), HYPERLINK
https://glm.genecards.org (accessed on 21 November 2022)).

The downregulation of the IGF1R, IGF2R, RAF1, and CREBBP genes was confirmed
by RT-qPCR experiments. Interestingly, we also found that the other two patients showed
a significant downregulation of IGF1R, IGF2R, and RAF, while CREBBP downregulation
was confirmed in two patients out of three compared to age- and sex-matched controls
(Figure 2).
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Figure 2. RT-qPCR of IGF1R, IGF2R, RAF, and CREBBP in the three MOPDII patients. For Patients
1 and 2, the mean expression of the indicated genes in three age-matched male children was used
as calibrator. For Patient 3, the mean expression of the indicated genes in three age-matched female
children was used as calibrator. Data are shown as the average with a standard error of three
independent experiments (* p value < 0.05; ** p value < 0.005; *** p value < 0.0005).

3. Discussion

Microcephalic primordial dwarfisms (MPDs) are a group of autosomal recessive
disorders characterized by an extreme growth failure which starts early in the development
and continues postnatally, with a final height often reduced to 1 m [17].

Many distinct forms of MPD are recognized, clinically or through molecular diagnosis.
MOPD I and MOPD III have been considered variants of the same disorder, previously
described as cephaloskeletal dysplasia [18].
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MOPDII, the most common and well-described type of microcephalic dwarfism, in
addition to the classical features of the other MPD forms (severe prenatal and postnatal
growth retardation and marked microcephaly), shows other clinical and radiographic char-
acteristics [19]. These include skeletal dysplasia as long thin bones, small iliac wings with
flat acetabular angles, dislocation or subluxation of the radial heads and hips, epiphyseal
ossification delay, mesomelia, scoliosis (particularly in girls in late childhood or at puberty),
and abnormal dentition. A major cause of death for MOPDII patients is neurovascular
complications arising from both brain aneurysms and arterial narrowing, which results in
multiple fragile collateral blood vessels (moyamoya). This condition may cause ministrokes
(transient ischemic attack), stroke, or bleeding in the brain. Another important clinical
condition not attributable to a dysfunctional PCNT is that most patients with MOPDII
develop insulin resistance leading to skin pigmentation (acanthosis nigricans) and type II
diabetes mellitus [20].

Against a very complex and dramatic clinical picture, at present, at the molecular
level, the diagnosis of MOPDII is confirmed by the presence of biallelic loss-of-function
pathogenic variants in the PCNT gene, which encodes a core centrosomal protein that, as
a major constituent of the pericentriolar material, facilitates the nucleation of the mitotic
spindle [21].Therefore, it is likely that in cells with mutated PCNT, the cellular proliferation
is damaged, leading to a reduction in cell number and a substantial growth failure.

To date, there have been no large-scale studies on MOPDII disease. NGS technology
has recently emerged as a useful alternative for determining genetic variants and alterations
in the transcriptome, contributing to monogenic and polygenic disease pathogenesis.

In this study, for the first time we performed the exome sequencing of three MOPDII
patients. We confirmed the pathogenic variants in two out of three patients in the PCNT
gene, while the third patient, despite the lack of known or novel candidate pathogenic
variants in the PCNT gene, lacked the protein [4–7].

Several different reasons could explain these findings. Pathogenic genomic variants
might be associated with genomic regions not assayed by ES sequencing, such as introns,
promoters, or enhancers, which are only detectable with whole genome sequencing.

Alternatively, post-transcriptional mechanisms or incorrect targeting by miRNAs
could prevent the production of the protein. Additional investigations will be required to
uncover/identify the genomic determinants of MOPDII in Patient 3.

In addition, ES provided an opportunity to research the genetic variants that are
possibly associated with the highly variegated phenotype associated with MOPDII.

The Rad17-replication factor C (Rad17-RFC) and Rad9-Rad1-Hus1 complexes are
thought to function in the early phase of cell-cycle checkpoint control as sensors for genome
damage and genome replication errors. However, genetic analysis of the functions of
these complexes in vertebrates is complicated by the lethality of these gene disruptions in
embryonic mouse cells [22].

