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Abstract: Raman spectroscopy shows great potential for practical clinical applications. By analyzing
the structure and composition of molecules through real-time, non-destructive measurements of
the scattered light from living cells and tissues, it offers valuable insights. The Raman spectral
data directly link to the molecular composition of the cells and tissues and provides a “molecular
fingerprint” for various disease states. This review focuses on the practical and clinical applications
of Raman spectroscopy, especially in the early detection of human diseases. Identifying predisease,
which marks the transition from a healthy to a disease state, is crucial for effective interventions to
prevent disease onset. Raman spectroscopy can reveal biological processes occurring during the
transition states and may eventually detect the molecular dynamics in predisease conditions.

Keywords: Raman spectroscopy; molecular fingerprint; predisease; clinical application; state
transition; dynamical network biomarker; DNB

1. Introduction

In 1928, Chandrasekhara Venkata Raman made a groundbreaking discovery known as
the Raman effect in India [1,2]. The emergence of lasers solidified the analytical potential of
Raman spectroscopy, transforming it into an invaluable tool for visualizing the structure
and composition of molecules in cells and tissues. This label-free technique leverages
the wavelength shift of scattered light (Raman scattered light), which originates from the
interaction between the intrinsic vibration of molecules and the vibration of the electric
field of incident light.

Since then, Raman spectroscopy has been applied in various fields to analyze the chem-
ical and molecular structures of organic and inorganic materials [3]. It has a wide range of
applications, from batteries, displays, and electronic devices to food, pharmaceuticals, and
biotechnology. Raman spectroscopy is useful for component analyses of carbon, semicon-
ductors, polymers, pharmaceutical materials, and for crystallinity/stress evaluations. This
technique has been applied in basic medical research since the 1980s [4–6]. In the 2000s, nu-
merous papers reported its usefulness as a diagnostic technique for cancers, arteriosclerosis,
Alzheimer’s disease, etc. [7–17]. For biological specimens such as cells, tissues, and organs,
Raman spectroscopy is typically sensitive to concentrations of biomolecules such as lipids,
proteins, carbohydrates, and nucleic acids. However, the scattering light is extremely weak,
limiting accurate measurements and practical applications. Recent advances in laser light
sources and optical measurement technologies have made clinical applications, such as
tissue biopsy, cytology, and intraoperative pathology diagnosis feasible [18–20].
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Raman spectroscopy can accurately and quickly identify the resection margin of a
lesion for intraoperative pathology diagnosis, reducing patient burden and preventing
postoperative complications. In addition, introducing the Raman technique to endoscopy,
laparoscopy, and arthroscopy should realize the early diagnosis and early intervention
in treatment of disease. However, Raman spectroscopy only provides information from
molecular vibrations, making it extremely difficult to understand the biological significance
of signals from multi-component samples such as cells and tissues. Raman spectroscopy,
on the other hand, is a nondestructive analytical tool, and can capture state transitions
in biological activities, providing a methodology to measure biological fluctuations from
molecular vibrations that was previously unavailable [21].

This review overviews the technical advances in biomedical applications of Raman
spectroscopy and the latest research results in cells and tissue diagnostics, including
biopsies for human disease. Specifically, the advances in measuring biological fluctuations
are discussed from the aspect of molecular vibrations. Moreover, the potential to detect
predisease and realize the early intervention and prevention of disease by mathematically
understanding the state before disease onset may be a solution to the challenge of extending
a healthy life expectancy in an aged society.

2. Principle of Raman Scattering and Instrumentation

Raman spectroscopy is a technique for analyzing the structure and composition of
molecules from this Raman spectrum. Another vibrational spectroscopic method is IR (in-
frared) spectroscopy. In an IR spectroscopy measurement, the photon energy of absorption
directly corresponds to the molecular vibration frequency. In contrast, Raman spectroscopy
detects the difference in energy between the pump light and vibrational energy of the
molecules during the excitation to a higher vibrational level. This difference is shown in
a Jablonski diagram (Figure 1). An advantage of Raman spectroscopy is that the pump
light should be monochromatic, but a wide wavelength range from UV to NIR can be used
independent of the sample states (solid, liquid, and gas), media-containing sample (in
water, air, and vacuum) and situation (transmission, back and forward scattering, etc.).
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Figure 1. Jablonski diagram showing the energy transition of the Raman scattering process [3,13].
ωP indicates the frequency of the pump light; ωV corresponds to the vibrational frequency of
molecules in the electric field; andωS andωAS are the frequency of Stokes and anti-Stokes Raman
scattering, respectively.

