
Citation: Maciag, T.; Kozieł, E.; Rusin,

P.; Otulak-Kozieł, K.; Jafra, S.;

Czajkowski, R. Microbial Consortia

for Plant Protection against Diseases:

More than the Sum of Its Parts. Int. J.

Mol. Sci. 2023, 24, 12227. https://

doi.org/10.3390/ijms241512227

Academic Editor: Barbara

Sokolowska

Received: 12 July 2023

Revised: 25 July 2023

Accepted: 27 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Microbial Consortia for Plant Protection against Diseases: More
than the Sum of Its Parts
Tomasz Maciag 1,† , Edmund Kozieł 1,*,† , Piotr Rusin 1, Katarzyna Otulak-Kozieł 1,* , Sylwia Jafra 2

and Robert Czajkowski 3

1 Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW,
Nowoursynowska Street 159, 02-776 Warsaw, Poland

2 Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG,
University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland

3 Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG,
University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland

* Correspondence: edmund_koziel@sggw.edu.pl (E.K.); katarzyna_otulak@sggw.edu.pl (K.O.-K.)
† These authors contributed equally to this work.

Abstract: Biological plant protection presents a promising and exciting alternative to chemical
methods for safeguarding plants against the increasing threats posed by plant diseases. This ap-
proach revolves around the utilization of biological control agents (BCAs) to suppress the activity of
significant plant pathogens. Microbial BCAs have the potential to effectively manage crop disease de-
velopment by interacting with pathogens or plant hosts, thereby increasing their resistance. However,
the current efficacy of biological methods remains unsatisfactory, creating new research opportuni-
ties for sustainable plant cultivation management. In this context, microbial consortia, comprising
multiple microorganisms with diverse mechanisms of action, hold promise in terms of augmenting
the magnitude and stability of the overall antipathogen effect. Despite scientific efforts to identify
or construct microbial consortia that can aid in safeguarding vital crops, only a limited number of
microbial consortia-based biocontrol formulations are currently available. Therefore, this article aims
to present a complex analysis of the microbial consortia-based biocontrol status and explore potential
future directions for biological plant protection research with new technological advancements.

Keywords: biocontrol; crop protection; biocontrol agents; biopesticides; plant diseases

1. Introduction

The ever-growing human population has led to an increase in food consumption, with
plants serving as the primary food source worldwide. However, the combined effects of
climate change and global fruit and vegetable trade have accelerated the spread of essential
crop pathogens [1]. Therefore, to address these issues without further environmental
degradation, it is crucial to explore effective and safe alternatives to chemical methods of
crop protection against plant diseases [2]. Biocontrol, an approach involving methods that
utilize natural interactions between organisms, offers a potential solution [3]. Extensive
research has been conducted in this field, leading to multiple attempts to develop biopes-
ticides to combat key plant pathogens [3]. However, despite the efforts of the scientific
community and industry, the availability of biocontrol formulations remains limited, and
their activity is often unsatisfactory [4]. Therefore, it is suggested that the combination of
diverse strains of microorganisms with multidirectivemechanisms of disease suppression
(which are, among others, antibiosis, competition, or induction of plant resistance) into
artificial consortia can help enhance the biocontrol agents’ activity, especially in changing
environmental conditions [5].

Microbial consortia can contain a diverse array of microorganisms that exhibit varia-
tions in their environmental preferences, such as soil type, host plant, different preferential
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sites of colonization, and activity against different pathogen species [6]. Although individ-
ual microbial strains may possess different modes of action, the amalgamation of multiple
microorganisms within consortia can broaden the spectrum of their activities against a
wide range of plant pathogens [7]. Additionally, the microorganisms present in biocontrol
consortia can contribute to plant growth promotion and/or enhance the activity of the
other microorganisms, further increasing the potential of such products [5].

Although meta-analysis has shown that the consortia activity is more significant in the
greenhouse condition compared with field settings, the protective effect of the consortia
remains more stable than that of single-strain inoculations [8]. Despite the promising
potential of microbial consortia, the availability of biological control formulations based
on microbial consortia on the market is currently limited [9]. This review aims to address
the present situation of using artificial microbial consortia for plant protection against
diseases, including the possible causes of the current situation. This study also delves
into the mechanisms utilized by microorganisms for their activity, interactions within
the consortium, and their influence on consortia activity. We conclude this study by
highlighting future research perspectives in this field.

