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Abstract: Innate immune memory allows macrophages to adequately respond to pathogens to which
they have been pre-exposed. To what extent different pattern recognition receptors, cytokines and
resolution signals influence innate immune memory needs further elucidation. The present study
assessed whether lipopolysaccharide (LPS) tolerance in monocytes and macrophages is affected
by these factors. Human CD14+ cells were isolated from peripheral blood, stimulated by LPS and
re-stimulated after 3 days of resting. Hereafter, immune-responsive gene 1 (IRG-1), heme oxygenase
1 (HO-1), tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) expression were assessed. Our
study revealed the following findings: (1) While pre-stimulation with the Toll-like receptor 4 ligand
LPS inhibits the induction of IRG-1, TNF-α and IL-6 expression, pre-stimulation with TLR 1/2 ligands
only affects cytokine production but not IRG-1 expression upon subsequent TLR4 engagement.
(2) Prior TNF-α stimulation does not affect LPS tolerance but rather increases LPS-mediated cytokine
expression. (3) Dimethyl itaconate (DMI) inhibits the expression of IRG-1 in a dose-dependent
manner but does not affect TNF-α or IL-6 expression. (4) Docosahexaenoic acid (DHA) partly inhibits
IRG-1 expression in monocytes but not in M(IFNγ) and M(IL-4) polarized macrophages. LPS tolerance
is not affected in these cells by DHA. The data presented in this study partly corroborate and extend
previous findings on innate immune memory and warrant further studies on LPS tolerance to gain a
better understanding of innate immune memory at the molecular level.

Keywords: innate immune memory; monocytes; macrophages; LPS tolerance; trained immunity;
DMI; TLR agonists; DHA

1. Introduction

Challenged innate immune cells can display long-term functional changes that in-
crease nonspecific responsiveness to subsequent infections [1]. It is believed that trained
immunity or innate immune memory underlies epigenetic reprogramming or rewiring of
intracellular metabolic pathways in monocytes, macrophages and other innate cells in re-
sponse to a variety of stimuli [2,3]. Different stimuli, e.g., lipopolysaccharide (LPS), bacillus
Calmette-Guérin or β-glucan, can induce different trained immunity programs [2,4], which
seem to influence each other and thus the outcome of subsequent responses to repeated
challenges [5]. As such, LPS-stimulated macrophages display adaptive features that result
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in tolerance upon a secondary LPS challenge; however, tolerance is prevented by prior
exposure to Candida albicans or the fungal cell wall component β-glucan [6]. While the
initiation of Toll-like receptor 4 (TLR4) signaling by LPS has been extensively studied,
much less is known about the interaction of β-glucan with its classical receptors Dectin-1
and TLR2. Recent studies have suggested that the induction of trained immunity occurs
independently of these receptors [7].

Macrophage stimulation with LPS leads to glycolytic reprogramming to generate ATP
and lactate and facilitates the accumulation of tricarboxylic acid (TCA) cycle intermediates,
e.g., citrate, succinate, fumarate and malate [8]. Some of these intermediates are diverted
from the TCA cycle to support the production of itaconate by aconitate decarboxylase 1
(ACOD1), also known as immune-responsive gene 1 (IRG-1). Itaconate has attracted much
attention amongst immunologists due to its broad immunomodulatory properties linked to
LPS tolerance [9–12]. It inhibits succinate dehydrogenase and thereby succinate-mediated
inflammatory processes [13–15], while at the same time inducing anti-inflammatory pro-
teins such as nuclear factor erythroid 2-related factor 2 (Nrf2) and activating transcription
factor 3 (ATF3) [12,15].

Several population-based and experimental studies have suggested that ω-3 fatty
acids have beneficial effects in various inflammatory diseases, including atherosclerosis
and type II diabetes. Docosahexaenoic acid (DHA) and eicosapentaenoic acid are succes-
sively metabolized by 15-lipoxygenase and 5-lipoxygenase to generate resolvins of the
D and E series, respectively [16–18]. Resolvins are highly active lipids that can attenuate
inflammation and promote tissue regeneration. Both are able to reduce prostaglandin
synthesis and typical monocyte-/macrophage-derived proinflammatory cytokines, e.g.,
tumor necrosis factor alpha (TNF-α) or interleukin 6 (IL-6), in response to inflammatory
stimuli such as LPS. Although it has been reported that dietary supplementation with
ω-3 fatty acids reduced the production of inflammatory cytokines in the peripheral blood
mononuclear cells of healthy volunteers [19,20], it is not known whether these compounds
also affect the LPS tolerance of monocytes/macrophages.