Irradiating a material with monochromatic light (e.g., a fixed-wavelength laser) simul-
taneously scatters light with the same wavelength as the incident light (Rayleigh scattering
light) and light with a slightly different wavelength [1,3,13]. The light scattered with a
frequency shift relative to the incident light is called Raman scattering (Figure 2). Stokes
Raman scattering occurs when the scattering light shifts to the longer-wavelength side
(smaller frequency;ωP −ωV), whereas that shifting to the shorter wavelength side is called
anti-Stokes Raman scattering (larger frequency;ωP +ωV) (Figures 1 and 2). Since Stokes
Raman scattering is usually stronger, the term “Raman scattering” often refers to Stokes
Raman scattering. Raman scattering reflects the vibrational energy in the electric field of
molecules and gives a scattering spectrum (Raman spectrum) specific to the molecules.
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Figure 2. Schematic depicting the principle of Raman scattering [3,13].

Several methods can be used to measure Raman spectra. However, an excitation
laser is typically used to measure solid samples such as materials or biological specimens.
After passing the backscattered or forward light through a notch filter or long-pass filter
to cut the Rayleigh scattered light, a multichannel spectrometer gives the spectrum of
the scattered light (Figure 3). Although infrared absorption spectroscopy is a common
vibrational spectroscopic method to identify chemical substances, it is not well suited
for biological measurements due to the extremely high absorption of water in infrared
light. In contrast, Raman spectroscopy provides information that is almost equivalent to
the IR absorption spectrum, since it can employ visible to near-infrared light, which is
unaffected by water absorption. Hence, Raman spectroscopy is well-suited for biological
tissue measurements, and especially Raman microscopy is a powerful tool for analyzing a
living cell in situ with custom-designed instrumentation and devices [22–24].
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Another advantage is that direct analysis from the Raman spectra is feasible since target
molecules do not have to be labeled beforehand. Consequently, it should be applicable to
clinical applications such as rapid and in situ diagnostic techniques for cancer, which have
been difficult to achieve using highly invasive conventional pathological diagnosis and
biopsies. Unfortunately, the signal intensity of Raman scattering from biological samples
is extremely small. Advanced measurement techniques are necessary because compared
to the absorption cross section for photon, the Raman scattering cross section is extremely
small, typically from 10−30 to 10−25 cm2 [25]. Recently, the increased sensitivity of CCD
sensors and the miniaturization and diversification of excitation laser sources have reduced
these technical hurdles [3]. Today, Raman spectroscopy is more accessible to basic medical
researchers and clinical doctors because it is becoming more versatile and economical.
Since its discovery almost a century ago, Raman spectroscopic analysis technology has
continued to progress.

3. Technical Breakthroughs toward Biomedical Applications

In the past three decades, Raman spectroscopy has been widely utilized in biomedical
research and clinical applications. The greatest advantage of Raman spectroscopy in clinical
use is it is minimally invasive while providing objective information based on the molecular
composition in cells, tissues, and organs. In 1990, Puppels et al. published an original
article about measuring the Raman spectra of single living cells and analyzing the molecular
distribution in a chromosome [26]. They developed confocal Raman microspectroscopy,
enabling high-resolution spectral data to be acquired from single cells. They successfully
interpreted the origin of the Raman peaks (now the so-called peak assignment) observed
in human granulocytes [27]. At the same time, histopathological applications were also
reported. Baraga et al. investigated atherosclerotic lesions of the human artery using
FT-Raman spectroscopy [28].

In 2000, Shim et al. demonstrated the first in vivo Raman spectroscopic measure-
ment of human gastrointestinal tissues during a routine clinical endoscopy when they
reported their fiber-optic Raman spectroscopic system as a rapid communication [29].
Since the 2000s, physical chemists, analytical chemists, medical engineers, and physi-
cians have conducted in vitro, ex vivo, and in vivo research using Raman spectroscopic
techniques [8–10,16,17,30–32].