Historical Perspective

To comprehend the significance of biological control and evaluate the advantages
and disadvantages of microbial consortia for plant protection, one must delve into the
origins of human civilization, where plant health was attributed to soil’s visual quality.
Even in modern agricultural practices, the organoleptic assessment of soil texture remains
a reliable indicator of soil fertility [10]. Although the exact date of the first biological
control application in practice is uncertain, Chinese farmers using ants against insect pests
in storage are considered pioneers of this approach [11]. Similarly, the first identified
microorganism used for biological plant protection was Bacillus thuringiensis, which has
been used against insect pests such as the silk moth (Bombyx mori) [12]. Consequently,
when Harry Scott Smith introduced the term “biological control”, it primarily referred
to controlling insect plant pests [13]. During the XX century, scientists began elucidating
the influence of the soil type on the probability and severity of certain crop diseases [14],
although the terminology in this field remained inconsistent and ambiguous. Toward the
end of the century, the term “suppressive soils”, describing soils that promote resistance
against diseases, became widely used [15] (Figure 1). It was already recognized that
microorganisms were responsible for this phenomenon and that this soil attribute could be
transferred to new sterilized soil [16].
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Figure 1. Timeline of events concerning biological control with consortia of microorganisms. 1—[9];
2—[10]; 3—[14]; 4—[15]; 5—Agrobacterium radiobacter K84 against A. tumefaciens (Galltrol) [16];
6—Trichoderma asperellum and T. gamsii against diseases caused by Fusarium spp., Phytophthora spp.,
Pythium spp., Rhizoctonia spp., Sclerotinia spp., Sclerotium rolfsii, Thielaviopsis basicola, Verticillium spp.
(BIO-TAM 2.0) [4]; 7—publication of the “Farm to Fork” strategy as part of EU Green Deal to facilitate
the implementation of environmentally friendly solutions for farming [17].
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A few years later, the discovery of penicillin shook the scientific community [18].
Therefore, it seemed logical to explore the potential microorganisms in agriculture, particu-
larly to search for potent antibiotic-producing strains against important plant pathogens.
Indeed, this has led to the identification of numerous bacterial strains belonging to the Pseu-
domonas and Bacillus genera, renowned for their production of a wide array of antibiotics
and other antimicrobials [19]. Therefore, the first biocontrol product (Galltrol) based on
living microorganisms was developed, featuring Agrobacterium radiobacter K84, a producer
of antibiotic agrocin 84 against A. tumefaciens [20]. However, the “silver-bullet” approach of
finding a single strain capable of preventing multiple diseases on various crops in various
soil types was bound to fail [21]. It was demonstrated that biocontrol strains’ activity was
influenced by the environmental conditions in which they were deployed [22–24]. There-
fore, the utilization of microbial mixtures with diverse modes of activity was proposed as a
solution to overcome the challenges related to colonization under suboptimal conditions
and enhance the stability of the protective effect of biocontrol products [5]. By the end of
the XX century, the potential of consortia to address certain challenges in the biological
control of pathogens had gained acceptance [25]. Nevertheless, the first biocontrol product
containing a mixture of microorganisms was registered only in 2015 [4] (Figure 1). After
that, a few more microbial consortia were registered for biological plant protection (Table 1).

The delay in the registration process of products based on multiple strains of microor-
ganisms can be attributed to various challenges. These include difficulties in formulating
and storing products containing living organisms, the slow technology transfer, and legisla-
tion prepared for chemical products [26]. However, there is a positive outlook for change
in this scenario [27] thanks to scientific efforts aimed at improving such products’ perfor-
mance and unraveling the source of unstable activity [28]. Additionally, the agricultural
industry recognizes biological control as a potential source of novel “pesticides” that can be
used in organic (green) farming [4]. A noticeable trend is the increasing ease and speed of
registering microorganism-based products for agriculture, which paves the way for a wide
range of microbial consortia-based products to enter the market [29–31]. An important
advantage of pathogen biological control based on microorganisms, especially their mix-
tures, is their ability to protect plants from diseases and promote plant growth [32,33]. This
opens up the possibility of registering a microbial consortium as a biofertilizer, which often
follows a more straightforward product registration method [34]. Biofertilizers that protect
plants from diseases can encourage farmers to adopt biological approaches, especially those
interested in conventional, sustainable or organic farming [35].

Table 1. Biological control products available on the market are registered on the list of approved
plant-protecting agents [36] (accessed on 5 May 2023). Formulations (Form.): WP—wettable powder;
WG—wettable granules.

Active Substance Trade Name Distributor Country Form. Target Crops Target Disease

Aureobasidium
pullulans

DSM 14940 +
DSM 14941

BLOSSOM
PROTECT;

BONI PROTECT;
BOTECTOR

Bio-ferm Biotech-
nologische

Entwicklung und
Produktion

GmbH

US; CA; EU; SK;
TN; GB; NI; BE; DE;
EL; ES; FR; HU; IT;

LU; NL; PT; PL; RO;
SI; SK

WP Apple, medlar, pear,
quince

Fire blight
Erwinia amylovora

Trichoderma virens
G-41

+ T. harzianum
Rifai T-22

RootShield®

PLUS WP
BioWorks, Inc. US; CA WG

Greenhouse and
nursery vegetables,
herbs, ornamentals,
fruits, conifer tree
seedlings, various
trees, legumes, oil
seeds, and peanuts

Phytophthora,
Rhizoctonia, Pythium,

Fusarium, Thielaviopsis,
Cylindrocladium
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Table 1. Cont.