The present study sought to investigate to what extent TLR1/2 engagement, inflamma-
tory cytokines (TNF-α) and resolution signals (ω-3 fatty acids /DHA) affect LPS tolerance.
In particular, our study addressed the following questions: (1) Does the TLR1/2 ligand
Pam3CSK4 cross-tolerize against TLR4 stimulation? (2) Does TNF-α affect LPS tolerance?
(3) Is there an association between LPS-mediated IRG-1 induction and LPS tolerance? (4) Do
resolution-promoting or anti-inflammatory compounds, e.g., DHA or dimethyl itaconate
(DMI), affect LPS tolerance?

2. Results
2.1. TLR1/2 Ligands but Not TNF-α Partly Tolerize against Subsequent TLR4 Stimulation

In vivo and vitro, monocytes and macrophages exposed to LPS become tolerant to a
secondary LPS challenge, a process known as “endotoxin or LPS tolerance” [21]. “Cross-
tolerance” refers to the ability of an agonist to induce LPS tolerance even though it does
not have structural homology with LPS [22]. To address if cross-tolerization occurs when
monocytes are stimulated by TLR1/2 ligands, we first isolated monocytes from PBMCs
as CD14+ cells then stimulated these freshly isolated monocytes with the TLR1/2 ligand
Pam3CSK4 (pam) or TLR4 ligand LPS, followed by LPS challenge after 3 days resting
in normal culture medium. Monocytes that were stimulated twice with LPS displayed a
significantly impaired induction of IRG-1 expression concomitant with a blunted downreg-
ulation of HO-1 expression (Figure 1A,B). These cells produced significantly lower amounts
of TNF-α and IL-6 as compared to cells that were only stimulated with LPS once. While
LPS-mediated IRG-1 induction was not affected by prior pam stimulation, TNF-α and IL-6
production were downregulated, albeit to a lesser extent compared to prior LPS stimulation
(Figure 1C). Likewise, LPS-mediated downregulation of HO-1 expression was less pro-
nounced in cells with prior pam stimulation (Figure 1A,B). Prior TNF-α stimulation did not
affect LPS-mediated induction of IRG-1 nor did it affect LPS-mediated downregulation of
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HO-1 expression (Figure 2A,B). Importantly, prior TNF-α stimulation resulted in increased
IL-6 and TNF-α production upon a subsequent LPS challenge (Figure 2C).
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1/GAPDH or HO-1/GAPDH ratios. In (C), TNF-α and IL-6 production in supernatants were as-
sessed using ELISA. The data in (B,C) are displayed as box–whisker plots showing the interquartile 
range (Q1 (25th percentile)–Q3 (75th percentile)), median, minimum and maximum. * p < 0.05, ** p 
< 0.01, *** p < 0.001, **** p < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. 

Figure 1. Pam3CSK4 partly cross-tolerizes monocytes. Freshly isolated monocytes were first stimu-
lated for 24 h with pam3CSK4 (50 ng/mL) alone, LPS (500 ng/mL) alone or a combination of both
(LPS + Pam) followed by 3 days resting and LPS challenge on day 4. IRG-1 and HO-1 expression
were assessed by Western blotting. In (A), the results of a representative Western blot are shown.
In (B), the results of four different experiments were quantified by densitometry and expressed as
IRG-1/GAPDH or HO-1/GAPDH ratios. In (C), TNF-α and IL-6 production in supernatants were
assessed using ELISA. The data in (B,C) are displayed as box–whisker plots showing the interquartile
range (Q1 (25th percentile)–Q3 (75th percentile)), median, minimum and maximum. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test.
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by Western blotting. In (A), the results of a representative Western blot are shown. In (B), the results 
of four different experiments were quantified by densitometry and expressed as IRG-1/β-actin or 
HO-1/β-actin ratios. In (C), TNF-α and IL-6 production in supernatants were assessed using ELISA. 
The data in (B,C) are shown as box–whisker plots displayed as the interquartile range (Q1 (25th 
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0.001, one-way ANOVA with Tukey’s multiple comparisons test. 
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abrogated LPS-mediated IRG-1 induction in monocytes that were stimulated only once 
by LPS. At the highest DMI concentration (250 µM), these monocytes displayed a strong 
HO-1 expression (Figure 3A–D). Moreover, DMI partly rescued HO-1 expression upon 
LPS stimulation (Figure 3C). In contrast, DMI did not affect IL-6 and TNF-α production 
nor did it affect LPS tolerance in this setting. Hence, the lack of IRG-1 induction by LPS 
does not necessarily result in LPS tolerance nor is DMI able to overcome LPS tolerance 
once monocytes have already been stimulated with LPS (Figure 3E). 