The modality of Raman spectroscopy has also diversified since 2000. Hamada et al.
developed a line-scanning Raman microscopy system, which yields highly spatial- and
time-resolved Raman spectral data from living cells [33]. Today, Raman spectroscopy
is known not only as a spectroscopic method but also as a bioimaging technique and
confocal fluorescence microscopy. Nonlinear Raman scattering, coherent anti-Stokes Raman
scattering (CARS), and stimulated Raman scattering (SRS) methods can stimulate the
excitation of coherent motions of vibrational oscillators, offering vibrational imaging with
subcellular spatial resolution and an image acquisition speed of more than four orders of
magnitude higher than that of spontaneous Raman microscopy [34–40].

In 2010, Saar et al. improved in vivo SRS imaging by substantially enhancing the
collection of the backscattered signal and increasing the imaging speed by three orders
of magnitude, which is comparable to the video rate [34]. At the same time, Ozeki et al.
reported an SRS microscopy system for video-rate live cell imaging [35]. They also demon-
strated its potential for use in histopathological applications by assessing the tissue section
of an acetaminophen-overdosed mouse liver and capturing the pathological changes,
including centrilobular necrosis [36]. CARS techniques can provide cellular and tissue
spectral images in live cell culture and disease models for multiple sclerosis [38–41]. The
significant merits of nonlinear Raman spectroscopic techniques are high-speed measure-
ments and the acquired high-contrast images. Other applications include intraoperative
diagnostics [42], imaging flow cytometry [43], and cell sorting [44].

A Raman image-based approach emphasizes the limited number of Raman bands
assigned to moieties in lipids and proteins. However, they sacrifice the spectral information
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of other molecules in cells and tissues. On the other hand, spontaneous Raman techniques
give a lot of molecular information in the fingerprint region of biological samples, but the
signal collection efficiency is relatively poor. As a diagnostic tool for the early detection
of disease, spontaneous Raman techniques have the potential for practical clinical appli-
cations [45–66]. Furthermore, surface-enhanced Raman scattering (SERS), spatially offset
Raman spectroscopy (SORS), and incorporating machine learning are complementary tech-
nologies that increase the detection sensitivity in liquid biopsies [63–65] and deep layers of
tissues and organs [58,66]. They also increase accuracy in discriminant analysis [67–72].

4. Molecular Fingerprints Possibly Associated with Diseases on the Raman Spectrum
Obtained from Cells and Tissues

As mentioned above, Raman spectroscopy provides information regarding molecular
vibrations, known as “molecular fingerprints.” The fingerprint region includes the most
characteristic groups of vibrations for each molecule. It typically comprises 900–2200 cm−1

IR region and excludes stretching C-H vibrations in the region 2900–3100 cm−1 which
are not very informative. Recent discrete Fourier transform (DFT) calculations allow an
increase in the important and useful normal mode frequency up to the THz region, which
is available for Raman scattering (but not used in FT-IR spectra). Thus, the concept of
fingerprint vibrations used originally in IR spectroscopy nowadays is changed concerning
the Raman application. The role of low-frequency vibrations is important for docking
studies, for intermolecular interactions between drugs and receptors. Together with DFT
and molecular mechanic calculations, such low-frequency Raman spectroscopy provides a
unique ability in molecular medicine [73–76]. In addition, analyzing those fingerprints may
offer valuable insights into the early detection of diseases by tracking the structural and
compositional changes in molecules that occur in physiological processes during disease
development. To date, there is a great clinical interest in developing a rapid and non-
invasive methodology that enables the real-time monitoring of the molecular dynamics
occurring in living cells and tissues during disease onset, overcoming the limitations of
conventional biochemical techniques. Here, we are focusing on the typical Raman peaks of
human cells and tissues involved in molecular fingerprints associated with diseases by the
past literature survey.