Active Substance Trade Name Distributor Country Form. Target Crops Target Disease
Trichoderma
asperellum

ICC012 + T25 +
TV1

XEDAVIR;
PATRIOT GOLD;

BIOTRIX;
XEDAVIR PFNPE

Xeda
International S.A.;

Timac AGRO
Espańa SA

IT; PT; FR; EU; WP,
WG

Greenhouse and open
field

vegetables

Pythium spp.,
Phytophthora capsici,

Rhizoctonia solani

Trichoderma
atroviride IMI
206040 + T11

Binab TF WP;
Binab T Vector;

Borregaard
Bioplant SE; EU WP

Tomatoes,
strawberries,

ornamental trees

Botrytis cinerea,
Chondrostereum

purpureum

Trichoderma
asperellum ICC012
+ T. gamsii ICC080

Tellus;
Foretryx;

Bio-Tam2.0;
DonJon;

Bioten WP;
Blindar;

Remedier

Syngenta;
Isagro S.p.A.;

Bayer;
Gowan

NL; CA; PL; US; PT;
FR; TN; CY WP

Tomatoes,
horticultural

flowers, ornamental
and tree crops

Verticillium dahliae,
Rhizoctonia solani,

Sclerotinia sclerotiorum,
Thielaviopsis basicola,
Phytophthora capsici

Trichoderma
asperellum T25

+ T. atroviride T11
Tusal Newbiotechnic

S.A. FR; EL; GB; EU WG

Strawberry, tomato,
eggplant, pepper,

cucumber,
courgetti, melon,

watermelon,
pumpkin, cut

flowers, lettuce,
escarole, similars,
trees, and shrubs

Phytophthoracactorum,
Rhizoctonia solani,

Sclerotinia sclerotiorum,
Phytophthora spp.,

Fusarium spp.,
Pythium spp.,
Phomopsis sp.,

2. Ecological Interactions: Mechanisms of Plant Disease Control

Biological control agents (BCAs) have the ability to protect plants against diseases
either by direct or indirect means. Direct protection involves the BCA acting on the disease-
causing agent—a pathogen. This can be achieved via parasitism, predation antibiosis
or production of lytic enzymes, and it can suppress pathogens before as well as during
invasion. On the other hand, indirect activity alters the environment to decrease the
presence of pathogens and the chance of disease development. This can be achieved
through various mechanisms, such as inducing plant resistance or competition between the
BCA and pathogens [36] (Figure 2). It is proposed that microorganisms can enhance plant
resistance to pathogens by promoting plant growth, increasing the overall fitness of the
plant, and decreasing the chance of disease development according to the disease triangle
concept [26]. Biological control agents can also disrupt pathogenesis via the digestion of
pathogens virulence factors or the disruption of their communication [37].

2.1. Induced Resistance

Throughout their evolution, plants have developed specific receptors, such as pattern
recognition receptors (PRRs), that enable them to recognize various types of threats. These
threats include the recognition of herbivore-associated molecular patterns (HAMPs) from
herbivores, pathogen-associated molecular patterns (PAMPs) from pathogens, and microbe-
associated molecular patterns (MAMPs) from other microorganisms; however, they can
also recognize antigens present due to the breakage of plants’ physical barrier known as
damage-associated molecular patterns (DAMPs) [38]. On recognition of the corresponding
antigens, appropriate PRRs activate the PAMP-triggered immunity (PTI), triggering the
release of reactive oxygen species (ROS), followed by the activation of mitogen-activated
protein kinases (MAPK) (Figure 3) [38]. However, these patterns are often broad-range and
can be produced by nonpathogenic bacteria, such as the conserved components of flagella
that are found in different bacterial species. Therefore, to specifically recognize pathogen in-
vasion, plants have developed effector-triggered immunity (ETI), which involves receptors
recognizing effector proteins. These proteins are pathogen virulence factors and are rec-
ognized by internal receptors—nucleotide-binding domain leucine-rich repeat-containing
receptors (NLRs) [39]. The crosstalk between these two pathways enables plants to mount
appropriate responses against necrotrophic and biotrophic pathogens. For instance, against
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biotrophic pathogens such as Pseudomonas syringae [40], which invade living plant cells,
plants induce the salicylic acid (SA)-dependent pathway of resistance, leading to hypersen-
sitive response (HR) and local necrosis that stops the spread of the disease [41]. However,
such a response would be inappropriate for nonpathogenic bacteria or microorganisms that
have not yet breached plant cell walls [42]. Therefore, to combat necrotrophic pathogens
such as Pectobacterium carotovorum [43] (which obtain their resources from disrupted or
dying plant cells), plants activate jasmonic acid (JA)-dependent pathways, resulting in the
accumulation of phenolic compounds, defensins, and cell wall strengthening to suppress
the necrotrophic pathogen attacks [44]. Generally, JA- and SA-dependent pathways are
antagonistic toward each other, although the exact interactions between those pathways
are yet unknown [45]. The complexity of these interactions arises from the ongoing arms
race between plants and their pathogens.