Figure 2. TNF-α does not affect LPS tolerance. Freshly isolated monocytes were first stimulated for
24 h with TNF-α (25 ng/mL) alone, LPS (500 ng/mL) alone or a combination of both (LPS + TNF-α),
followed by 3 days resting and LPS challenge on day 4. IRG-1 and HO-1 expression were assessed by
Western blotting. In (A), the results of a representative Western blot are shown. In (B), the results
of four different experiments were quantified by densitometry and expressed as IRG-1/β-actin or
HO-1/β-actin ratios. In (C), TNF-α and IL-6 production in supernatants were assessed using ELISA.
The data in (B,C) are shown as box–whisker plots displayed as the interquartile range (Q1 (25th
percentile)–Q3 (75th percentile)), median, minimum and maximum. * p < 0.05, ** p < 0.01, *** p < 0.001,
one-way ANOVA with Tukey’s multiple comparisons test.

2.2. DMI Dose Dependently Abrogates LPS-mediated IRG-1 Induction

Since IRG-1 is responsible for endogenous itaconate production, we next assessed the
influence of the cell-permeable DMI on LPS tolerance. Monocytes that were challenged
twice with LPS did not induce IRG-1 (Figure 3A). Interestingly, DMI dose dependently
abrogated LPS-mediated IRG-1 induction in monocytes that were stimulated only once
by LPS. At the highest DMI concentration (250 µM), these monocytes displayed a strong
HO-1 expression (Figure 3A–D). Moreover, DMI partly rescued HO-1 expression upon LPS
stimulation (Figure 3C). In contrast, DMI did not affect IL-6 and TNF-α production nor
did it affect LPS tolerance in this setting. Hence, the lack of IRG-1 induction by LPS does
not necessarily result in LPS tolerance nor is DMI able to overcome LPS tolerance once
monocytes have already been stimulated with LPS (Figure 3E).



Int. J. Mol. Sci. 2023, 24, 12196 5 of 17Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 18 
 

 

 

 
Figure 3. DMI abrogates LPS-mediated IRG-1 induction. Freshly isolated monocytes were first stim-
ulated for 24 h with LPS (500 ng/mL) or left untreated (med). This was followed by 3 days resting 
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the results of four different experiments were quantified by densitometry and expressed as IRG-1/β-
actin or HO-1/β-actin ratios. In (E), TNF-α and IL-6 production in supernatants were assessed using 
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Figure 3. DMI abrogates LPS-mediated IRG-1 induction. Freshly isolated monocytes were first
stimulated for 24 h with LPS (500 ng/mL) or left untreated (med). This was followed by 3 days
resting and LPS challenge on day 4 in the presence or absence of different DMI concentrations. In
(A–C), representative Western blots are shown for the effect of DMI on IRG-1 and HO-1 expression.
In (D), the results of four different experiments were quantified by densitometry and expressed
as IRG-1/β-actin or HO-1/β-actin ratios. In (E), TNF-α and IL-6 production in supernatants were
assessed using ELISA. The data in (D,E) are displayed as box–whisker plots showing the interquartile
range (Q1 (25th percentile)–Q3 (75th percentile)), median, minimum and maximum. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test.
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2.3. DMI Does Not Affect LPS Tolerance in M(IFNγ) and M(IL-4) Polarized Macrophages