NPRL3 protein has a role in cortical development. People with MOPDII have an
adult brain size comparable to that of a 3-month-old infant and intellectual development
may be normal or with retardation [23]. The other two hypermutated genes in MOPDII
patients are expressed in placenta during embryonic growth. In fact, placental BCLAF1 is
an epigenetically regulated gene with random monoallelic expression in human placenta,
and it participates in the regulation of cellular apoptosis and tissue development with other
genes [24]. PRIM2 expression has been detected in several tissues, including brain, liver,
blood, and placenta, and has been reported as an imprinted, maternally expressed gene in
human white blood cells (WBCs). Its role in placental function is not well understood [25].

In the literature, we did not find pathogenic variants in genes belonging to the GH–
IGFs–IGFBP3 axis, which are key modulators for the growth of the whole organism, as
mentioned before.

One approach to enhance the evaluation of genetic variants could be the integration
with functional genomic information deriving from the RNA-Seq, which provides direct
insights into transcriptional perturbations caused by genetic changes in regulatory regions
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or in any step of gene expression, including non-coding RNAs. This was the approach we
used and, indeed, in addition to the results obtained with ES analysis, the transcriptomic
analysis also provided even more interesting outcomes. Specifically, the RNA-Seq analyses
showed a downregulation of IGF1R, IGF2R, and RAF1 in all three patients and CREBBP in
two out of three subjects. The IGF1R gene plays an important role in prenatal and postnatal
growth. Indeed, it is reported that IGF1R haplo-insufficiency leads to severe intrauterine
and postnatal growth retardation and other delayed motor and mental development [26–28].
This finding is particularly relevant if we consider that Patient 1 showed a low IGF-1 serum
level, and neither intensive nutrition, growth hormone, or IGF-1 intervention influenced
growth outcome [7].

RAF1 and CREBBP have a central role in signal transduction pathways during devel-
opment. Notably, pathogenic variants in RAF1 are associated with Noonan syndrome, a
genetic disorder characterized by short height, congenital heart disease, bleeding problems,
and skeletal malformations [29]. Pathogenic variants in CREBBP cause Rubinstein–Taybi
syndrome (RTS), a rare genetic disease characterized by short stature, mental retardation,
and increased risk of developing solid malignancies and leukemia [30].

In conclusion, the transcriptomic and exome sequencing of three patients affected
by MOPDII allowed us to uncover the differential expression of key genes involved in
the growth process, and different non-synonymous variants in genes, whose pathogenic
variants cause clinical symptoms and features that are strongly suggestive of MOPDII
disease. Altogether, these results provide evidence that the genotypic background of this
disease seems more complex than previously believed.

4. Materials and Methods
4.1. Subjects

Three children affected by MOPDII and the healthy parents of Patient 1 were analyzed
with ES experiments. Three children, matched for age and sex with MOPDII patients, were
used as controls in the RNA-Seq and RT-qPCR experiments.

All the procedures used were in accordance with the guidelines of the Declaration of
Helsinki in 1995 (as revised in Seoul 2008) on Human Experimentation. The study protocol
was approved by the Independent Ethics committee, Azienda Ospedaliero-Universitaria
“Consorziale Policlinico” of Bari, Italy (protocol number 0076954). Informed consent was
obtained from the parents of participating children.

Patient 1 is a Caucasian male, born prematurely with a severe intrauterine growth re-
tardation (IUGR) from non-consanguineous healthy parents. At birth, weight was−3.9 stan-
dard deviation score -SDS, length −4.7 SDS, head circumference −3.8 SDS. He showed
facial dysmorphisms with a prominent beaked nose, ocular protrusion, micrognathia, ab-
sence of the earlobe, fine and sparse hair, fifth finger clinodactyly, and micropenis. Brain
magnetic resonance imaging (MRI) showed mild cortical thickening, thinning of the corpus
callosum, and delayed myelination. Subsequently, molecular analysis of the PCNT gene
showed a homozygous splicing site pathogenic variant in position c.3608-2 A > G of intron
18. The variant was present in heterozygous state in both parents. At our first observation,
he showed extremely short stature (−10.3 SDS), weight (−22.1 SDS), head circumference
(−8 SDS), and severe bone age retardation. He also showed facial dysmorphisms, small
dysplastic teeth, and short limbs with relatively short forearms [7].