Generally, in the case of cellular analysis on Raman spectroscopy, strong Raman
peaks at 1754 cm−1 (C=O), 1656 cm−1 (C=C), 1440 cm−1 (CH2 bend), and 1300 cm−1 (CH2
twist) can be observed as the fingerprint of lipid contents. The characteristics of protein
contents can also be understood from the Raman peaks at 1656 cm−1 (amide I), 1615 cm−1

at (tyrosine and tryptophan), 1450 cm−1 (CH2 bend), 1100–1375 cm−1 (amide III), and
1004 cm−1 (phenylalanine). In addition, the contents of nucleic acid contribute around
785 cm−1 and around 1094 cm−1 due to PO2 backbone vibrations [3,26,33,45]. Since DNA
(RNA) has four nucleobases, prominent Raman bands at 730 cm−1, 785 cm−1, 1340 cm−1,
1490 cm−1 and 1580 cm−1 are attributed to the base composition in nucleotides (e.g., ring
breathing modes in the DNA bases) [77–80]. Cytosine and thymine (uracil) are pyrimidine
derivatives, adenine and guanine are purine derivatives, consisting of a fused pyrimidine-
imidazole ring system with conjugated double bonds. Those conjugated moieties including
aromatic amino acid residues contribute characteristics of molecular fingerprint measuring
cellular components as well.

Movasaghi et al. reported in 2007 that Raman spectral interpretation and detailed peak
assignments were collected to provide a database of molecular fingerprints for defining
the chemical structure of the biological tissues, introducing most of the important peaks
present in natural tissues [81]. Since then, the Raman spectral fingerprints were utilized for
cancer cell detection and discrimination.

Harvey et al. demonstrated that the spectral discrimination of live prostate cancer
cells (PC-3) and bladder cancer cells (MGH-U1) was performed by using Raman optical
tweezers. From these Raman spectral fingerprints and the assignments for contributed
molecular vibrations, proteins and nucleic acids could be more abundant in MGH-U1 than
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PC-3 cells, while lipids and carbohydrates were more abundant in PC-3 cells. Nucleic acids
and proteins were mainly found in the cell nucleus, while lipids are largely distributed
within the cytoplasm and cell membrane. Therefore, differences in these biochemical
amounts between PC-3 and MGH-U1 may be a consequence of differences in the nucleus-
to-cytoplasm ratio between these cells. The Raman spectral fingerprint of each cell could
be linked to cell size, as the proportion of the nucleus and cytoplasm probed is likely to
vary with cell size [82].

If the energy of the excitation laser happens to coincide with an electronic transi-
tion within the molecule, Raman scattering can be greatly enhanced, this phenomenon
is known as resonance Raman scattering. Even excitation close to the electronic transi-
tion of a molecule can yield “pre-resonance.” Several molecules which have conjugated
double bonds present quite strong Raman peaks in living cells due to resonant Raman
scattering. The Raman spectral features of erythrocytes are unique and easily distinguished
from other cells. By using a 632.8 nm excitation laser, oxygenated, deoxygenated, and
metHb-erythrocytes can be characterized due to their own molecular fingerprints on Ra-
man spectral features [83]. Cytochrome c also shows relatively strong and sharp resonant
Raman peaks by measuring with a 532 nm excitation. It is useful to explore the cellu-
lar distribution of mitochondria on Raman microscopy [84–86]. Cytochrome c is a key
molecule that maintains respiratory function and cell apoptosis. Oshima et al. reported
discrimination analysis of the different histological types of lung cancer cell lines using
molecular fingerprints of each cell type, and they found that the relative peak intensities of
cytochrome c between cancer cells and normal cells were significantly different [45]. Okada
et al. performed the label-free observation of molecular dynamics in apoptotic cells using
a Raman microscope and successfully captured the dynamic changes in the cytochrome
c distribution at the Raman band of 750 cm−1, which was assigned to pyrrole breathing
mode ν15 in cytochrome c, after adding an apoptosis inducer to the cells [85]. Recently,
Abramczyk et al. reported Raman spectroscopy and imaging to monitor changes in the
redox state of the mitochondrial cytochromes in ex vivo surgically resected specimens of
human breast tissues, and in vitro human breast cells of normal cells. They found that the
global concentration of cytochrome c in the breast tissue (reflected by the Raman intensity
of the bands at 1584 cm−1 and 750 cm−1) increases with cancer aggressiveness [86].