We have recently reported that concurrent stimulation of monocytes with CSF-1 and
IFNγ or IL-4 results in polarized macrophages (M(IFNγ) and M(IL-4), respectively) that
differ phenotypically and functionally from classically polarized macrophages (M1 and
M2) [23]. We therefore assessed to what extent LPS tolerance can be induced in such
polarized macrophages and if this was affected by DMI. LPS-mediated induction of IRG-1
was impaired in both M(IFNγ) and M(IL-4) polarized macrophages when stimulated twice.
In general, HO-1 expression was higher in the latter type of macrophage. For both types
of macrophages, HO-1 expression was significantly higher in cells that were stimulated
in the presence of DMI (Figure 4A,B). LPS tolerance was observed with respect to TNF-α
and IL-6 production, as reflected by a significantly blunted response upon a second LPS
stimulation. In cells that were only stimulated once with LPS, TNF-α and IL-6 production
were increased in M(IL-4) but not in M(IFNγ) polarized macrophages when stimulated in the
presence of DMI. Under these conditions, IL-6 production was significantly inhibited in
M(IFNγ) polarized macrophages (Figure 4C).
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Figure 4. DMI affects LPS tolerance differentially in M(IFNγ) and M(IL-4) polarized macrophages.
Peripheral blood monocytes from healthy donors (n = 4) were polarized with CSF1 (10 ng/mL)
and IFNγ (100 ng/mL) or IL-4 (10 ng/mL) to generate M(IFNγ) and M(IL-4) polarized macrophages,
respectively. After 6 days of stimulation, macrophages were considered to be polarized and stimulated
with LPS or left untreated for 24 h (day 0). This was followed by 3 days resting and re-stimulation
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with LPS ± DMI (250 µM) on day 4. IRG-1 and HO-1 expression were assessed by Western blotting.
In (A), the results of a representative Western blot are shown. In (B), the results of four different
experiments were quantified by densitometry and expressed as IRG-1/GAPDH or HO-1 GAPDH
ratios. In (C), TNF-α and IL-6 production in supernatants were assessed using ELISA. The data in
(B,C) are displayed as box–whisker plots showing the interquartile range (Q1 (25th percentile)–Q3
(75th percentile)), median, minimum and maximum. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,
one-way ANOVA with Tukey’s multiple comparisons test.

2.4. DHA Does Not Affect LPS Tolerance

It has been reported that DHA mediates anti-inflammatory effects in LPS-stimulated
macrophages [24,25]. We therefore addressed whether DHA would interfere with the
induction of LPS tolerance in monocytes and polarized M(IFNγ) and M(IL-4) macrophages.
We first assessed the effect of DHA on monocytes and polarized macrophages upon a single
LPS challenge. As can be seen in Figure 5, DHA significantly blunted IRG-1 induction
in monocytes but not in polarized macrophages (Figure 5A–C). HO-1 expression was
strongly increased by DHA in all three types of cells, but this did not occur in the presence
of LPS (Figure 5D–F). In contrast, LPS-mediated TNF-α and IL-6 production were not
significantly influenced by DHA in monocytes, while in polarized M(IFNγ) macrophages, IL-
6 production was significantly inhibited by DHA. Polarized M(IL-4) macrophages behaved
similarly to monocytes with respect to LPS-mediated cytokine production (Figure 5G,H).
When cells were re-stimulated with LPS on day 4, prior DHA treatment also blunted IRG-1
induction only in monocytes but not polarized macrophages (Figure 6A,B vs. Figure 6D,E).
Irrespective of DHA treatment, cells that were previously stimulated with LPS remained
non-responsive with respect to IRG-1 induction upon a second LPS stimulation. Non-
responsive monocytes, i.e., monocytes that were stimulated twice with LPS, also expressed
significantly higher amounts of HO-1, particularly when previously exposed to DHA. In
polarized M(IFNγ) and M(IL-4) macrophages that were stimulated with LPS on days 0 and 4,
a trend for higher HO-1 expression was also noticed as compared to polarized macrophages
that were stimulated only on day 4. LPS tolerance with respect to cytokine production was
not influenced by DHA nor did DHA influence TNF-α and IL-6 production.
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Figure 5. DHA does not affect LPS tolerance. Freshly isolated monocytes and M(IFNγ) and M(IL-4)

