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Abstract: The cytoprotective properties of the trace element selenium, its nanoparticles, and sele-
nium nanocomplexes with active compounds are shown using a number of models. To date, some
molecular mechanisms of the protective effect of spherical selenium nanoparticles under the action
of ischemia/reoxygenation on brain cells have been studied. Among other things, the dependence
of the effectiveness of the neuroprotective properties of nanoselenium on its diameter, pathways,
and efficiency of penetration into astrocytes was established. In general, most research in the field of
nanomedicine is focused on the preparation and study of spherical nanoparticles of various origins
due to the ease of their preparation; in addition, spherical nanoparticles have a large specific surface
area. However, obtaining and studying the mechanisms of action of nanoparticles of a new form are
of great interest since nanorods, having all the positive properties of spherical nanoparticles, will
also have a number of advantages. Using the laser ablation method, we managed to obtain and
characterize selenium nanorods (SeNrs) with a length of 1 µm and a diameter of 100 nm. Using
fluorescence microscopy and inhibitory analysis, we were able to show that selenium nanorods cause
the generation of Ca2+ signals in cortical astrocytes in an acute experiment through the mobilization
of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic reticulum. Chronic use of
SeNrs leads to a change in the expression pattern of genes encoding proteins that regulate cell fate
and protect astrocytes from ischemia-like conditions and reoxygenation through the inhibition of a
global increase in the concentration of cytosolic calcium ([Ca2+]i). An important component of the
cytoprotective effect of SeNrs during ischemia/reoxygenation is the induction of reactive A2-type
astrogliosis in astrocytes, leading to an increase in both baseline and ischemia/reoxygenation-induced
phosphoinositide 3-kinase (PI3K) activity and suppression of necrosis and apoptosis. The key com-
ponents of this cytoprotective action of SeNrs are the actin-dependent process of endocytosis of
nanoparticles into cells and activation of the Ca2+ signaling system of astrocytes.

Keywords: selenium nanorods; astrocytes; apoptosis; necrosis; calcium ions; ischemia; reoxygenation;
astrogliosis

1. Introduction

The devastating effects of ischemic stroke affect millions of people each year, and
current treatment options for this condition are severely limited. The development of better
and safer treatments is hampered by a lack of knowledge about the precise pathogenic mech-
anisms underlying stroke. In 85% of stroke patients, the cause is an occlusion/blockage
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of an artery in the brain. Restoring blood flow (reperfusion) after a stroke remains a
key strategy for stroke treatment [1,2]. However, two thirds of stroke survivors remain
largely disabled. Although the timely restoration of blood flow in the cerebral artery is
necessary to save brain tissue, reperfusion of the ischemic site, under certain conditions,
also has devastating consequences, contributing to increased tissue damage with a further
worsening of the disease outcome since it leads to oxidative stress [1,2]. Ischemic brain
damage includes a cascade of signaling and metabolic events leading to the induction of
necrotic and apoptotic processes. There is a decrease in the partial pressure of oxygen,
the supply of tissue with glucose and other nutrients, an increase in the concentration of
extracellular glutamate, an increase in [Ca2+]i in neurons and astrocytes, an increase in ROS
production, etc. [3,4].

The use of tissue plasminogen activator in the treatment of ischemic stroke has a
number of limitations, the key ones being a narrow therapeutic window, lack of specificity,
cell death, cerebral oedema, and damage to the blood–brain barrier (BBB) [5]. The delivery
of drugs and imaging agents for the diagnosis of disorders of the nervous system is
limited by the presence of two brain barriers—the blood–brain barrier (BBB) and the
blood–cerebrospinal fluid barrier. Nanotechnology is currently extremely focused on
obtaining nanostructures to overcome these barriers. The permeability of the BBB has been
found to change in many CNS pathologies, such as brain injury, ischemic stroke, multiple
sclerosis, Parkinson’s disease, Alzheimer’s disease, and psychiatric disorders such as mood
disorders, psychosis, autism spectrum disorder, and even chronic sleep disorder [6]. There
are two main ways of crossing the blood–brain barrier of the brain: paracellular and
transcellular [7]. At the same time, it is believed that transcellular pathways transport
molecules across the BBB more efficiently compared to the paracellular routes since they
both use regular biological routes and retain the BBB integrity [8]. Nanoparticles are likely
to be able to penetrate the BBB through both of these routes. Therefore, the search for
effective nanocomplexes for the delivery of active compounds to brain damage centers
remains an urgent task.

Nanoparticles are of great interest as a nanotransporter of active compounds to organs
and tissues. Each of the forms of nanoparticles has its own advantages and limitations for
use in biomedicine. Most works in the field of nanomedicine are focused on the preparation
and study of spherical nanoparticles of various origins due to their ease of preparation
and large specific surface area for sorbing active compounds [9–11]. However, there are
prerequisites for the development of new, more complex forms of nanostructures to increase
their therapeutic potential. It was shown that the relative bioavailability of the long rod
loading drug system was much higher than that of short rod and spherical nanoparticles.
However, there was no marked difference in the relative bioavailability of the short rod
and spherical nanoparticles loading drug system. This result may be due to the following
reasons. On the one hand, due to its longer residence time than spherical nanoparticles, the
carriers possessed enough time to stay outside the intestinal mucosa and gradually released
the drugs. On the other hand, long rods possessed longer blood-circulation lifetime after
being absorbed by intestine than short rod and spherical nanoparticles. These two factors
interacted together and make it have the highest relative bioavailability [9,12].

Selenium (Se) is extensively known as an important elemental semiconductor as well
as an essential element in biology and chemistry. Se is a vital micronutrient for the body
that acts through selenoproteins and selenium-containing glutathione peroxidases. Brain
tissue is extremely sensitive to Se deficiency [13]. Se, acting through the activation of
brain selenoproteins, is involved in the mechanisms of memory formation, and motor and
cognitive activity [14]. Disturbances in selenoprotein expression and Se metabolism in
the brain are associated with a number of neurodegenerative diseases, such as epilepsy,
Alzheimer’s disease, Parkinson’s disease, etc. [14–16]. At the same time, it has been shown
that exogenous Se and its compounds can alleviate the course of these diseases, primarily
through suppression of oxidative stress, modulation of Ca2+ homeostasis, and mitochon-
drial biogenesis, i.e., contribute to maintaining the energy balance of brain cells and their
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survival in the penumbra zone [17,18]. There is strong evidence for the neuroprotective
effect of selenium in the form of spherical nanoparticles [19–21]. Selenium nanoparticles
(SeNPs) are metallic nanoparticles of elemental Se arranged as spherical particles, nanorods,
nanowires, or nanotubes [22]. Spherical SeNPs as a source of Se for the body have been
shown to be highly effective both as anticancer agents and as neuroprotectors [21–26].

The aim of this work was to comprehensively study the mechanisms of the cytoprotec-
tive effect of selenium in the form of a new nanoconstruct in the form of rods on cortical
astrocytes in vitro at rest and during modeling of ischemia-like conditions (OGD) and
reoxygenation.