Considering the expansion of the measurement target from the single cell level to the
tissue level, the molecular species which are involved in molecular fingerprint features
obtained from Raman spectroscopy become more abundant due to the existence of ex-
tracellular matrix (ECM). Haka et al. reported that they employed Raman spectroscopy
to diagnose benign and malignant lesions in human breast tissue based on its chemical
composition, including the epithelial cell cytoplasm, cell nucleus, fat, β-carotene, collagen,
calcium hydroxyapatite, calcium oxalate dihydrate, cholesterol-like lipid deposits, and
water. This approach was based on the assumptions that the Raman spectrum of a mixture
is a linear combination of those Raman spectra assigned to the molecular components, and
yields a sensitivity of 94% (29/31), a specificity of 96% (91/95), and an overall accuracy of
86% (108/126) for detecting infiltrating carcinoma [87].

Raman spectroscopy also has the potential to further our understanding of cardio-
vascular calcification. You et al. performed Raman spectroscopy imaging to examine the
molecular composition and spatial distribution of the mineral and organic content in human
aortic tissue cross-sections. The representative molecular fingerprint involved in specific
components of the aortic tissue, including elastin, collagen, lipid (cholesterol), β-carotene,
apatite, and whitlockite, were identified for characterizing atherosclerosis [88]. The molecu-
lar fingerprint in vascular tissues may offer possible mechanisms and the early detection of
cardiovascular diseases such as atherosclerosis and aortic stenosis (AS) [16,17,88].

The molecular composition in the bone and cartilage matrix is also a suitable tar-
get for tissue Raman measurement due to the abundance of ECM. The excitation laser
of 785 nm is often to reduce the autofluorescence background, but 532 nm is also avail-
able, and the result could be consistent. Raman spectroscopic fingerprints in bone tis-
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sue could contribute to predicting fracture risk in osteoporosis [89,90]. Several Raman
peaks originating from the inorganic and organic components of the bone matrix could be
identified. The bone matrix mainly consists of hydroxyapatite and type I collagen. The
spectral feature is dominated by apatite phosphate groups (O-P-O) symmetric stretching
at 961 cm−1, while the peak at 1070 cm−1 is evidence of the presence of carbonates. The
main protein vibrational modes appear in the ranges 1150–1350 cm−1 (amide III) and
1630–1690 cm−1 (amide I) and correspond to different vibrations of the peptide bonds,
which are sensitive to the protein secondary structure. Some bands typical of single amino
acids can be also recognized (phenylalanine 1005 cm−1 and proline 855 cm−1). The Ra-
man spectroscopic fingerprint of bone, which can be characterized by its mineral/matrix
ratio (1005 cm−1/961 cm−1), carbonate/phosphate ratio (1070 cm−1/961 cm−1), colla-
gen crosslink maturity (e.g., 1660/1690 in amide I), and crystallinity (e.g., peak width at
961 cm−1), can become a valuable surrogate marker in fracture risk assessment and the
evaluation of therapeutics in osteoporosis [89–91]. Some reports suggest that the Raman
spectroscopic fingerprint of the cartilage matrix makes it possible for early detection and
prognostic prediction in osteoarthritis [24,92,93]. The main components of articular carti-
lage are glycosaminoglycans (GAGs) and type II collagen, and changes in them can be used
as indicators for the early diagnosis of OA. Kumar et al. showed the contents of amide I
(1612–1696 cm−1) and protein decrease with the increasing severity of OA [92]. Asaoka et al.
elucidated a negative correlation between clinical OA grading and the peak intensities at
1042 cm−1 (C-O-C) and 1061 cm−1 (O-SO3

−) which could be assigned to GAGs contents in
the cartilage matrix [24].

Raman fingerprinting often provides reliable information directly associated with the
diagnostic and prognostic markers for disease (e.g., cancers, atherosclerosis, osteoporosis,
and OA). However, to fully exploit the fingerprint for clinical use, further analytical
strategies including hardware technologies and methodologies in machine learning should
be introduced.