polarized macrophages were stimulated for 24 h with LPS (500 ng/mL) in the presence or absence
of DHA (62.5 µM). Cells that were left untreated (med) or stimulated with DHA alone were also
included. IRG-1 (A–C) and HO-1 (D–F) expression were assessed by Western blotting. The results
of representative Western blots are shown. In (A–F), the graphs to the right represent densitometric
quantifications of four different experiments. In (G,H), TNF-α and IL-6 production in supernatants of
monocytes (G) and polarized macrophages (H) were assessed using ELISA. The data are displayed
as box–whisker plots showing the interquartile range (Q1 (25th percentile)–Q3 (75th percentile)),
median, minimum and maximum. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, one-way ANOVA
with Tukey’s multiple comparisons test.
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its the expression of IRG-1, this does not promote LPS tolerance; (4) DHA affects the LPS-

Figure 6. Influence of DHA on LPS tolerance in monocytes and polarized macrophages. Freshly
isolated monocytes (A–C) and M(IFNγ) and M(IL-4) polarized macrophages (D–F) were stimulated
on day 0 for 24 h with LPS (500 ng/mL) ± DHA (62.5 µM). Cells that were left untreated (med)
or stimulated with DHA alone were also included. Stimulation was followed by 3 days resting
and re-stimulation with LPS on day 4. IRG-1 and HO-1 expression were assessed by Western
blotting. In (A,D), the results of representative Western blots are shown. In (B,E), the results of
four different experiments were quantified by densitometry and expressed as IRG-1/GAPDH or
HO-1 GAPDH ratios. In (C,F), TNF-α and IL-6 production in supernatants were assessed using
ELISA. The data in the graphs are displayed as box–whisker plots showing the interquartile range
(Q1 (25th percentile)–Q3 (75th percentile)), median, minimum and maximum. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test.

3. Discussion

Macrophages and monocytes respond to pathogens in a highly variable manner
depending on the nature of the pathogen and the contextual setting of the encounter [24,26].
In this study, we focused on LPS tolerance, a form of trained immunity that aims to protect
the host from overproduction of inflammatory mediators [2]. The main findings that our
study reveals are the following: (1) the engagement of TLR1/2 ligands prior to TLR4
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stimulation partly results in LPS tolerance; (2) TNF-α does not affect LPS tolerance but
rather enhances LPS-mediated cytokine production; (3) although DMI dose-dependently
inhibits the expression of IRG-1, this does not promote LPS tolerance; (4) DHA affects the
LPS-mediated induction of IRG-1 and IL-6 production in monocytes and polarized M(IFNγ)
or M(IL-4) macrophages differently but does not affect LPS tolerance.

Sato et al. found that LPS-induced NF-κB activation and TNF-α production were dra-
matically reduced in murine macrophages pre-treated with the TLR2 agonist macrophage-
activating lipopeptide-2 [22]. Also, Medvedev et al. [27] concluded that in murine peritoneal
macrophages pre-exposed to IL-1β, the LPS-mediated activation of NF-κB was inhibited in
a similar manner as occurs in macrophages pre-exposed to lipoteichoic acid [28]. Our own
findings in human primary monocytes are in good agreement with previous findings on
cross-tolerance, yet they also suggest that the outcome of this so-called immune paralysis
differs between prior TLR4 (LPS) or TLR1/2 (Pam3CSK4) activation followed by secondary
TLR4 stimulation. Hence, upon a secondary LPS challenge, TNF-α and IL-6 production
were significantly diminished in both LPS and Pam3CSK4 pre-treated monocytes, yet
LPS-induced changes in IRG-1 and HO-1 expression were only found for LPS-pre-treated
monocytes (Figure 1). Our study did not disclose the mechanism by which Pam3CSK4
pre-treatment inhibits cytokine expression upon a secondary LPS challenge. Published data
show that A20, a ubiquitin-editing enzyme, is rapidly induced by Pam3CSK4 [29]. The
ability of A20 to terminate TLR-induced immune response [30,31] suggests that Pam3CSK4-
mediated induction of A20 might be accountable for the diminished cytokine response.
Also, the involvement of glycogen synthase kinase-3, interleukin-1 receptor-associated
kinase 4 and miR-132/miR-212 has been suggested to underlie endotoxin tolerance induced
by Pam3CSK4 in human primary monocytes [32]. Whether these factors can explain the
difference in prior TLR1/2 vs. prior TLR4 engagement on LPS tolerance is the subject of
ongoing research.