2. Results

2.1. SeNrs Induce the Generation of Ca2+ Signals in Cortical Astrocytes

Previously, we found that nanoselenium in the form of spherical particles dose-
dependently causes the generation of Ca2+ signals in astrocytes of various parts of the
brain [27], and the EC50 for nanoparticles depended on their size [28]. In this study, appli-
cation of SeNrs to cortical astrocytes led to the generation of Ca2+ responses starting from
a concentration of 0.5 µg/mL (Figure 1A). Ca2+ signals of astrocytes are characterized by
the generation of transient Ca2+ responses, followed by a gradual increase in [Ca2+]i and
the establishment of a new steady state [Ca2+]i at concentrations of 5–10 µg/mL. Lower
concentrations of SeNrs caused a gradual increase in [Ca2+]i after a lag period of varying
duration. An analysis of the dependence of the amplitude of the Ca2+ signal on the addition
of SeNrs on the concentration of nanorods showed an increase in the level of [Ca2+]i with
an increase in the concentration of SeNrs and EC50 by 4.9 ± 0.4 µg/mL (Figure 1B).

To generate Ca2+ signals, cells can use both the entry of Ca2+ ions from outside and the
mobilization of Ca2+ from intracellular pools. The addition of 5 µg/mL SeNrs in a nominally
calcium-free medium in the presence of 0.5 mM EGTA caused the generation of Ca2+ signals
in astrocytes (Figure 1C), with an amplitude comparable to the addition of SeNrs in the
standard medium (Figure 1A). Emptying the Ca2+ pool of the endoplasmic reticulum (ER)
by applying 10 µM thapsigargin (TG) prevented the generation of astrocyte Ca2+ signals
in response to the addition of SeNrs (Figure 1D). Thus, SeNrs dose-dependently induced
the generation of Ca2+ signals in the form of a gradual increase in [Ca2+]i in cerebral cortex
astrocytes due to the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the
endoplasmic reticulum.
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Figure 1. SeNrs dose-dependently cause the generation of Ca2+ signals in cortical astrocytes 
through the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic re-
ticulum. (A) Ca2+ signals of astrocytes to the addition of various concentrations of SeNrs. Ca2+ re-
sponses of astrocytes to SeNrs averaged over several tens of cells are presented. (B) Dependence of 
the amplitude of Ca2+ responses of astrocytes on the growth of SeNrs concentration and its ap-
proximation by a sigmoid function. To plot dose dependencies, we used the results of 
Ca2+-dynamic measurements on three independent cell cultures. (C) Ca2+ signal generation by cor-
tical astrocytes upon application of 5 μg/mL SeNrs in a calcium-free medium. (D) Suppression of 
Ca2+ signals of astrocytes upon application of 5 μg/mL SeNrs after depletion of Ca2+ stores in the 
endoplasmic reticulum with 10 μM thapsigargin (TG). F340/F380—The ratio of Fura-2 fluorescence 
in the 340 nm registration channel to the 380 nm fluorescence registration channel. Panels (C,D) 
show the Ca2+ signals of astrocytes in one experiment and their average value (bold red curve). 

2.2. SeNrs Protect Cortical Astrocytes from OGD-Induced Death by Suppressing the Global 
Increase in Cytosolic Calcium Concentration 

Preincubation of astrocytes with 1 or 5 μg/mL SeNrs for 24-h did not cause cell death 
(Supplementary Figure S1). Ischemia-like conditions (OGD) lasting 40 min induced a 
biphasic increase in [Ca2+]i in astrocytes (Figure 2A, red curve). This correlated with the 
appearance of propidium iodide (PI) fluorescence after OGD (Figure 2B—OGD), which is 
a sign of necrotic cell death (Figure 2C). After a 24-h preincubation of astrocytes with 1 
μg/mL SeNrs, there was a significant inhibition of the OGD-induced phase of the global 
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Figure 1. SeNrs dose-dependently cause the generation of Ca2+ signals in cortical astrocytes through
the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic reticulum.
(A) Ca2+ signals of astrocytes to the addition of various concentrations of SeNrs. Ca2+ responses of
astrocytes to SeNrs averaged over several tens of cells are presented. (B) Dependence of the amplitude
of Ca2+ responses of astrocytes on the growth of SeNrs concentration and its approximation by a
sigmoid function. To plot dose dependencies, we used the results of Ca2+-dynamic measurements on
three independent cell cultures. (C) Ca2+ signal generation by cortical astrocytes upon application
of 5 µg/mL SeNrs in a calcium-free medium. (D) Suppression of Ca2+ signals of astrocytes upon
application of 5 µg/mL SeNrs after depletion of Ca2+ stores in the endoplasmic reticulum with 10 µM
thapsigargin (TG). F340/F380—The ratio of Fura-2 fluorescence in the 340 nm registration channel
to the 380 nm fluorescence registration channel. Panels (C,D) show the Ca2+ signals of astrocytes in
one experiment and their average value (bold red curve).

2.2. SeNrs Protect Cortical Astrocytes from OGD-Induced Death by Suppressing the Global
Increase in Cytosolic Calcium Concentration

Preincubation of astrocytes with 1 or 5 µg/mL SeNrs for 24-h did not cause cell death
(Supplementary Figure S1). Ischemia-like conditions (OGD) lasting 40 min induced a
biphasic increase in [Ca2+]i in astrocytes (Figure 2A, red curve). This correlated with the
appearance of propidium iodide (PI) fluorescence after OGD (Figure 2B—OGD), which
is a sign of necrotic cell death (Figure 2C). After a 24-h preincubation of astrocytes with
1 µg/mL SeNrs, there was a significant inhibition of the OGD-induced phase of the global
increase in [Ca2+]i (Figure 2A, green curve). In addition, the number of PI-stained cells
decreased (Figure 2B—SeNrs (1 µg/mL + OGD), which may indicate suppression of
necrosis (Figure 2C). Increasing the concentration of SeNrs to 5 µg/mL led to complete
inhibition of the OGD-induced phase of the global increase in [Ca2+]i (Figure 2A—orange
curve) and suppression of necrosis (Figure 2B,C).

Thus, preincubation of astrocytes with SeNrs did not inhibit the first reversible phase of
the OGD-induced [Ca2+]i increase, but suppressed the phase of the global [Ca2+]i increase,
when 5 µg/mL SeNrs completely suppressed these astrocyte Ca2+ signals. Inhibition of
the global increase in [Ca2+]i led to a decrease in the number of astrocytes dying due
to necrosis.
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Figure 2. Effect of pre-incubation of cortical astrocytes with 1 or 5 µg/mL of SeNrs on Ca2+ signal
generation and survival after OGD. (A) Ca2+ signals astrocytes during OGD (40 min) and OGD after
24-h pre-incubation with 1 or 5 µg/mL of SeNrs. The absence of Ca2+ signals on KCl indicates the
absence of neurons in the cell culture. Ca2+ signals from astrocytes averaged over several dozens
of cells are presented. The experiments were performed in three replicates on three separate cell
cultures. F340/F380—The ratio of Fura-2 fluorescence in the 340 nm registration channel to the 380 nm
fluorescence registration channel. (B) Images of cortical astrocytes loaded with propidium iodide (PI)
after 40 min OGD. OGD conditions induced by omitting O2 in glucose-free media with argon bubbling.
The red dots represent the PI-stained nuclei of necrotic cells. BF—bright-field microscopy. (C) Effect
of 24-h pre-incubation with SeNrs on the cell viability after 40 min OGD. Black asterisks indicate the
differences between the experimental groups compared with the OGD group. Differences between
experimental groups are marked by red. *** p < 0.001, n/s—insignificant differences.