5. Recent Advances and Limitations in Clinical Applications of Raman Spectroscopy

As the technology has matured in the past few decades, the annual number of re-
search papers on Raman spectroscopic and imaging applications for clinical diagnostics has
drastically increased. The literature involving Raman spectroscopy and human diseases is
too numerous to list so representative articles are selectively cited here (Table 1). For the
early detection and prediction of human disease, applications range from the discriminant
analysis of cancer cells [72,94], tissues [51,53,62,69,71,95–97], and serum sample [67,98] to
diagnostic procedures via endoscopy [95]. Cheng et al. demonstrated that four leukocyte
types (granulocytes, monocytes, B cells, and T cells) from healthy people were character-
ized as a reference of normal hematopoiesis and were distinguished from each other by
generating an orthogonal partial least squares discriminant analysis (OPLS-DA) model for
the further analysis of leukemic granulocytes [72]. They found that a combination of the
Raman peaks at 1003, 1341, and 1579 cm−1 Raman peaks could discriminate myeloblasts
and abnormal promyelocytes from normal granulocytes and verified with 92.59% accuracy.
These excellent diagnostic results have been achieved by utilizing multivariate analyses
and decision algorithms.

In general, Raman spectral data obtained from biological samples are very compli-
cated. As discussed above, the molecular fingerprinting based on Raman spectroscopic
measurement may contribute to early detection and prognostic prediction in some cases
but identifying or discriminating the Raman spectral fingerprint in each state (e.g., healthy,
predisease, disease) is still challenging task in the practical situation. Multivariate analytical
methods, principal component analysis (PCA), and partial least square (PLS) regression
analysis have been used for a long time. These exploratory analyses provide objective
interpretations of the Raman spectral changes in disease. Since the gold standard for
disease diagnosis is a histological assessment of suspicious cells, tissues, and blood samples
obtained from patients, the disease states determined by Raman spectroscopy must be
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confirmed by routine histopathology. Although such a limitation exists, recent advances in
machine learning methods have linked characteristics in Raman spectral data to known
pathological states more effectively and rapidly. High-throughput Raman spectroscopy
combined with fine-tuned machine learning is potentially useful for the early detection and
prognostic diagnosis in human disease [96,97].

Table 1. The representative literature of Raman spectroscopic studies for human diseases.

Target Disease Sample Type (Modality) Analytical Method Reference

colon cancer

in vivo (endoscopy) PCA, neural network Shim et al., 2000 [29]
ex vivo (fiber probe) PCA-LDA Molchovsky et al., 2003 [30]
in vivo (endoscopy) PLS-DA Belgholt et al., 2010 [46]
in vivo (endoscopy) PCA, DT, AdaBoost Fousková et al., 2023 [95]

lung cancer

ex vivo (microscopy) Histogram Yamazaki et al., 2003 [9]
in vivo (fiber probe) intensity ratio Huang et al., 2003 [10]
in vitro (microscopy) PCA Oshima et al., 2010 [45]
ex vivo (microscopy) CNN Qi et al., 2022 [69]

breast cancer

ex vivo (microscopy) PCA Haka et al., 2002 [8]
in vivo (fiber probe) x2 analysis Haka et al., 2006 [31]
ex vivo (microscopy) CNN Ma et al., 2021 [51]
ex vivo (fiber probe) SVM, Lasso David et al., 2023 [97]

esophageal cancer ex vivo (fiber probe) PLSR, SOMs, LDA Ishigaki et al., 2016 [49]

bladder cancer in vivo (fiber probe) PC-GDA Lui et al., 2012 [56]

skin cancer ex vivo (microscopy) ResNet50 Chen et al., 2022 [71]

gastric cancer in vivo (endoscopy) PCA, PLS-DA Duraipandian et al., 2012 [47]

brain tumor ex vivo (microscopy) PCA, PLS, LDA Aguiar et al., 2022 [55]

liver cancer ex vivo (microscopy) CNN Huang et al., 2023 [62]

cervical cancer ex vivo (microscopy) CNN Kang et al., 2023 [96]

thyroid cancer blood serum (microscopy) SMOTE Song et al., 2021 [67]

leukemia
blood smear (microscopy) PLS-DA, SVM Féré et al., 2019 [50]
blood serum (microscopy) PLS-DA Lima et al., 2022 [98]