From the microorganism’s perspective, the plant immune response can be recognized
as systemic acquired resistance (SAR) and induced systemic resistance (ISR). Although it is
generally accepted that SAR is induced by pathogens through the SA-dependent pathway,
nonpathogenic bacteria use the JA-dependent pathway to induce ISR—the term ISR refers
to the induction of plant defenses by nonpathogenic microorganisms, regardless of the
used pathway [46]. SAR is triggered by the presence of the pathogen and aims to reduce
the likelihood of disease development on subsequent encounters with the pathogen. For
example, when tobacco (Nicotiana tabacum L.) is infected by Botrytis cinerea, it develops
resistance through a salicylic-mediated pathway, providing protection against subsequent
pathogen attacks by Pseudomonas syringae and B. cinerea [47]. To achieve this, plants locally
and systemically induce the expression of pathogen-related genes, facilitated by signaling
through SA, the primary signal molecule in this mechanism [48]. However, it should
be noted that the induction of SAR may require additional mechanisms to regulate its
activation, depending on the specific plant [49]. This mechanism leads to the accumulation
of reactive oxygen species (ROS) in the infected tissues [48], and it is typically triggered by
the presence of pathogens [50]. Nonetheless, it has been demonstrated that nonpathogenic
bacteria can also induce plant resistance through the SA-dependent pathway [51]. For
example, Pseudomonas aeruginosa 7NSK2 induces resistance in tobacco against tobacco
mosaic virus TMV through the SA-dependent pathway [52]. On the other hand, ISR
is triggered by the presence of nonpathogenic microorganisms and aims to prime the
plant for future encounters with pathogens [53]. Therefore, it is not surprising that ISR
is widely employed to induce plant resistance by beneficial microorganisms [54]. For
example, Bacillus megaterium L8 can protect cucumbers (Cucumis sativus L.) from seedling
damping-off caused by Pythium aphanidermatum [55].

SAR and ISR are known to induce the expression of defense-related genes, and research
has demonstrated that the induced resistance can persist and be inherited by subsequent
generations [56]. This phenomenon is referred to as priming, which is facilitated by
epigenetic changes, such as methylation alterations and histone modifications, that occur
when plants are exposed to repetitive stress [57]. Consequently, primed plants exhibit
a heightened ability to respond more swiftly to stressors [58]. Furthermore, it has been
observed that plant-beneficial microorganisms can also trigger plant defenses, enabling the
induction of a primed state without subjecting the plants to potentially harmful stresses [59].
This discovery opens up possibilities for employing priming as a mechanism for biological
plant protection [60]. For example, when the tomato plants Lycopersicon lycopersicum
(L. H. Karst.) are primed with Pseudomonas fluorescens N04 and Paenibacillus alvei T22,
metabolic reprogramming occurs, resulting in enhanced resistance against Phytophthora
capsica infections [61].

2.2. Competition

Microorganisms, however, have additional methods of safeguarding plants without
relying solely on their natural defenses. Plant root exudates (organic metabolites secreted
through roots) serve as a vital source of organic carbon for soil microorganisms [62]. As a
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result, the soil surrounding plant roots becomes a thriving hub for microbial abundance,
diversity, and ecological interactions [63]. Microorganisms, to survive, compete with
each other not only for space and primary nutrients but also for limited elements such as
iron [64].
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Figure 2. Possible mechanisms used by biological control agents (BCAs) (bolded and framed in
blue) to prevent plant diseases. BCAs can directly protect plants from pathogen invasion by killing
the pathogens before or during invasion by parasitism, predation, production of lytic enzymes, or
antibiosis. They can also prevent or slow down pathogens’ invasion by blocking their ecological
niche and/or competing for essential nutrients. The pathogen attack induces natural plant defenses,
leading to systematic acquired resistance (SAR). These defenses can also be induced by nonpathogenic
bacteria such as BCAs, leading to increased resistance through induced systemic resistance (ISR).
It is also suggested that BCAs can increase plant resistance to pathogen attack by inducing plants’
general fitness via growth promotion through the inter alia production of plant hormones. Repeated
induction of plant defenses, either by ISR or SAR, leads to the development of a state of increased
resistance: a primed state. Pathogens that successfully invade plants coordinate the production of
the virulence factors responsible for the development of the disease by a mechanism called quorum
sensing. BCAs may disrupt this microbial communication through quorum quenching, which relies,
among other things, on the digestion of signal molecules. BCAs can also disrupt pathogenesis via
the digestion of virulence factors, thus preventing disease development. Red arrows demonstrate
inhibition and green arrows represent induction.
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Figure 3. Pathways inducing plant defenses. Plants use pattern recognition receptors (PRRs) to
recognize microbe-associated molecular patterns (MAMPs) and macromolecules by different microor-
ganisms, both pathogenic and beneficial, for example, flagella. These receptors can also recognize
antigens present due to the activity of herbivores’ herbivore-associated molecular patterns (HAMPs)
or due to damaged plant tissues’ damage-associated molecular patterns (DAMPs). In response to
these antigens, the plant releases reactive oxygen species (ROS) and activates mitogen-activated
protein kinases (MAPKs). This mechanism of induced immunity due to the presence of these molecu-
lar patterns is called pattern-triggered immunity. Plants can also induce immunity in response to
pathogen effectors—virulence factors that are recognized by nucleotide-binding domain leucine-rich
repeat-containing receptors (NLRs)—and the immunity caused by the effectors is called effector-
induced immunity. These two pathways act together to induce a plant’s immunity against plant
pathogens through the salicylic acid pathway (against biotrophic pathogens) or the jasmonic acid
pathway (against necrotrophic pathogens). These two pathways are antagonistic to each other. The
repeated induction of plant defenses by these pathways, induced by the presence of pathogens by
mechanisms (called systemic acquired resistance (SAR)) or plant beneficial microorganisms (called
induced systemic resistance (ISR)), leads to the development of the state of prolonged increased
resistance (primed state). Red arrows demonstrate inhibition and green arrows represent induction.