2.3. The Anti-Apoptotic and Anti-Inflammatory Effects of SeNrs during Ischemia/Reoxygenation
Correlate with Reactive Astrogliosis

Preincubation of cortical astrocytes with SeNrs at concentrations of 1 µg/mL or
5 µg/mL led to the suppression of apoptosis and necrosis in a more toxic model of ischemia-
OGD for 2 h followed by 24-h reoxygenation-(OGD/R) (Figure 3). OGD/R caused the
induction of late stages of apoptosis (cells are characterized by a high level of Hoechst
33342 fluorescence simultaneously with the appearance of some membrane permeability to
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propidium iodide (PI)) in 40% of astrocytes (Figure 3A,B) and the appearance of necrosis
(high level of PI fluorescence) in 60% or more astrocytes (Figure 3C).
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Figure 3. The effect of 24-h pre-incubation of cortical astrocytes with 1 or 5 µg/mL of SeNrs on the
OGD/R-induced cell death. (A) Double staining of cells with Hoechst 33342 (HO342), propidium
iodide (PI), merge HO342 with PI. OGD/R—induction of OGD (2 h) and reoxygenation (24-h)
without preincubation with SeNrs. (B) Cytogram demonstrating the viability of cortical astrocytes
after OGD/R (2h and 24-h reoxygenation) and after 24-h pre-incubation with 1 or 5 µg/mL SeNrs and
OGD/R. X-axis—the intensity of PI fluorescence; Y-axis—the intensity of Hoechst 33342 fluorescence.
Cells were stained with the probes 24-h after the OGD/R. (C) Effect of 24-h pre-incubation with 1 or
5 µg/mL SeNrs on the induction of necrosis and apoptosis. The number of replicates for cell cultures
was 3, the number of cover-slips with cells for each sample was 5. Statistical significance was assessed
using t-tests. Comparison of experimental groups vs OGD/R: n/s—data not significant (p > 0.05),
* p < 0.05, *** p < 0.001. Comparison of experimental groups with each other is indicated in red.

Additional analysis of the effects of SeNrs on the induction of necrosis and apoptosis
was performed using the Apoptosis/Necrosis Detection Kit (ab176750, Abcam, Cambridge,
UK) (Supplementary Figure S2). It turned out that 24-h after OGD/R, necrosis was regis-
tered in 62% of cells, and apoptosis in 27% of astrocytes. Preincubation of astrocytes with
SeNrs at 1 µg/mL or 5 µg/mL dose-dependently reduced apoptosis to 20% and 14% of
cells, and necrosis to 14% and 10% of cells, respectively (Supplementary Figure S2B).

An analysis of the expression of genes encoding proteins that regulate cell death
showed that the preincubation of astrocytes with 1 µg/mL SeNrs led to increased expression
of 7 of the 15 genes studied (Figure 4A, blue columns), while 5 µg/mL SeNrs affected the
expression of 11 genes (Figure 4A, green columns). SeNrs contributed to an increase in
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mRNA expression by more than two times for the genes encoding the Hif1 alpha subunit
of the hypoxia-induced transcription factor and the Nrf-2 transcription factor, which is
involved in a complex regulatory network and plays a pleiotropic role in the regulation
of metabolism, inflammation, autophagy, proteostasis, mitochondrial physiology, and
immune responses (Figure 4A).
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Figure 4. The effect of 24-h incubation of mice cortical astrocytes with 1 µg/mL or 5 µg/mL SeNrs
on the basal (A) and OGD/R-induced (B) expression of genes regulating cell death and inflammation
pathways. Gene expression in intact cells are marked with a dashed line for panel (A). Gene expression
in OGD/R cells without preincubation with SeNrs compounds is marked with a dashed line for
panel (B). The results are expressed as 2−∆∆Ct, where (∆∆Ct) is the difference between the ∆Ct values
between the gene under experiment and a housekeeping gene. Statistical significance was assessed
using t-tests. Comparison of experimental groups with control: n/s—data not significant (p > 0.05),
* p < 0.05, ** p < 0.01, and *** p < 0.001, n = 3 Comparison of experimental groups with each other is
indicated in red.

Preincubation of astrocytes with SeNrs and subsequent OGD/R led to an increase
in the expression of IL-10, which has an anti-inflammatory effect, and simultaneously to
a decrease in the level of expression of the tumor necrosis factor Tnfα. In addition, after
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preincubation of cells with SeNrs, an increased level of expression of the Stat3, Nrf2, and
Hif1 alpha genes persisted. (Figure 4B).

We have previously shown that spherical selenium nanoparticles activated reactive
astrogliosis in neuroglial culture of the cerebral cortex [27]. PCR analysis showed that
preincubation of cortical astrocytes with SeNrs led to an increase in the baseline expression
of widely used markers of reactive astrocytes GFAP (glial fibrillary acid protein) and
Lcn2 (Lipocalin-2), proliferation genes, including late-phase cyclins b1 and b2 (Ccnb1 and
Ccnb2), and Ifi202b (interferon-activated gene 202B), which has anti-inflammatory activity
(Figure 5A).
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Figure 5. The effect of 24-h incubation of mice cortical astrocytes with 1 µg/mL or 5 µg/mL SeNrs on
the basal (A) and OGD/R-induced (B) expression of genes encoding markers of reactive astrogliosis.
Gene expression in intact cells is marked with a dashed line for panel (A). Gene expression in OGD/R
cells without preincubation with SeNrs compounds is marked with a dashed line for panel (B). The
results are expressed as 2−∆∆Ct, where (∆∆Ct) is the difference between the ∆Ct values between the
gene under experiment and a housekeeping gene. Statistical significance was assessed using t-tests.
Comparison of experimental groups with control: n/s—data not significant (p > 0.05), * p < 0.05,
** p < 0.01, and *** p < 0.001. Comparison of experimental groups with each other is indicated in red.
The number of samples is 3.

Preincubation of astrocytes with SeNrs and subsequent OGD/R led to an increase in
GFAP expression and suppression of expression of TNFRSF12A (TNF receptor superfamily
member 12A), which is involved in inflammatory processes in astrocytes (Figure 5B).