TNF-α is a crucial cytokine with versatile functions, e.g., promoting inflammation,
regulating cell survival and apoptosis [33]. The activation of TNF receptor-1 can initiate
cell apoptosis [34] and leads to the activation of distinct transcriptional factors, e.g., NF-κB
and c-Jun, which regulate the transcription of survival and pro-inflammatory genes [35].
The possibility that these pro-inflammatory products themselves also take part in LPS
tolerance has not been thoroughly studied. Our findings suggest that LPS-mediated TNF-α
production does not contribute to LPS tolerance but rather sensitizes monocytes to produce
more cytokines upon LPS stimulation (Figure 2).

Itaconate is generated in the mitochondrial matrix via the decarboxylation of cis-
aconitate by the enzyme IRG-1. It is a crucial intermediate to block succinate dehy-
drogenase and executing a variety of anti-inflammatory actions [36,37]. As such, it dis-
ables the formation of the of NLRP3 inflammasome [38], allows nuclear Nrf2 transloca-
tion [8,11] and inhibits IκBζ in an ATF3-dependent manner [39]. We used the membrane-
permeable compound DMI to further study the role of itaconate in immune paralysis. It
has been suggested that exogenous DMI is not directly metabolized to itaconate but instead
somehow potentiates the effects of LPS activation to increase itaconate biosynthesis [40].
Bambouskova et al. [9] suggested that DMI inhibits IL-6 production in an IκBζ-dependent
manner, without influencing TNF-α expression. Throughout the different experiments
that were carried out, we observed that LPS-mediated downregulation of HO-1 expression
was counteracted by DMI. However, with the exception of M(IFNγ) polarized macrophages,
DMI did not inhibit IL-6 production. In fact, DMI increased both TNF-α and IL-6 expres-
sion in M(IL-4) polarized macrophages. It remains to be elucidated why IL-6 was only
downregulated in M(IFNγ) polarized macrophages. Yet, it should be underscored that most
of the experiments performed by Bambouskova et al. [9] involved bone-marrow-derived
macrophages, which may be more similar to our M(IFNγ) polarized macrophages and more
distinct from monocytes or M(IL-4) polarized macrophages. DMI inhibited LPS-mediated
IRG-1 expression in a dose-dependent manner, which corroborates earlier findings in LPS-
treated bone-marrow-derived macrophages and Raw 264.7 cells [41]. This suggests that
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excessive itaconate concentrations act as a negative feedback loop to downregulate IRG-1
expression. The mechanism of this reverse regulation of itaconate on IRG-1 is currently not
explained and warrants further studies.

Resolvins and protectins, both produced from ω-3 fatty acids, have anti-inflammatory
and inflammation-resolving effects [42–46]. Because of the anti-inflammatory action of
DHA, we assessed to what extent DHA pre-treatment would affect innate immune memory
in monocytes and polarized macrophages. Similar to reports for a variety of cells [47–49],
DHA strongly induced the expression of HO-1 in human primary monocytes and polarized
macrophages. This response was significantly blunted in the presence of LPS, in line
with previous findings on HO-1 downregulation by LPS [50]. We also found that LPS-
mediated IRG-1 expression is downregulated in the presence of DHA in freshly isolated
primary human monocytes but not in M(IFNγ) and M(IL-4) polarized macrophages. This
was even observed when DHA pre-treatment occurred 3 days prior to LPS stimulation
(Figure 6). Our study does not support previous findings that DHA inhibits LPS-mediated
cytokine production. It should, however, be emphasized that most previous in vitro
studies used differentiated macrophages (MØ) and THP-1 cell lines [51–53], which may
differ significantly from freshly isolated monocytes from PBMCs. Nonetheless, a recent
clinical trial in subjects with chronic inflammation revealed that a 10-week intake of DHA
resulted in lower TNF-α and IL-6 production in ex vivo-stimulated monocytes [19]. The
DHA concentrations used in our study were approximately similar to those reported by
others in which anti-inflammatory effects were demonstrated [51–53]. Moreover, the DHA
concentration used in our study strongly induced the anti-inflammatory protein HO-1,
while in the presence of LPS HO-1, induction was significantly blunted. In our view, this
supports our finding that DHA does not affect LPS-mediated IL-6 and TNF-α production
in monocytes.