2.2.1. Competition for Niches

Given that plant surfaces, including the rhizosphere, have finite space, the concept
of microorganisms protecting plants through competition for niches has been proposed
since the inception of biocontrol strategies [64]. The likelihood of such a mechanism is
heightened by the fact that the root exudates are not uniform throughout plant devel-
opment [65] and along the root [66]. Indeed, for the biological plant protection of fruits
by yeast, the competition for niches and nutrients seems to be the most critical mode
of action [67–69]. For example, the yeast Rhodotorula mucilaginosa reduces the coloniza-
tion of apples by Penicillium expansum and Botrytis cinerea through rapid colonization and
competition for available nutrients [70]. This mechanism is also utilized in the biocontrol
of soilborne diseases [71,72]. This mechanism is reported inter alia to be used by non-
pathogenic Fusarium oxysporym strains to protect tomatoes against F. oxysporum pathogenic
strains [73] and eggplant against Verticillium dahliae [74]. Furthermore, it has been proven
that biofilm formation plays a significant role in such mechanisms of activity, blocking the
plant surface from pathogen invasion [75–77], which further suggests that the competition
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for niches plays a major role in biocontrol, although it is usually indistinguishable from the
competition for nutrients [78].

2.2.2. Competition for Nutrients

Competition among organisms typically revolves around the most limiting factor,
which in the case of microorganisms in the soil, is often the availability of organic car-
bon [79]. However, in the natural environment, competition for nutrients is intertwined
with competition for niches, and it can be distinguished by the use of a competition for
nutrients assay [80,81], phenome microarray analysis [80,82], mutagenesis [83], and radioac-
tive labeling [84]. Although competition for nutrients can play a vital role in the biocontrol
of some soilborne diseases like Pythium damping-off [85] or Fusarium wilt [72], it is particu-
larly significant in the biocontrol of postharvest fruit diseases, since carbon can be the most
limiting factor on fruit surfaces [86]. In the case of Pythium damping-off, the selected active
microorganisms did not produce any metabolites that directly suppressed the growth of
P. aphanidermatum, and the growth suppression was associated with the concentration of
glucose in the medium, correlating with cucumber protection against P. aphanidermatum [85].
In the rhizosphere, iron can be a more limiting nutrient for microorganisms.

2.2.3. Competition for Iron

Despite the relative abundance of iron in the soil, it is predominantly inaccessible
to plants and microorganisms, necessitating the evolution of iron mobilization strategies
such as the use of iron chelators known as siderophores [87]. Microorganisms produce
siderophores with varying iron-binding affinities and production costs, allowing them to
adjust siderophore production in response to external conditions and competition [88].
Interestingly, many microorganisms produce multiple types of siderophores. This phe-
nomenon is not merely a genetic extravagance but is crucial for the precise regulation
of iron uptake [89]. One well-known example are the fluorescent Pseudomonas, which
produce a potent siderophore pyoverdine, along with other genes responsible for syn-
thesizing additional iron chelators in their genomes. These microorganisms have been
extensively studied for their application in biocontrol [90]. Multiple fluorescent Pseu-
domonas species utilize this mechanism in biocontrol applications [91–93]. However, several
studies have reported the direct antimicrobial action of siderophores toward bacteria and
fungi [90–93], suggesting their activity in antibiosis, not competition “sensu stricto”. For
example, Pseudomonas donghuensis produces two alternative iron chelators, pyoverdine
and 7-hydroxytropolon [94]. Both of these iron chelators are essential for the antimicrobial
activity of this species against different plant pathogens, although their production is
influenced by iron and carbon availability [95].