The results of PCR analysis were confirmed by immunocytochemical staining of as-
trocytes simultaneously with anti-GFAP and TNFα antibodies (Figure 6A). The results
of image analysis using the ImageJ software (https://imagej.net/ij/, accessed on 6 July
2023) package showed that in the control there was practically no fluorescence of secondary
antibodies against TNFα (Figure 6C—Control), with a moderate fluorescence of secondary
antibodies against GFAP (Figure 6B—Control), reflecting the level of the studied intracellu-
lar proteins. Preincubation of astrocytes with 5 µg/mL SeNrs resulted in an increase in the
fluorescence level of anti-GFAP antibodies (Figure 6A,B) without a significant increase in
the level of fluorescence of anti-Tnfα antibodies (Figure 6C, SeNrs). Staining of astrocytes
24-h after OGD/R showed increased levels of GFAP (Figure 6B—OGD/R) and TNFα
(Figure 6C—OGD/R) compared with the control. However, OGD/R after preincubation
of astrocytes with 5 µg/mL SeNrs resulted in an increase in the level of GFAP protein
(Figure 6B—SeNrs + OGD/R) with a decrease in the level of Tnfα (Figure 6C—SeNrs +
OGD/R) compared with the experimental group astrocytes subjected to OGD/R alone.

https://imagej.net/ij/


Int. J. Mol. Sci. 2023, 24, 12217 9 of 24

These immunocytochemical staining data correlate well with the results of PCR analysis of
OGD/R-induced expression of genes involved in cell death (Figure 4) and the activation of
reactive astrogliosis (Figure 5).
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Phosphoinositide 3-kinase is known to be involved in the activation of the defense 
mechanisms of brain cells [29–31]. Immunocytochemical staining of cortical astrocytes 
with antibodies against GFAP and PI3K showed (Figure 7) that the preincubation of as-

Figure 6. Effect of 24-h preincubation of cortical astrocytes with 5 µg/mL SeNrs on baseline and
OGD/R induced levels of tumor necrosis factor-alpha (TNFα) expression. (A) Immunostaining of
glial fibrillary acidic protein (GFAP, green) and TNFα (blue) in cortical astrocytes in the control, after
24-h of incubation with 5 µg/mL SeNrs, after OGD/R and OGD/R after 24-h of incubation with
SeNrs. Draq5 nuclei staining (red). (B,C) Intensity levels of GFAP (B) and TNFα (C) were determined
by confocal imaging. We analyzed individual cells that had fluorescence of secondary antibodies.
The quantitative data reflecting the level of GFAP or TNFα expression are presented as fluorescence
intensity values in summary bar charts (mean +/− SEM). The values were averaged by 200 cells for
each column. The results obtained after immunostaining agree well with the data of fluorescence
presented in panel (A). Each value is the mean ± SE (n ≥ 3, p < 0.05). Statistical significance was
assessed using paired t-tests. Comparison with control, *** p-level < 0.001, ** p < 0.01, n/s—data not
significant (p > 0.05).

Phosphoinositide 3-kinase is known to be involved in the activation of the defense
mechanisms of brain cells [29–31]. Immunocytochemical staining of cortical astrocytes with
antibodies against GFAP and PI3K showed (Figure 7) that the preincubation of astrocytes for
24-h with 5 µg/mLSeNrs caused an increase in the level of not only GFAP (Figure 7B—SeNrs),
but also the level of PI3K (Figure 7—SeNrs). Whereas after OGD/R, on the contrary, there was
a decrease in the number of cells stained with antibodies against PI3K, as well as the level of
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antibody fluorescence in cells (Figure 7C, OGD/R). In contrast, the preincubation of astrocytes
with SeNrs contributed not only to an increase in the GFAP level (Figure 7B, SeNrs + OGD/R),
but also to an increase in the content of PI3K (Figure 7C, SeNrs + OGD/R) after OGD/R.
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Thus, preincubation of cortical astrocytes with SeNrs suppresses the processes of
necrosis and apoptosis caused by ischemia/reoxygenation conditions. Such a protective
effect of selenium nanorods occurs due to an increase in the expression level of key genes
encoding anti-apoptotic, anti-inflammatory proteins, and transcription factors. This acti-
vates the process of reactive astrogliosis, which correlates with an increase in the level of
the protein phosphoinositol-3-kinase and a decrease in the level of TNFα.

2.4. The Induction of Reactive Astrogliosis and the Cytoprotective Effects of SeNrs Are Abolished
upon Inhibition of Endocytosis

It is known that Cytochalasin D blocks or largely suppresses all actin-dependent
pathways of endocytosis, depending on the duration of incubation (from 2 to 24-h) [32,33].
Preincubation of astrocytes with 10 µM Cytochalasin D (Cyto D) for 2-h leads to complete
suppression of Ca2+ responses to SeNrs application (Figure 8A, red curve). Astrocytes did
not respond with “standard“ Ca2+ signals to SeNrs application in the form of a gradual
increase in [Ca2+]i (Figure 8A, black curve), but single Ca2+ pulses were recorded. Applica-
tion of 10 µM Cyto D in an acute experiment did not cause the generation of Ca2+ signals
by astrocytes (Figure 8A, green curve). At the same time, the addition of ATP (10 µM)
at the end of the experiments indicates the functionality of the Ca2+ signaling system
of astrocytes.

After a 24-h preincubation of astrocytes with 5 µg/mL SeNrs, the OGD-induced
increase in [Ca2+]i was suppressed (Figure 8B, blue curve) and cell death was reduced
to 17% (Figure 8C,D, SeNrs + OGD). After a 2-h preincubation of astrocytes with Cyto D
SeNrs was added to culture medium at a concentration of 5 µg/mL for 24-h. After this
preincubation, OGD induced a biphasic increase in [Ca2+]i (Figure 8B, orange curve) which
was comparable with OGD experimental group (Figure 8B, red curve). Cell death after
OGD was 83% of cells (Figure 8C,D—OGD group), and after preincubation with SeNrs
together with Cyto D, necrosis was recorded in 81% of astrocytes (Figure 8C,D—Cyto
D_SeNrs + OGD). Preincubation of astrocytes with 10 µM Cyto D for 24-h did not suppress
the OGD-induced increase in [Ca2+]i (Figure 8B—green curve) and did not reduce astrocyte
death (82%) (Figure 8C,D—Cyto D + OGD).

Immunocytochemical staining of astrocytes with antibodies against GFAP and PI3K
showed that the effect of 24-h preincubation with SeNrs on the increase in the expression
of these proteins was abolished after preincubation with Cyto D (Figure 8E–G—Cyto D
+ SeNrs). Similarly, after preincubation of asrocytes with SeNrs and subsequent OGD/R,
activation of reactive astrogliosis occurred, recorded by an increase in the level of GFAP and
PI3K (Figure 8E–G—SeNrs + OGD/R). However, preincubation of astrocytes with Cyto D
abolished this SeNrs-induced increase in GFAP and PI3K expression (Figure 8E–G—Cyto
D_SeNrs + OGD/R).