Limitations of This Study

It should be underscored that the intention of this study was to test if pro-inflammatory
cytokines (TNF-α) or resolution-promoting factors (DHA) affect LPS tolerance in monocytes
and polarized macrophages. As such, it is a purely observational study that was not
designed to address the underlying mechanisms of LPS tolerance. Epigenetic profiles
and transcription networks have been studied recently and extensively discussed [54–56].
The findings that exogenous molecules act as negative feedback of IRG-1 expression are
new, yet the mechanism by which this occurs is currently elusive and warrants further
confirmatory in vivo studies.

In conclusion, our study demonstrates that monocytes and monocyte-derived
macrophages display LPS tolerance upon a second LPS challenge, irrespective of pre-
exposure to cytokines, itaconate or resolution-promoting factors. However, monocytes and
macrophages differ in LPS-mediated IRG-1 expression when pre-exposed to DHA and also
seem to increase cytokine production when pre-exposed to TNF-α or DMI followed by a
single LPS stimulation.

4. Materials and Methods
4.1. Monocyte Isolation and Culture

Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers were
obtained from the blood bank (DRK-Blood Bank, Mannheim, Germany) with informed
consent. PBMCs were isolated from buffy coats with Ficoll-PaqueTM PLUS solution
(Merck, Darmstadt, Germany, cat.no.17-1440-03) using density gradient centrifugation.
In brief, buffy coats were diluted 1:4 in PBS+ (PBS (Sigma-Aldrich, Schnelldorf, Germany,
cat.no.D8537) containing 2.5 mM EDTA (Merck, Darmstadt, Germany, cat.no.E7889)) and
layered on 10 mL of Ficoll-PaqueTM PLUS solution followed by centrifugation for 30 min
at 400 g. Then, the interphase was pipetted into a new tube and washed several times
with cold PBS to remove residual platelets. PBMCs were resuspended in PBS++ (PBS+
containing 0.5% BSA (Miltenyi Biotec, Bergisch Gladbach, Germany, cat.no.130-091-376)) in
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a final concentration of 1 × 108 cells/mL. Monocytes were isolated from PBMCs by positive
selection using magnetic CD14 Nanobeads (Biolegend, Amsterdam, the Netherlands, cat.no.
480093), LS columns (Miltenyi Biotec, Bergisch Gladbach, Germany, cat.no.130-042-401)
and a Midi-Magnetic Cell Isolation Separator (Miltenyi Biotec, Bergisch Gladbach, Ger-
many). The cells were cultured in 6-well flat-bottom plates (1–2 × 106 cells/well) in RPMI
1640 medium supplemented with 10% fetal bovine serum and 0.5 units/mL of penicillin–
streptomycin (all from Thermo Fisher, Darmstadt, Germany, cat.no. 61870-010; 10500-064;
09-757F, respectively) at 37 ◦C and 5% CO2.

4.2. Macrophage Polarization

Human CD14+ cells were polarized to M(IFNγ) and M(IL-4) as previously described [23].
In brief, for M(IFNγ) and M(IL-4) polarization, CD14+ cells were concurrently stimulated
for 6 days with 10 ng/mL of colony-stimulating factor 1 (CSF-1) and 100 ng/mL of IFN-γ
or 10 ng/mL IL-4 (all from PeproTech, Hamburg, Germany, cat.no.300-25; 300-2; 200-04,
respectively).