Patient 2 is a Caucasian male, born prematurely from non-consanguineous healthy par-
ents. Birth weight was −2.33 SDS, birth length −1.95 SDS, head circumference −1.89 SDS.
Postnatally, he was diagnosed with vescico-ureteral reflux with arterial hypertension. Se-
vere growth delay was noted and a standard cytogenetic analysis was performed (46,XY).
At the time of our first observation, he presented short stature −10.1 SDS, −9.4 SDS, and
severe microcephaly, −3.4 SDS, growth failure typical of the syndrome. Dysmorphic fea-
tures included high forehead with receded hairline, sparse scalp hair, convex nasal ridge,
and mild retrognathia. The radiographs showed metaphyseal widening, absence of the
ossification nuclei in the femoral head, and irregular distal femoral epiphyses. A year after
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our first observation, the patient developed paresis of the right arm as a consequence of a
stenosis of the median cerebral artery [4].

His voice was squeaky and the teeth were small. X-ray examination showed high iliac
wings, narrow ischia and pubis, overtubulated long bones, delta-shaped distal femoral
metaphysis, and marked widening brachytelemesophalangia with delayed bone age [4].
Based on the clinical spectrum, an alternative diagnosis for MOPDII syndrome was sup-
posed, confirmed by the subsequent identification of a homozygous single base insertion
(c.1527_1528insA) in exon 10 of the PCNT gene, leading to a frameshift (Treo510fs) and
premature protein truncation. The patient died because of a second fatal cerebrovascu-
lar accident.

Patient 3 is a Caucasian female born prematurely with unknown familiar history.
Birth weight was −1 SDS, birth length −1.99 SDS, head circumference −2.28 SDS. At
birth, dysmorphic features were present with a high forehead with receded hairline, sparse
scalp hair, and retrognathia. A more accurate clinical evaluation at one year revealed mild
psychomotor delay, microcephaly, short neck, lower limbs hypertonia with hyperreflexia,
atrial septal defects and patent foramen ovale (PFO), skeletal maturation delay tendency,
metaphyseal widening, and delay in the femoral head ossification nuclei.

Considering the clinical spectrum, we proposed the diagnosis of MOPDII syn-
drome, which was confirmed by the absence of the pericentrin signal in the Western
blot analysis (Figure 1). The subsequent evaluation of the PCNT gene did not identify any
pathogenic variant.

4.2. Comparative Genomic Hybridization Array

Genomic DNA was extracted from the blood sample. Array-CGH analysis was
performed using the Cytochip oligo ISCA 4 × 180K (Techno Genetics Srl, Avellino, Italy)
following the manufacturer’s protocol.

4.3. DNA and RNA Extraction

Total DNA was extracted from the blood of the three patients and the healthy parents
of Patient 1 using Eurogold blood DNA mini kit (Euroclone, Pero Milano, Italy). Total RNA
was extracted from the blood of the three patients and age- and sex-matched control chil-
dren. The blood was collected using specific “BD Vacutainer Safetyl-lok Blood Collection”
and total RNA was extracted using a “Paxgene Blood RNA” Kit (Qiagen, Hilden, Germany).

4.4. Exome and Transcriptome Sequencing

DNA libraries were constructed using the “SureSelect QXT Human All Exon V5 +
UTR” (Agilent Technologies, Santa Clara, CA, USA) protocol and sequenced on HiSeq
Illumina platform, following the protocol (Illumina, San Diego, CA, USA).

The cDNA libraries were prepared using a platform-independent RNA-Seq protocol
developed in our laboratories and sequenced using a 454 FLX Roche platform (Roche,
Basilea, Swiss) [31].

4.5. Reverse Transcription and Real Time PCR Analysis

A quantity of 200 ng of total RNA was retrotranscribed using QuantiTect® Reverse
Transcription kit (Qiagen® Hilden, Germany, according to the manufacturer’s instruction.
Real-time PCR reactions were performed on Applied Biosystems™ 7900HT (Waltham,
MA, USA). The glyceraldeyde 3P-dehydrogenase (GAPDH) was used as housekeeping
gene because it has been listed by Normfinder as the most stable in samples used in
qRT-PCR experiments.