Thus, the SeNrs-induced activation of reactive astrogliosis and the cytoprotective
effects of SeNrs during OGD and reoxygenation occur due to endocytosis of nanoparticles
into astrocytes and activation of the Ca2+ signaling system of cells. In the absence of these
two components, the protective effects of SeNrs were completely abolished.
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Figure 8. The effect of an inhibitor of actin-dependent pathways of endocytosis (Cytochalasin D, Cyto
D, 10 µM) on astrocyte Ca2+ signals upon application of SeNrs (5 µg/mL) (A), on the cytoprotective
effects of SeNrs (5 µg/mL) upon application oxygen-glucose deprivation (OGD) (B–D), activation of
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reactive astrogliosis (E,F), and expression of phosphoinositide 3-kinase (PI3K) (E,G). (A) Ca2+ signals
of cortical astrocytes upon application of 5 µg/mL SeNrs (black curve), 10 µM Cytochalasin D (Cyt
D, green curve), and 5 µg/mL SeNrs after 2-h preincubation of cells with 10 µM Cytochalasin D
(Cyto D + SeNrs, red curve). Averaged Ca2+ signals for several tens of astrocytes are shown. At
the end of the experiment, 10 µM ATP was added to the cells. (C) Effects of 24-h preincubation of
cortical astrocytes with Cytochalasin D (10 µM) on OGD-induced Ca2+ signals. At the beginning of
the experiment, a short-term application of 35 mM KCl and 10 µM ATP was added to detect neurons
and astrocytes, respectively. F340/F380—The ratio of Fura-2 fluorescence in the 340 nm registration
channel to the 380 nm fluorescence registration channel. (C,D) Effects of 24-h preincubation of cortical
astrocytes with Cytochalasin D (10 µM) on OGD-induced cell death. Astrocyte culture staining after
40 min OGD with propidium iodide (C) and necrotic death analysis (D). Abbreviations for panels
(B–D) OGD—oxygen-glucose deprivation for 40 min; SeNrs + OGD—astrocytes were preincubated
for 24-h with 5 µg/mL SeNrs and then OGD was created; Cyto D + OGD—cells were preincubated
for 24-h with 10 µM Cytochalasin D and then OGD was created; Cyto D_SeNrs + OGD—astrocytes
were preincubated for 2 h with 10 µM Cytochalasin D and then 5 µg/mL SeNrs were added for 24-h
(Cyto D was maintained in the culture medium for 24-h) and then OGD was created. (E–G) Effects of
24-h preincubation of cortical astrocytes with Cytochalasin D (10 µM) on SeNrs and OGD/R-induced
astrocyte reactivation (E,F) and PI3K expression (E,G). (E) Immunostaining of glial fibrillary acidic
protein (GFAP, green) and PI3K (blue) in cortical astrocytes after 24-h of incubation with 5 µg/mL
SeNrs (SeNrs group), after 24-h of preincubation with 10 µM Cytochalasin D and 5 µg /mL SeNrs
(Cyto D + SeNrs group), after 24-h of incubation with 5 µg/mL SeNrs and OGD/R (SeNrs + OGD/R
group), and after 24-h of preincubation with 10 µM Cytochalasin D with 5 µg/ mL SeNrs and OGD/R
(Cyto D_SeNrs + OGD/R group). Draq5 nuclei staining (red). (F,G) Intensity levels of GFAP (F) and
PI3K (G) were determined by confocal imaging. We analyzed individual cells that had fluorescence
of secondary antibodies. The quantitative data reflecting the level of GFAP or PI3K expression are
presented as fluorescence intensity values in summary bar charts (mean +/− SEM). The values were
averaged by 150–200 cells for each column. Each value is the mean ± SE (n ≥ 3, p < 0.05). Statistical
significance was assessed using paired t-tests. Comparison with control, *** p-level < 0.001, n/s—data
not significant (p > 0.05).

3. Discussion

In addition to the development and study of the mechanisms of action of spherical
nanoparticles of various origins, in recent years, active work has been carried out on the
synthesis of nanostructures of various shapes and the study of their physiological effects.
Research is underway on various types of scaffolds, including electrospun nanofibers,
which can be an effective substrate for neuron differentiation, axon growth, and the forma-
tion of new cell–cell and cell–matrix interactions [34,35]. Nanofibers may be a platform for
the selective and controlled release of drugs to brain cells, protecting them from damage [36].
Carbon nanotubes have been developed that have shown their electrically conductive ca-
pacity, strong mechanical properties, and morphological similarity to neurites [37]. The
great advantage of nanotubes is that they are highly flexible, very strong, and can be easily
modified with active agents [38,39]. It has been shown that carbon nanotubes can be widely
used as bone implants and for the treatment of rheumatoid arthritis or osteoporosis [38,40],
while the use of these nanostructures in neuroprotection has not been practically studied.
Using carbon nanotubes as an example, it has been shown that they penetrate cells through
2 pathways, active endocytosis, and passive nano penetration [41]. The use of nanotubes for
the treatment of neurodegenerative diseases depends on their physicochemical properties,
origin, and method of preparation. At the same time, their large surface area, ability to be
easily modified with drug molecules, and biocompatibility with the neural system suggests
a high efficiency of nanotubes [42].

Nanostructures in the form of filaments can enhance the ability of neurons to attach to
the substrate and the ability of their neurites to grow [43]. Scaffolds grown from nanofila-
ments are able to improve their integration into the Parkinsonian brain and improve the
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re-innervation of the striatum of Parkinsonian mice, especially when these nanostructures
have been doped with GDNF [44]. Loading nanofilaments with drugs showed that nanofil-
aments started to float immediately with zero floating lag time; the formulations did not
sink after 24-h. The floating nanofilaments showed a lower first release between 20% and
57% when compared to non-floating nanofilaments (40–82% within 2 h). This indicates
that drugs that should be administered frequently might be taken orally ’once a day’ and
improve patient compliance [45].

One-dimensional (1D) nanostructural materials such as nanotubes, nanowires, nanorods,
and nanothreads have recently received much attention due to their interesting properties and
are potential candidates for application in different fields. The one-dimensional nanostruc-
tured selenium nanowires have been widely studied because of their functional properties in
superconductivity [46], high photoconductivity, and catalytic activity. Selenium nanowires
have field application in the areas of photoelectric cells, xerography, light-measuring devices,
and solar batteries [47]. Similar physical properties should be assumed for selenium nanorods.

The shape of rods or tubes have pronounced properties to remain in the body for a long
time and exert their targeted effects on tissues. It is shown that the residence time of long rod
nanoparticles and short rod silica nanoparticles in the gastrointestinal tract is significantly
higher compared to spherical nanoparticles [9,48,49]. It has also been found that oral
administration of rod-shaped silica nanoparticles leads to a greater accumulation of Si in the
liver and kidney. It was also found that the short rod nanoparticles reached a higher content
in all the organs at 2-h and 24-h, while the long rod nanoparticles attained a higher content
in all the organs at 7 days. These results indicated that it was more difficult to remove the
long rod nanoparticles from the reticule–endothelial system (RES) organs and they were
protected from macrophages, resulting in a longer blood-circulation [9]. Filament-shaped
particles had a longer circulation half-life in vivo compared with prototypical spherical
particles after intravenous injection [50,51]. With regard to the removal of nanoparticles
of various shapes from the body, clear correlations have been established. The released
amounts of degradation products of long and short rods were noticeably less than the
number of spherical nanoparticles 2-h after oral administration [9].