bone marrow cells (microscopy) OPLS-DA Cheng et al., 2022 [72]

prostate cancer bone
metastasis in vitro (microscopy) PCA Kar et al., 2022 [94]

atherosclerosis
in vitro (FT-Raman) PCA Nogueira et al., 2005 [16]
in vitro (fiber probe) MCR Sćepanović et al., 2006 [17]
ex vivo (microscopy) VCA image unmixing You et al., 2017 [88]

dry eye meibum lipid (microscopy) PCA Oshima et al., 2009 [32]

osteoarthritis
ex vivo (microscopy) PCA Kumar et al., 2015 [92]
ex vivo (microscopy) PCA, HCA Asaoka et al., 2022 [24]

in vivo (needle arthroscopy) PLS-DA Kroupa et al., 2021 [93]

Hirschsprung disease ex vivo (microscopy) PCA Ogawa et al., 2021 [54]

6. From “Discriminant Analysis” to “Transition-State Analysis”

Identifying biomarkers for early detection and prognostic prediction in diseases is a
challenge in current Raman spectroscopic approaches only utilizing exploratory analysis
and sophisticated decision algorithms because today’s medical science does not have a
method to define the predisease state [99]. To address the issue, Aihara et al. suggested
a clear and quantitative definition of predisease states from a mathematical viewpoint as
critical states just before bifurcation points from healthy to disease states. They proposed a
theoretical methodology to detect early warning signals peculiar to the predisease states
with dynamical network biomarkers (DNB) [100,101].
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Figure 4 depicts a conceptual diagram of healthy, predisease, and disease states by a
hypothetical potential function. The state of the body or biological system slowly changes
from a healthy state to the predisease state, but then it suddenly moves to a disease state
after the transition or bifurcation. The red curve shows the hypothetical potential function
with the transition state just before the predisease state.
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Figure 5 shows the numerical results by the application of the DNB theory to Raman
spectra in the mouse T cell activation process [21]. As seen in Figure 5a, normally, the
ordinal biomarker (green dashed line) gradually increases, resulting in the difference
between two states: naïve and activated states, corresponding generally to health and
disease states. The marker corresponds to the score of linear discriminant analysis to
distinguish these states. On the other hand, the DNB score (red solid line) calculated from
the fluctuations in and correlations between elements (variables) in a complex network
reveals the onset of the transition state as a peak at a specified time point. Therefore, the
DNB theory successfully contributes to detecting early warning signals, which are not
found in conventional biomarkers.
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retrieved from Haruki et al. [21].



Int. J. Mol. Sci. 2023, 24, 12170 10 of 15

The DNB score is defined by the product of averaged standard deviation and correla-
tion strength of variables in DNB candidate groups [99–101]. First, evaluating the variance
on each variable completely separates largely fluctuating and non-fluctuating variables.
Then, the correlation strength ri,j between variables xi and xj represents the edge between
nodes. It is sufficient to calculate the correlation coefficients between variables with large
fluctuations to extract DNB candidate groups. Here, correlations are shown as edges and
the red and blue edges show positive and negative correlations, respectively. Therefore,
the groups including largely fluctuating and highly correlated variables are extracted as
DNB candidate groups (See Figure 5b) using hierarchical clustering. Here, the clusters to be
extracted are the largest clusters in size, or the second and subsequent clusters larger than
half of the size. Finally, DNB candidate groups become DNB when the DNB score shows
the peak at a specified time point. The time point corresponds to the onset of the transition
state. In conjunction, variables included in the DNB candidate groups are selected as
DNB elements.

Koizumi et al. first reported that DNBs used to predict metabolic syndrome were
successfully identified from the dataset of time-course gene expression profiles in an
animal model [102]. To date, studies on DNB analysis for gene expression levels have
been conducted, including this report [99,102,103]. Predictive signs (very early signals)
have been detected in a variety of diseases. However, these gene expression data are
obtained by destructive testing involving the sacrifice of animals such as mice, which poses
a major problem when considering its application to humans. Raman spectroscopy is a
better-suited methodology to detect a transition state associated with the predisease state
for potential clinical applications. Haruki et al. applied the DNB theory to Raman spectra of
T cell activation [21]. In this case, the initial and final states corresponded to naïve and fully
activated T cells, respectively. This article suggested that a combination of DNB theory and
Raman spectroscopy provides additional information, which cannot be found in current
multivariate analyses, to estimate the transition state. This is the first model case and trial to
detect the transition state and identify DNB Raman shifts exhibiting abnormal fluctuations
at the transition state.