4.3. Innate Immune Memory Assay

Monocytes and polarized M(IFNγ) and M(IL-4) macrophages were pre-treated or left un-
treated for 24 h with 500 ng/mL LPS (Sigma-Aldrich, Schnelldorf, Germany, cat.no.L2880)
alone, 50 ng/mL Pam3CSK4 (InvivoGen@, San Diego, CA, USA, cat.no.tlrl-pms) or
25 ng/mL TNF-alpha (PeproTech, Hamburg, Germany, cat.no.300-01A) alone or in com-
bination with LPS. The concentration and timing used for Pam3CSK4 was based on pilot
dose–response experiments. In some experiments, cells were treated with 62.5 µM DHA
(Merck, Darmstadt, Germany) in the presence or absence of LPS (500 ng/mL). Pre-treatment
was followed by 3 days of resting in fresh culture medium without stimuli. On day 4, the
cells were re-stimulated for 18 h with LPS (500 ng/mL) either in combination or not with
dimethyl itaconate (DMI, 0.25 to 250 µM depending on the specific experiment) (Sigma-
Aldrich, Schnelldorf, Germany, cat.no.592498). Then, supernatants were collected, and cells
were lysed for ELISA and Western blot analysis. FACS staining using 7-AAD and Annexin
V was performed to exclude cell death as a cause for non-responsiveness.

4.4. Western Blot Analysis

Cells were resuspended in lysis buffer (10 mM Tris pH 7.4, 150 mM NaCl, 5 mM
EDTA, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1M DTT) containing phosphatase and
protease inhibitor. Protein concentrations were measured using a Coomassie (Bradford)
Protein Assay Kit (Thermo Fisher, Darmstadt, Germany, cat.no.23200) according to the
manufacturer’s instructions. For each sample, 12 µg of protein was denatured for 10 min at
95 ◦C in Laemmli sample buffer (Bio-Rad, Feldkirchen Germany, cat.no.161-0147) before
loading on a 10% SDS-PAGE gel followed by semi-dry blotting onto polyvinylidene fluo-
ride membranes using a Trans-Blot TurboTransfer System(Bio-rad, Feldkirchen Germany,
cat.no.1704150). The membranes were blocked with TBS containing 0.1% Tween-20 and
5% non-fat dry milk at room temperature for 1 h and incubated overnight at 4 ◦C with
specific primary antibodies directed against IRG-1 (Abcam, Cambridge, UK, cat.no.222411),
heme oxygenase (HO)-1 (ENZO, cat.no.ADI-SPA-895), GAPDH (Santa Cruz, Heidelberg,
Germany, cat.no.ADI-SPA-895;sc-47724) or β-Actin (Sigma-Aldrich, Schnelldorf, Germany,
cat.no.A5441). The membranes were then extensively washed and incubated with appro-
priate horseradish-peroxidase-conjugated secondary antibodies. Immune-reactive bands
were detected with chemiluminescence using Western Lightning Plus ECL and the Fusion
SL Vilber Lourmat Imaging system (Peqlab, Erlangen, Germany, cat.no. NEL104001EA).

4.5. Cytokine Measurements

Concentrations of cytokines TNF-α and IL-6 in supernatants of monocytes and polar-
ized macrophages were measured using ELISA according to the manufacturer’s instructions
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(Biolegend, Amsterdam, The Netherlands, cat.no.DTA00C and D6050, respectively). All
samples were analyzed in triplicate.

4.6. Statistics

All data were statistically analyzed with GraphPad Prism 9.0 (La Jolla, CA, USA) and
depicted with whisker boxplots showing the interquartile range Q1 (25th percentile)–Q3
(75th percentile), median, minimum and maximum. Ordinary one-way ANOVA was
adopted to compare the differences between groups. p value < 0.05 was considered statisti-
cally significant (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
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ATF3 Activating transcriptional factor 3
BCG Bacille Calmette-Guérin
DHA Docosahexaenoic acid
DMI Dimethyl itaconate
HO-1 Heme oxygenase 1
IFNγ Interferon-gamma
IL-6 Interleukin 6
IRG-1 Immune-responsive gene 1
IκBζ Inhibitor of Kappa B zeta
LPS Lipopolysaccharide
LTA Lipoteichoic acid
M-CSF Monocyte-colony stimulating factors
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2 Nuclear factor erythroid 2-related factor 2
PBMCs Peripheral blood mononuclear cells
SDH Succinate dehydrogenase
TCA Tricarboxylic acid
TLR Toll-like receptor
TNF Tumor necrosis factor
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