The filamentous form of nanostructures has a number of advantages for use in neuro-
science. It has been shown for carbon nanotubes that the structural features and dimensions
are very similar to many elements of the neuronal network (ion channels, signaling pro-
teins, and elements of the neuronal cytoskeleton), which allows them to be used to regulate
the functional activity of neuroglial networks [52]. Carbon nanotubes have been shown
to enhance neuronal electrical signaling [53], decrease astrocyte formation, macrophage
density [54], and have been shown to increase the differentiation of progenitor cells to
neurons [55]. Interestingly, carbon threads [56] were also compatible with neural cells as
demonstrated by culturing hippocampal neurons and PC12 cells on them. After a week in
culture, neurite outgrowth on the nanorods surface showed neuron-specific labeling (β111
tubulin staining), indicating the biocompatibility of these nanorods for the construction of
electrodes or nanowires in implantable devices [57]. All these effects on the excitation of
neuronal networks undoubtedly occur due to the activation of the Ca2+ signaling system of
neurons and astrocytes.

In our experiments, it was found that the use of SeNrs in an acute experiment led
to the generation of Ca2+ signals of astrocytes in the form of a gradual increase in the
base concentration of [Ca2+]i, which is similar in shape and amplitude to the action of
spherical selenium nanoparticles (SeNPs) with a diameter of 50 nm. At the same time,
the EC50 for activation of the Ca2+ signaling system of astrocytes under the action of
SeNrs is higher (4.9 µg/mL), compared to spherical SeNPs with a diameter of 50 nm
(1 µg/mL) and 400 nm (2.4 µg/mL) [28]. Thus, the shape of nanoparticles in the form of
SeNrs affects the dose dependence of the activation of Ca2+ signals of astrocytes, which
also determines the physiological effects of nanoselenium. It turned out that preincubation
of cortical astrocytes with SeNrs protects them from death under the action of OGD both at
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a concentration of 1 µg/mL and 5 µg/mL, suppressing the global increase in [Ca2+]i and
cell necrosis.

Molecular selenium [58,59] and spherical nanoselenium [23,60,61] clearly show anti-
apoptotic and anti-inflammatory effects on brain tissue. However, there are no such works
for nanoselenium in the form of nanorods. At the same time, there are single works showing
the protective effect of materials in the form of nanofibers on tissue.

Poly(ε-caprolactone)/polysialic acid hybrid nanofibers scaffold encapsulating glu-
cocorticoid methyl-prednisolone has been shown to suppress TNF-α and interleukin-6
IL-6 release by inhibiting ionized calcium-binding adapter molecule 1 (Iba1)-positive
microglia/macrophage activation and reduces apoptosis-associated Caspase-3 protein
expression in the spinal cord injury model [62]. In addition, the wound healing effects of
structures in the form of nanofibers have been established. Ag-nanofibers upregulated
molecules implicated in the TGF-β1/Smad signaling pathway, hence boosting collagen
synthesis and improving wound healing by upregulating TGF-β1 secretion and activating
the TGF-β1/Smad signaling pathway during the early stages of wound healing, boosting
the adhesion and proliferation of fibroblasts [63].

Nanoselenium in the form of nanorods caused an increase in the baseline and OGD/R-
induced expression of the antioxidant gene Nrf2, anti-inflammatory interleukin 10 (IL-10),
and Hif2α. In this case, the expression and content of TNFα in the cortical astrocytes was
suppressed, which was expressed in the inhibition of necrosis and apoptosis caused by
ischemia/reoxygenation. Along with the suppression of apoptosis and inflammation, SeNrs
led to the activation of reactive astrogliosis, which was detected by increased expression of
genes encoding protein markers of this process. It is known that reactive astrogliosis is a
reaction of astrocytes to pathological conditions including trauma, brain aging, ischemia,
bacterial or virus infections, and various neurodegenerative diseases [64,65].

For a long time, it was believed that reactive astrogliosis has an extremely detrimental
effect on the nervous system in the form of scar formation, which prevented the restoration
of neurotransmission and brain functions after damage [65]. It is known that the reactivation
of astrocytes is a complex stepwise process leading to both negative and positive effects on
the brain, depending on the severity of the injury. In reactive astrogliosis, various changes
occur in the patterns of gene expression of proteins responsible for the induction of cell
proliferation and hypertrophy, which only in severe cases lead to the formation of scars.
Moreover, there is strong evidence for the beneficial effects of scar formation as it can limit
brain tissue damage and inflammation [64,66,67]. It is customary to subdivide reactive
astrocytes into A1 and A2 types. Reactive A1 astrocytes are known to have lost many of
the characteristic functions of astrocytes, including promoting neuron survival and growth,
synapse formation and function, and the ability to phagocytize synapses and myelin
debris. While A2, which is induced by ischemia [68], strongly promotes neuronal survival
and tissue repair [69,70]. As our experiments showed, 24-h exposure to SeNrs led to an
increase in the baseline expression of genes that encode proteins of the A2 type of reactive
astrogliosis. After ischemia/reoxygenation, the effects of SeNrs were observed only for
GFAP, the level of which increased in astrocytes, however, this increase coincided with the
suppression of the expression of Tnfrsf12A involved in inflammation. The role of reactive
astrocytes in neuroprotection is difficult to overestimate. A2-reactive astrocytes have been
shown to be able to secrete a wide set of neuroprotective molecules. For example, they
exert their anti-oxidative functions by secreting molecules such as glutathione [71]. They
also secrete a wide array of neurotrophic factors such as glia-derived neurotrophic factor
(GDNF), ciliary neurotrophic factor (CTNF), brain-derived neurotrophic factor (BDNF),
and nerve growth factor (NGF), aiding the growth and survival of neurons [72].

Interestingly, reactive astrogliosis occurred simultaneously with an increase in the
intracellular content of phosphoinositide 3-kinase (PI3K) in astrocytes both after preincuba-
tion with SeNrs and after preincubation with SeNrs followed by ischemia/reoxygenation. It
is known that reactive astrocytes displayed pro-inflammatory adaptability through Notch-
PI3K-AKT signaling activation in response to inflammatory stimulation [73]. We have
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previously shown that spherical nanoparticles exert their effect on human glioblastoma
cells through the activation of the Ca2+ signaling system and the opening of Connexin43
(Cx43) hemichannels, which led to the induction of controlled death of cancer cells [74]. At
the same time, the same signaling cascade was realized in normal astrocytes, but it had
a neuroprotective effect during ischemia [27]. It can be assumed that a similar signaling
pathway is also implemented in the case of the use of SeNrs. It is known that mRNA and
protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from
normal rats [73,75–77]. Thus, reactive astrogliosis induced by preincubation with SeNrs is
closely related to the Ca2+ signaling system of astrocytes, an increase in the PI3K level, and
suppression of cell death under the action of ischemia and reoxygenation.