To control the statistical significance of differentially gene expression levels, two-
tailed Student’s t test was performed. The reported data represent the average of at least
three independent experiments and are shown with their standard error (* p value < 0.05;
** p value < 0.005; *** p value < 0.0005).
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4.6. Bioinformatics and Statistical Analyses
4.6.1. Exome Analyses

Variant calling was performed according to the CoVaCS workflow [32] on hg19 refer-
ence assembly of the human genome. To reduce possible false positive calls, only variants
supported by at least 10 independent reads were considered. Similarly, variants associated
with genomic regions of low “mappability” (below 0.25 according to the GEM tool) [33]
or with inconsistent mapping between the hg19 and hg38 human reference genome were
discarded. Functional annotation of genes was performed by Annovar [34]. The following
annotation resources were considered for the estimation of allele frequencies: ExA [35],
1000 Genomes (The 1000 Genomes Project Consortium, 2015) (phase 3) (version 2.1, updated
10 December 2018), dbSNP [36] (build 151), (version 160204-Public). RefSeq release 106 [37]
was used for gene and transcript annotations, ClinVar [38] (version 1.55, updated 26 Decem-
ber 2018) and HGMD-Pro 2018.324 [39] for the annotation of disease-causing variants, and
the dbNSPF [40] (v4.0b1, updated 30 December 2018) database for the evaluation of nonsyn-
onymous substitutions effect. The identified nucleotides alterations were described based
on Human Genome Variation Society nomenclature criteria (https://varnomen.hgvs.org/,
(accessed on 12 October 2022)). The clinical classification of the variants was carried out
according to the American College of Medical Genetics and Genomics (ACMG) criteria.

4.6.2. Post-Processing of Exome Data and Variant Prioritization

Coordinates for the target regions on the hg19 human genome reference assembly,
for the Agilent SureSelect QXT Human All Exon V5 + UTR kit, were obtained from the
manufacturer’s web site. Coverage profiles were established using the bedtools utility [41].
Variant filtration was performed through a custom Perl script, and subsequently refined by
expert manual curation. To identify potentially disease-causing variants, we considered
only variants with a predicted disruptive effect (frameshift, splice site variants, stop-gain,
and stop-loss variants, or CADD score > 20 for nonsynonymous variants), a minor allele
frequency ≤ 1 × 10−5 in any of the resources of human genetic variation considered in the
study, and homozygous in the affected individuals, but not in the healthy parents of Patient
1. Compound heterozygous variants, and candidate de novo variants, were identified by
means of a custom Perl script. Since genetic profiles of the parents where only available
for Patient 1, for Patient 2 and Patient 3 candidate compound heterozygous variants were
identified as distinct heterozygous variants with a minor allele frequency ≤ 1 × 10−5,
associated with the same gene and predicted to have a deleterious effect on the gene
function according to the same criteria outlined above.

4.6.3. RNA-Seq Analyses

Transcriptome data obtained with the Roche-454 sequencing platform were analyzed
with the following steps. Data was mapped with BLAST against the Ensembl Human
Transcript database, (Release-95) and read counts were performed with MultiDEA [42].
Differential expression analysis on these data was computed with Fold Change, Fisher’s
Exact test (adjusted with False Discovery Rate), and with MultiDEA. Changes in gene
expression were considered significant if absolute log2 Fold Change (log2FC) ≥ 0.585
(i.e., absolute Fold Change ≥ 1.5) and adjusted p-value ≤ 0.05. Pathway analysis of dif-
ferentially expressed genes was performed with tools in The Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.8 [43] and GeneCard’s tool Genes-
LikeMe, Version 3.12.404 [44].

4.6.4. Western Blot Analysis

The levels of expression of pericentrin were determined by Western blot analysis using
a rabbit pericentrin polyclonal antibody (ab4448, Abcam Ltd., Cambridge, UK) and the
beta actin (A2066, Sigma-Aldrich, Inc., St. Louis, MO, USA) for normalization. The cells
washed with PBS buffer plus 0.1 mM Na3VO4 were pelleted and lysed in Laemmli buffer
(0.125 M Tris–HCl pH 6.8, 5% SDS) containing protease inhibitors. Lysates were boiled for

https://varnomen.hgvs.org/
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2 min, sonicated, and quantitated by Bradford assay. Aliquots containing 30 mg/mL of
protein plus 5% b-mercaptoethanol were size fractionated on 3–8% Tris–acetate gel, using
the NuPage Novex system from Invitrogen (Carlsbad, CA, USA). After incubation with a
peroxidase-conjugated secondary antibody, the immunoreactive bands were visualized by
ECL Supersignal on autoradiographic films.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241512291/s1.
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