2.3. Antibiosis

Microorganisms have additional mechanisms to gain a competitive advantage over
their rivals through antibiosis, relying on other substances, such as organic acids, antibi-
otics, and bacteriocins [96]. Bacteriocins are antimicrobial peptides produced in ribosomes
that usually target related microorganisms [97]. Although the study of bacteriocins for
biocontrol is still limited, there is increasing interest in their potential application against
antibiotic-resistant bacteria [98]. Bacteriocins can serve as effective antimicrobials in agricul-
tural applications, particularly due to their narrow range of activity, which helps maintain a
healthy microbiome of cultivated crops [99]. For example, Bacillus subtilis 14B produces Bac
14B bacteriocin, which contributes to the biological control properties of this strain against
the crown gall-causing agents Agrobacterium spp. Production of antibiotics, in turn, is the
most widely studied mechanism of action of biological control agents [100]. However, a
precise definition of antibiotics is still lacking [101]. Scientific advancements in the field
have led to the discovery of numerous antibiotic-producing microorganisms suitable for
biological plant protection (Figure 1) [100]. Agrobacterium radiobacter K84, for example,
produces the antibiotic agrocin 84 against A. tumefaciens in the first microorganism-based
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product for biological plant protection (Galltrol) [20]. The antibiotic concentration in the
rhizosphere, although much lower than in artificial culture media, suggests that antibi-
otics in nature are not powerful bactericidal substances but rather suppress the growth
rate and/or take part in communication between microorganisms [102]. However, these
antibiotics play a crucial role for microorganisms in the soil, and their production is vital
for biocontrol [103]. Given the increasing incidence of infections by antibiotic-resistant
human pathogens, reducing the release of antibiotics and antibiotic-resistance genes into
the environment has been proposed [104,105]. Therefore, exploring alternative modes of
action can contribute to the safety of biological plant protection.

2.4. Production of Volatile Organic Compounds

Microorganisms have the capacity to produce volatile organic compounds (VOCs),
providing versatile functions from antibiosis to communication. Although VOCs are not
a functionally or structurally uniform group of compounds, their physical properties re-
quire a different study approach [106]. Many BCAs produce antimicrobial VOCs [107].
For instance, volatile compounds produced by Pseudomonas fluorescens WR-1 inhibit the
growth of the important tomato wilt-causing agent Ralstonia solanacearum [108]. Inter-
estingly, the activity of these volatile compounds extends beyond growth inhibition, as
they can modulate Ralstonia metabolism to suppress virulence [108]. Furthermore, it has
been observed that R. solanacearum could acquire resistance to the volatiles produced by
Bacillus amyloliquefaciens T-5 but will lose the virulence factors responsible for its pathogenic-
ity [109]. This phenomenon can alter the plant pathogen evolution toward decreased viru-
lence. Additionally, BCAs can also promote plant growth through VOC production. For
instance, Bacillus amyloliquefaciens not only produces volatile fungicidal compounds such as
nonanone and 2-heptanone but also releases 2,3-butanediol and acetoin, which enhance
the growth of Arabidopsis thaliana L. [110]. The diverse functions of VOCs make these
compounds important players in the interactions between plant pathogens and beneficial
bacteria, whose presence and impact should never be overlooked in the study of biological
plant protection [107].

2.5. Production of Lytic Enzymes

The interaction between biocontrol agents and pathogens can exhibit distinct char-
acteristics. Microbial biocontrol agents have the ability to produce chitinases, cellulases,
proteases, and β-1,3-glucanases, which facilitate the breakdown of the cell wall components
in plant pathogens, leading to cell lysis and leakage of nutrients from the cytoplasm [111].
The genus Bacillus is primarily known for its ability to produce and secrete a wide range
of potent lytic enzymes, which can be used in biological plant protection and industrial
applications [112]. Pre-cultivating biocontrol agents on chitin has been shown to stimulate
chitinase production and enhance their performance [113]. The chitinase activity can also
be induced in situ using natural microbiota by adding substrate (insect shells) to the soil to
protect the plants from fungal diseases [114]. However, probably the best-known example
of a microorganism that uses lytic enzymes for its biocontrol activity is the mycoparasitic
genus Trichoderma [115].

2.6. Parasitism (Hyperparasitism)

Mycoparasitism refers to a specific type of parasitic interaction between fungi, wherein
one fungal species senses, migrates, and envelops its prey to consume its resources [116].
This interaction is continuous, resembling typical parasitism. However, it often leads to
the host’s death, differentiating it from classical parasitism but making it more applicable
for biocontrol [117]. Although lytic enzymes are necessary for this interaction, parasitism
represents a distinct mode of action for biocontrol agents [115]. Despite the potential of
this mechanism for biological plant protection and numerous studies describing fungal
hyperparasites [118,119], most of the research concerning the application of this mechanism
concerns two genera: Trichoderma [120] and Clonostachys [121]. In the microbial world,
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bacteriophages can be considered as hyperparasites. Although they are not living organ-
isms, their interaction with their host can be parasitic [117], and they seem promising for
biological plant protection [122–125]. Bacteriophages are widely studied for their possible
application in agriculture to target, for example, Soft Rot Pectobacteriacae [126]. In the case
of bacteria, hyperparasitism, as a mode of action, is mainly used against plant pathogenic
nematodes [127–129].