A possible explanation for the high survival of astrocytes due to OGD/R after prein-
cubation with SeNrs could be NF-κB activation. This transcription factor is located at the
intersection of many intracellular signaling cascades, among which the following should be
noted: cascades involving cAMP, TNFα, IL-1, and the PI3K-Akt signaling pathway [78–80].
A decrease in TNFα expression (including a decrease in the amount of protein) shown
in our experiments is consistent with the data obtained on immune cells [81]. This de-
crease correlates with the induction of reactive astrogliosis. It has been established that
the activation of astrocytes plays a protective role during neurodegenerative processes
resulting from inflammatory processes in the hippocampus during ischemia, reducing
the level of TNFα [82] and increasing the level of PI3K, as we have shown. The TNFα
and PI3K-Akt signaling pathways have in common that NF-kB is activated [83]. There-
fore, most likely, the contribution of TNFα to the activation of NF-kB under the action of
SeNrs is minimal, while the PI3K-Akt cascade may be more involved in this process. As
shown by our experiments, an increase in [Ca2+]i in astrocytes upon application of SeNrs
led to an increase in the expression of markers of reactive astrogliosis (primarily GFAP).
Inhibition of actin-dependent endocytosis suppressed Ca2+ responses to SeNrs, reactive
astrogliosis, and correlated with increased necrotic death of astrocytes during OGD. It is
known that, firstly, an increase in [Ca2+]i can induce reactive astrogliosis in pathological
processes [84], and secondly, reactive astrogliosis is characterized by abnormal Ca2+ signals
of astrocytes [85,86].

4. Materials and Methods

Experimental protocols were approved by the Bioethics Committee of the Institute of
Cell Biophysics. Experiments were carried out according to Act708n (23 August 2010)
of the Russian Federation National Ministry of Public Health, which states the rules
of laboratory practice for the care and use of laboratory animals, and the Council Di-
rective 2010/63 EU of the European Parliament on the protection of animals used for
scientific purposes.

4.1. Preparation and Characterization of Selenium Nanorods

Selenium nanorods were obtained by laser ablation of solid target and subsequent
laser fragmentation of obtained Se nanoparticles in propanol-2. Resulting Se nanorods
were transferred to deionized water with a resistivity of 20 MΩcm. At the first stage, a
solid target of Se was placed at the bottom of the cuvette under a thin layer of chemically
pure propanol-2 (layer thickness was no more than 2–3 mm). The target was irradiated
with a laser beam through a thin layer of propanol-2 (λ = 1064 nm; T = 4 ns; f = 1 kHz;
P = 20 W; Ep = 2 mJ). The beam was moved on the target surface along a given trajectory in
the form of parallel straight lines inscribed in a rectangle using an LScanH galvanomechan-
ical scanner (Ateko-TM, Moscow, Russia) and F-Theta lens. The typical time of ablation
was 30 min.

At the second stage, the colloid of Se nanoparticles in propanol-2, which was obtained
as a result of ablation, was additionally irradiated with same laser parameters in the absence
of solid target during 1 h.
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At the final stage, Se nanoparticles were transferred in deionized water by centrifuga-
tion and washing in various chemical solvents. The washing process is necessary to purify
the solution from the decomposition products of propanol-2 molecules forming as a result
of optical breakdown.

Initially, SeNrs nanoparticles were precipitated using an LMC-4200 centrifuge (Biosan,
Riga, Latvia). Centrifugation took place at 4200 rpm for 15 min. Propanol-2 was taken
from the solution with precipitated nanoparticles, and a chemically pure solution of carbon
tetrachloride (CCl4) was poured instead of propanol-2. The resulting solution was placed
in an ultrasonic bath (ultrasonic power was 20 W) for 10 min. Similar procedures for
centrifugation, replacement of the solution, and the use of ultrasound were carried out for
dimethyl sulfoxide (C2H6OS), chloroform (CHCl3), and acetone (C3H6O). At the last stage,
solvent was replaced by MQ-water.

The morphology of nanoparticles was studied by a 200FE transmission electron micro-
scope (Carl Zeiss Microscopy GmbH, Jena, Germany). According to transmission electron
microscopy data, obtained Se nanoparticles have a form of nanorods (Figure 9A,B). The
size of nanoparticles was characterized using a DC24000 analytical centrifuge (CPS In-
struments, Prairieville, LA, USA). Nanoparticle concentration and hydrodynamic radius
were evaluated using Zetasizer Ultra Red Label (Malvern, UK). It was found that the
selenium nanoparticles have a bimodal size distribution (Figure 9C). The first peak of
particle distribution was located at 120 nm, the half-width was in the range of 90–160 nm,
the second peak of the distribution was located at 900 nm, the half-width was in the range
of 600–1300 nm. The volume–size distribution of the obtained nanoparticles showed that
the bulk of the volume of the nanoparticles was concentrated around the size of 1000 nm
(Figure 9D).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 20 of 26 
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of selenium nanoparticles. Data obtained using an analytical disk centrifuge and confirmed by DLS.
PDI = 0.28 ± 0.5; (n = 3).
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4.2. Primary Astrocytes Culture

Astroglial cell cultures were isolated from the brains of 1–2-day-old rats according to
the modified McCarthy and de Vellis protocol [87]. The brains were extracted, the cerebral
cortex was separated, the meninges were removed, and tissue was ground and incubated
in 0.05% trypsin-EDTA solution at 37 ◦C for 30 min. After enzymatic digestion, the tissues
were washed twice in PBS and then dissociated by glass Pasteur pipette in a culture medium
consisting of DMEM (PanEco, Russia), 1 g/L D-glucose, and 10% FBS (Biosera, Kansas
City, MO, USA), with the addition of 2 mM glutamine (PanEco, Moscow, Russia). The
suspension of cells was transferred on ventilated culture vials (Costar, Washington, DC,
USA) precoated with poly-D-lysine (10 µg/mL). The cells were cultivated at 37 ◦C and
5% CO2. After 5–6 days, the cultures were subjected to vibration on an orbital shaker at
200 rpm for 16 h to detach and remove microglia. After 10 to 20 days, in vitro astrocytes
were used for experiments.

4.3. Immunocytochemistry

To detect GFAP, PI3K, and TNFα in astrocytes, we used an immunocytochemical
assay [27,28]. The cells were fixed with 4% paraformaldehyde +0.25% glutaraldehyde in
PBS for 20 min and washed three times with ice-cold PBS for 5 min. Glutaraldehyde was
added into the fixative solution to minimize the washing of antibodies from cells during
permeabilization. To permeabilize cells, we used 0.1% Triton X-100 solution for 15 min.
Fixed cells were incubated in 10% donkey serum for 30 min at room temperature to block
non-specific antibody binding sites. The cells were then incubated with primary antibodies
against investigated proteins for 12 h at 4 ◦C. The fixed cells were subsequently washed
with PBS (3 times for 5 min) and probed with secondary antibodies conjugated with a
fluorescent label. We used purified anti-GFAP antibody (BioLegend, RRID: AB_2632644),
purified rabbit monoclonal antibody to PI3-Kinase p85 alpha ([EPR18702], (ab191606)),
polyclonal anti-TNFα goat antibodies (sc-1351, Santa Cruz Biotechnology, Dallas, Texas,
USA), donkey polyclonal secondary antibody to rabbit IgG (H+L) (Alexa Fluor-647) (Jack-
son ImmunoResearch Europe LTD, Cambridge, UK, RRID: AB_2492288), and donkey
polyclonal secondary antibody to mouse IgG-H&L (Alexa Fluor-594) (Abcam, Cambridge,
UK, RRID: AB_2732073). Dilutions of primary and secondary antibodies were performed
according to the manufacturer’s recommendations for immunocytochemical staining. The
fluorescence of antibodies was visualized with an inverted confocal microscope Leica
TCS SP5 (Leica, Wetzlar, Germany). Registration of the secondary antibodies’ fluores-
cence for the control and experimental groups of cell cultures was carried out at the same
microscope setting.