This approach is not restricted to biomarkers such as gene expression profiles and
Raman spectra. It is also important to mathematically capture the signs (early warning
signals) of state transitions such as ecosystem changes and stock fluctuations. Once these
signs are known, countermeasures can be implemented. In the case of disease, lifestyle
modifications or medical interventions can be made before the disease becomes serious,
thereby extending a healthy life expectancy.

7. Conclusions and Future Directions

This review should help realize applications using conventional analysis techniques
and devising an innovative measurement technology platform to detect predisease. In the
future, the early detection and prevention of diseases and an intervention to prevent the
appearance of disease may be possible by elucidating the transition state using Raman
spectroscopy. Furthermore, Raman microscopy and DNB theory may detect the unaffected
state of clinical specimens from their Raman scattering spectra.
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86. Abramczyk, H.; Brozek-Pluska, B.; Kopeć, M. Double face of cytochrome c in cancers by Raman imaging. Sci. Rep. 2022, 12, 2120.
[CrossRef] [PubMed]

87. Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer by using Raman
spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 12371–12376. [CrossRef]

88. You, A.Y.F.; Bergholt, M.S.; St-Pierre, J.P.; Kit-Anan, W.; Pence, I.J.; Chester, A.H.; Yacoub, M.H.; Bertazzo, S.; Stevens, M.M.
Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci. Adv.
2017, 3, e1701156. [CrossRef]

89. Molino, G.; Dalpozzi, A.; Ciapetti, G.; Lorusso, M.; Novara, C.; Cavallo, M.; Baldini, N.; Giorgis, F.; Fiorilli, S.; Vitale-Brovarone,
C. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J.
Mech. Behav. Biomed. Mater. 2019, 100, 103373. [CrossRef]

90. Falgayrac, G.; Farlay, D.; Ponçon, C.; Béhal, H.; Gardegaront, M.; Ammann, P.; Boivin, G.; Cortet, B. Bone matrix quality in
paired iliac bone biopsies from postmenopausal women treated for 12 months with strontium ranelate or alendronate. Bone 2021,
153, 116107. [CrossRef] [PubMed]

91. Ishimaru, Y.; Oshima, Y.; Imai, Y.; Iimura, T.; Takanezawa, S.; Hino, K.; Miura, H. Raman Spectroscopic Analysis to Detect
Reduced Bone Quality after Sciatic Neurectomy in Mice. Molecules 2018, 23, 3081. [CrossRef]

92. Kumar, R.; Grønhaug, K.M.; Afseth, N.K.; Isaksen, V.; de Lange Davies, C.; Drogset, J.O.; Lilledahl, M.B. Optical investigation
of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: A pilot study. Anal. Bioanal. Chem. 2015, 407,
8067–8077. [CrossRef] [PubMed]

93. Kroupa, K.R.; Wu, M.I.; Zhang, J.; Jensen, M.; Wong, W.; Engiles, J.B.; Schaer, T.P.; Grinstaff, M.W.; Snyder, B.D.; Bergholt, M.S.;
et al. Raman needle arthroscopy for in vivo molecular assessment of cartilage. J. Orthop. Res. 2022, 40, 1338–1348. [CrossRef]
[PubMed]

94. Kar, S.; Jaswandkar, S.V.; Katti, K.S.; Kang, J.W.; So, P.T.C.; Paulmurugan, R.; Liepmann, D.; Venkatesan, R.; Katti, D.R. Label-free
discrimination of tumorigenesis stages using in vitro prostate cancer bone metastasis model by Raman imaging. Sci. Rep. 2022,
12, 8050. [CrossRef] [PubMed]

95. Fousková, M.; Vališ, J.; Synytsya, A.; Habartová, L.; Petrtýl, J.; Petruželka, L.; Setnička, V. In vivo Raman spectroscopy in the
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