2.7. Predation

A fascinating and relatively unexplored mode of action of biological control agents
can be predation. Bacterial predators are generally smaller in size compared to their prey
and employ either a pack or single hunting strategy [130]. Bdellovibrio and Bdellovibrio-like
bacteria are well-known examples of predatory microorganisms, although their prey range
can vary [131,132]. Predation holds significant potential as a mode of action for biocontrol
due to its inherent safety; however, currently, there are no commercially available products
that utilize this mechanism. First, due to the difficulties of working with predatory bacteria
(which need prey for growth), and second, due to the selection of microorganisms that are
an appropriate prey range. If the bacteria have a prey range that is too narrow, they will
quickly perish without a sufficient food source. On the other hand, an overly wide host
range can result in limited or no beneficial effects when using such microorganisms [133].

2.8. Disruption of Pathogenesis

It is not always necessary to kill the pathogen to halt the progression of a disease. For
example, the ϕ RSM filamentous phage can infect Ralstonia solanacearum and reduce its
virulence via metabolic changes in the host, thus protecting the plant from wilting [134].
Additionally, microorganisms can degrade the virulence factors of the pathogens, for exam-
ple, Clavispora lusitaniae 146 can degrade the Penicillium digitatum mycotoxin, patulin, and
protect oranges, mandarins, tangerines, and grapefruits from fungal rot [135]. Pathogens
rely on a process called quorum sensing to synchronize the production of their virulence
factors [136,137]. However, other microorganisms can disrupt this communication by in-
hibiting the synthesis of signal molecules [138], enzymatic digestion [139], deactivation by
cyclodextrin [140] or antibody binding [141], competition for receptor [142], or inhibition of
the signal expression of genes activated by signal molecules [143,144]. Numerous biocontrol
agents possess this potent yet relatively safe mode of action [37]. For example, Ochrobactrum
quorumnocens uses AiiO hydrolase to degrade N-acyl homoserine lactones (AHLs) [145],
therefore inhibiting the development of soft rot disease caused by Pectobacterium parmentieri
SCC3193 in potato (Solanum tuberosum L.) [146].

3. Interactions between Components: Menace or a New Hope

Even individual microbial strains can employ different modes of action to protect
plants from diseases [147,148]. However, it has been proposed that using a mixture of bac-
teria can enhance the biocontrol effect in terms of not only its stability and the spectrum of
application (in terms of the plant, soil type, and pathogen) but also its magnitude [149,150].
In nature, bacteria exist in complex, multispecies consortia with numerous interspecies
and interkingdom interactions [63]. Therefore, employing multiple microorganisms as a
consortium is expected to benefit their performance due to these interactions [5]. Therefore,
this is why microbial consortia are commonly used as biofertilizers [151]. However, there
are relatively few biocontrol products containing microbial consortia [34], not only due to
the more problematic registration [152] of multiple-component-containing products but
also to difficulties in the prediction of interactions between their components [153]. Microor-
ganisms used for biocontrol usually produce a wide array of antimicrobial compounds, and
the same modes of action used to fight the pathogens can negatively affect other consortium
components [103]. For example, Pseudomonas fluorescens A506 degrades the antibiotics pro-
duced by strains Pantoea vagans C9-1 and Pantoea agglomerans Eh252, reducing their activity
against the fire blight of pear [154]. This indicates incompatibility between the tested strains,
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highlighting the importance of confirming compatibility when composing consortia for
biological plant protection. The same mechanisms used by biological control agents against
plant pathogens (such as parasitism, predation, antibiosis, competition, and production of
lytic enzymes but also digestion of substances responsible for their activity) can reduce the
activity of other BCAs. On the other hand, BCAs can increase the protective effect with the
use of alternative modes of action, different environmental preferences or by the induction
of the secondary metabolism of other consortium components (Figure 4). There are various
methods for assessing strain compatibility, each with its own advantages and disadvan-
tages. However, the most commonly used approach to evaluate the biocompatibility of
strains and their activity against selected pathogens relies on direct antagonism on artificial
media [34]. Since microbial secondary metabolisms are highly dependent on the nutrients
available [155], it has been suggested that strains for biological plant protection should
be selected based on their in vivo rather than in vitro activity [156]. We believe that this
principle should be applied to the selection and composition of microbial consortia, as the
interactions within the consortium have a significant impact on its overall performance [5].
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present in the applied consortium (bolded and framed in blue). BCAs can directly suppress other
BCAs by killing them before or during colonization by parasitism, predation, production of lytic
enzymes, or antibiosis. They can also prevent or slow down other components’ colonization by
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the compounds responsible for other BCAs’ activity. On the other hand, use of multiple strains of
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4. Successful Solutions

Table 1 provides an overview of the biocontrol products available on the market.
Although knowledge transfer from science to industry may not occur rapidly, and various
factors impact the selection of products on the shelves, it offers valuable insights into the
potential for success. In the literature, numerous examples of complex consortia involv-
ing different microorganisms for combating various diseases can be found [5]. However,
this diversity is not fully reflected in the range of biocontrol products registered for crop
protection (Table 1). Farmers have access to multiple approved biological control prod-
ucts based on only a limited number of different microbial consortia. The challenges in
registering products with multiple active ingredients contribute to this situation. Addi-
tionally, it is noteworthy that the current solutions for biocontrol predominantly rely on
the use of Trichoderma spp. [157], despite the wide array of microorganisms available for
such purposes.