4.4. Fluorescent Ca2+ Measurements

To detect the changes in [Ca2+]i, cell cultures were loaded with Fura-2 (4 µM; 40 min
incubation; 37 ◦C). The cells were stained with the probe dissolved in Hank’s balanced
salt solution (HBSS) composed of (mM): 156 NaCl, 3KCl, 2MgSO4, 1.25KH2PO4, 2CaCl2,
10 glucose, and 10 HEPES, pH 7.4. To measure [Ca2+]i, we used the system based on an
inverted motorized microscope Leica DMI6000B with a high-speed monochrome CCD-
camera HAMAMATSU C9100. For excitation and registration of Fura-2 fluorescence,
we used FU-2 filter set (Leica, Wetzlar, Germany) with excitation filters BP340/30 and
BP387/15, beam splitter FT-410, and emission filter BP510/84. Illuminator Leica EL6000
with a high-pressure mercury lamp as a source of excitation light. All the Ca2+ signals are
presented as 340/380 ratio of Fura-2 fluorescence [27].

4.5. The Technique for Simulation of Ischemia-Like Conditions

Ischemia-like conditions (oxygen-glucose deprivation, OGD) were obtained by omit-
ting glucose (HBSS medium without glucose) and by displacement of dissolved oxygen
with argon in the leak-proof system [88]. The level of oxygen in the medium was measured
using a Clark electrode. Oxygen tensions reached values of 30–40 mm Hg or less within
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20 min after the beginning of displacement. Ischemia-like conditions lasting for 40 min
or 2 h were created by supplying the oxygen-glucose deprivation (OGD) medium into
the chamber with cultured cortical astrocytes. Constant argon fed into the experimental
chamber was used to prevent the contact of the OGD medium with the atmospheric air.

4.6. Assessment of Cell Viability

Propidium iodide (1 µM) was used to evaluate the number of dead cells in the cell
cultures before and after OGD. The cells were stained for 5 min with the probes diluted in
HBSS and then rinsed with HBSS. Fluorescence of the probes was detected with an inverted
fluorescent microscope Zeiss Axio Observer Z1 (Carl Zeiss, Oberkochen, Germany) using
Filter Set 20. Cell death induced by OGD was assessed by propidium iodide staining (PI, 1
µM) before and after the exposures in the same microscopic field. Furthermore, we used
the Ca2+ signals (presence or absence of a global increase in [Ca2+]i during OGD) as an
additional indicator of cell viability [88,89].

Hoechst 33342 (2 µM) and propidium iodide (1 µM) were used to evaluate the number
of dead cells in the cell cultures before and after 2 h OGD and 24-h reoxygenation (OGD/R
conditions). The cells were stained for 5 min with the probes diluted in HBSS and then
rinsed with HBSS. Fluorescence of the probes was detected with an inverted fluorescent
microscope Zeiss Axio Observer Z1 using Filter Set 01 and Filter Set 20. Discrimination
of early and late apoptotic cells was performed according to the previously described
method [89,90]. Five different areas of each cell culture were analyzed. Each experimental
group consisted of three cell cultures from different passages.

To simultaneously monitor apoptotic and healthy cells after SeNrs treatment and
OGD/R with fluorescence microscope, an Apoptosis/Necrosis Detection Kit (ab176750,
Abcam) was used [28]. Cells were washed 1–2 times and resuspended with Assay Buffer. To
detect apoptotic cells, Apopxin Green Indicator was used. Apoptotic cells were visualized
using the FITC channel (Ex/Em = 490/525 nm). For staining necrotic cells, we used 7-
aminoactinomycin D (Ex/Em = 550/650 nm). To detect healthy cells, CytoCalcein 450 was
used and cells were visualized using the violet channel (Ex/Em = 405/450 nm).

4.7. Extraction of RNA

Mag Jet RNA Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used for the
extraction of total RNA [91]. The RNA quality was estimated by electrophoresis in the
presence of 1 µg/mL ethidium bromide (2% agarose gel in Tris/Borate/EDTA buffer). The
concentration of the extracted RNA was determined with NanoDrop 1000c spectropho-
tometer. RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, MA, USA) was used for reverse transcription of total RNA.

4.8. Real-Time Polymerase Chain Reaction (RT-qPCR)

Each PCR was performed in a 25 µL mixture composed of 5 µL of qPCRmix-HS
SYBR (Evrogen, Moscow, Russia), 1 µL (0.2 µM) of the primer solution, 17 µL water
(RNase-free), 1 µL cDNA. A Dtlite Real-Time PCR System (DNA-technology, Moscow,
Russia) was used for amplification. The amplification process consisted of the initial 5 min
denaturation at 95 ◦C, 40 cycles of 30 s denaturation at 95 ◦C, 20 s annealing at 60–62 ◦C,
and 20 s extension step at 72 ◦C. The final extension was performed for 10 min at 72 ◦C.
All the sequences were designed with FAST PCR 5.4 and NCBI Primer-BLAST software
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/primertool.cgi, accessed on 6 July
2023). The data were analyzed with Dtlite software (https://dna-technology.com/sites/
default/files/dtprime_dtlite_v06_part_2.pdf, accessed on 6 July 2023) (DNA-technology,
Moscow, Russia). The expression of the studied genes was normalized to gene encoding
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [92,93]. Data were analyzed using
Livak’s method [94].

https://www.ncbi.nlm.nih.gov/tools/primer-blast/primertool.cgi
https://dna-technology.com/sites/default/files/dtprime_dtlite_v06_part_2.pdf
https://dna-technology.com/sites/default/files/dtprime_dtlite_v06_part_2.pdf
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4.9. Statistical Analysis

All presented data were obtained from at least three cell cultures. All values are
given as the mean ± standard error (SEM) or as individual cellular signals in experiments.
Statistical analyses were performed by paired t-test. Differences are significant * p < 0.05,
** p < 0.01, and *** p < 0.001. n/s—data not significant (p > 0.05). MS Excel, ImageJ, Origin
2016 (OriginLab, Northampton, MA, USA), and Prism GraphPad 7 (GraphPad Software,
RRID: SCR_002798) software was used for data and statistical analysis.

5. Conclusions

Selenium nanorods showed their high cytoprotective ability in the ischemia/reoxygenation
model by suppressing pro-inflammatory and pro-apoptotic signaling pathways by acting
through the regulation of calcium signaling of cortical astrocytes. Selenium nanorods in-
duce baseline reactivity of A2-type astrocytes and, as a result, an increase in the level of
phosphoinositide-3-kinase and suppression of the level of TNFα. Actin-dependent trans-
port of nanoparticles into astrocytes and activation of the Ca2+ signaling system play a key
role in the activation of reactive astrogliosis. This new type of selenium nanoparticle repre-
sents a therapeutic tool to combat stroke, but its delayed effects in in vivo models require
further research.
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