Trichoderma is an extensively studied genus for biological plant protection, and numer-
ous studies focus on identifying new isolates with promising biocontrol potential [158,159].
The popularity of this genus stems from the number of modes of action utilized by
Trichoderma spp. [160] and the resulting potential to not only protect plants from important
pathogens [161] but also to produce spores with a high survival rate during formula-
tion [162]. Additionally, their ability to promote plant growth enables the use of Trichoderma
strains as both biocontrol agents and biofertilizers [163]. We anticipate that this newly
discovered Trichoderma species will quickly find their way onto the market of biocontrol
products [164].

On the other hand, there are a wider range of species utilized in consortia for biofer-
tilizers or biostimulants [165,166]. However, the legal status of these consortia, similar to
biocontrol products, is in urgent need of revision [24–26,167]. Nevertheless, the relatively
low number of biocontrol formulations can also be attributed to inadequate knowledge
exchange between industry and academia [168,169]. Therefore, it is imperative to improve
communication among scientists, plant protection product producers, farmers, and regula-
tory authorities. By enhancing collaboration, we can meet technological demands, address
pressing agricultural challenges, and establish a safe and efficient environment for the
registration of biocontrol products.

5. Future Research Perspectives

However, there are other crucial questions and issues related to biological plant
protection that require our attention in further research to deepen our understanding of the
subject. One key aspect that needs to be addressed is the interactions between biocontrol
agents and pathogens. Although we have knowledge of the potential modes of action
employed by biocontrol strains [36], most of the research dedicated to their study was
performed in vitro only. Since the nutrient conditions on plants are very different from on
artificial media [102], different mechanisms might be favored in the environment, and the
known interactions (e.g., antibiotics production), although still important, may be different
in nature [170].

Additionally, there is a need to study the interactions between BCAs and their hosts,
especially since many strains used for biological plant protection rely on the induction
of plant natural defenses [171]. Plants, being a significant source of organic carbon, play
a crucial role in shaping the microbial environment by adjusting their root exudation
based on their developmental stage [65]. Consequently, they can modulate microbial
metabolism [172] and species composition [173,174]. We need to understand better the
interactions between plants and their microbiome, and how they can modulate it to harness
those interactions for agricultural production. Currently, the mechanism by which plants
distinguish between beneficial and harmful microorganisms [175] remains a mystery. How-
ever, it has been suggested that plants can modulate their microbiome through the release
of specific nutrients to enhance competitiveness [176]. Plant-beneficial microorganisms
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tend to produce and resist various antimicrobials [47], which gives them an advantage in
competitive conditions [177].

There is a pressing need to investigate the antagonistic interactions between plant-
beneficial strains since these interactions can have both positive and negative effects on
their overall performance [5]. On the one hand, microbial strains can not only stimulate
others to produce metabolites essential for their plant protective function [178] but can also
outcompete them or diminish their activity [154]. This complexity adds challenges to the
composition of microbial consortia for biological plant protection. Therefore, studying the
interactions between highly antagonistic strains in biocontrol is crucial in order to inform
the design of effective consortia.

An exciting avenue for such analysis could be the utilization of multi-omics data
that are growing in number [179]. By integrating publicly available genomes, phenomes,
transcriptomes, proteomes, and metabolomes in the meta-analysis, we can unravel general
scientific experiment trends [180,181]. However, due to the vast amount of data present in
publicly available databases and the increasing number of publications, traditional analysis
methods are becoming increasingly challenging and call for the development of automated
methods [182].

Although we anticipate an increase in the availability of biocontrol products using
microbial consortia in the near future, the specific details of the registration process for
such products remain uncertain. In addition, there is a clear requirement for improved
communication of scientific findings to society to enhance knowledge transfer. Finally, the
influence of meta-analysis is expected to grow, as it is necessary to effectively incorporate
the vast amount of data published in this field.

6. Conclusions

Thanks to the efforts of the scientific community, numerous strains of microorganisms
suitable for biological plant protection have been identified. However, despite the vast
number and diversity of these strains, farmers still tend to prefer chemical methods. This
preference can be attributed, in part, to the limited efficacy of microbial-based products and
the challenges posed by the variability among different cropping systems. The suggested
solution to this issue is the use microbial consortia, which can combine various microorgan-
isms and different modes of action, increasing the stability of plant protection. Although
there are a considerable number of promising microbial consortia isolated from various
sources encompassing different modes of action, including growth promotion, the number
of biocontrol products based on microbial consortia are minimal and contain only two
genera, Aureobasidium and Trichoderma. The reason for this situation is that it is probably still
difficult to register microbial-based plant protection products, especially those containing
multiple species. To address this problem, we need to improve communication between
academia, industry, administration, and the general public.
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