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Abstract: Melanocortins play crucial roles in regulating the stress response, inflammation, and skin
pigmentation. In this review, we focus on the melanocortin 1 receptor (MC1R), a G protein-coupled
receptor primarily known for regulating skin pigmentation and exhibiting anti-inflammatory effects.
First, we provide an overview of the structure, signaling pathways, and related diseases of MC1R.
Next, we discuss the potential therapeutic use of synthetic peptides and small molecule modulators
of MC1R, highlighting the development of various drugs that enhance stability through amino acid
sequence modifications and small molecule drugs to overcome limitations associated with peptide
characteristics. Notably, MC1R-targeted drugs have applications beyond skin pigmentation-related
diseases, which predominantly affect MC1R in melanocytes. These drugs can also be useful in treating
inflammatory diseases with MC1R expression present in various cells. Our review underscores the
potential of MC1R-targeted drugs to treat a wide range of diseases and encourages further research
in this area.
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1. Introduction

Melanocortins are a group of hormones that play crucial roles in regulating various
physiological processes, including stress response, inflammation, and skin pigmentation.
These hormones are polypeptides derived from pro-opiomelanocortin (POMC) and include
adrenocorticotropin hormone (ACTH), α-, β-, and γ-melanocyte stimulating hormone (α-,
β-, and γ-MSH) [1,2]. While the functions of ACTH [3] and α-MSH are well-established in
skin pigmentation [4], anti-inflammatory [5], and microbicidal characteristics [6], the role
of β-MSH and γ-MSH are less well understood. Some studies suggested that they possess
anti-inflammatory properties [7–10].

The functions of melanocortin peptides are mediated by G protein-coupled receptors
(GPCRs), primarily the stimulatory G protein (Gs) [11]. The melanocortin receptor family
is the smallest member of class A, a rhodopsin-like family of GPCRs, and consists of five
isotypes (MC1R, MC2R, MC3R, MC4R, and MC5R) with varied tissue expression and
functions [12]. MC1R, mainly expressed in both melanocytes and leukocytes, enhances UV
resistance and anti-inflammatory signaling when activated. MC2R is found in the adrenal
cortex, and both MC3R and MC4R, which are reported to control food intake and sexual
function, are largely present in the CNS. MC5R, located in the brain and skeletal muscle, has
an exocrine role. The low sequence homology (40–60%) among the five receptors explains
the lack of ligand selectivity [13–16].

The MC1R is a well-known receptor for α-MSH expressed in the skin and hair follicles,
where it controls pigmentation. However, recent studies have revealed that MC1R is also
expressed in various other cell types that are susceptible to the anti-inflammatory effects
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of melanocortins [17,18]. Thus, understanding the regulation of MC1R could potentially
lead to the development of novel therapeutic strategies. This review article provides a
brief overview of the structure, signaling pathway, and related diseases associated with
MC1R and discusses the potential of synthetic peptide modulators and small molecule
modulators of MC1R as therapeutic agents. Through a detailed examination of MC1R and
its modulators, this review aims to provide insights into the potential clinical implications
of modulating MC1R activity.

2. Melanocortin 1 Receptor (MC1R)
2.1. Structure

The human MC1R is primarily found on melanocytes and malignant melanoma cells
and consists of 317 amino acids [19–21]. While the normal expression of MC1R protein is
low, melanocytes express approximately 700 protein units, with slightly higher amounts
found on melanoma cells [22,23]. MC1R is a GPCR with seven α-helical transmembrane
(TM) domains, an N-linked glycosylation site at the external N-terminus, a palmitoylation
site at the intracellular C-terminus, and a DRY motif at the junction of the third TM
domain. Unlike other GPCRs, the first and second extracellular domains of the MC
receptor subfamily lack one or two cysteines, while the fourth and fifth TM domains lack
proline. The intracellular and transmembrane domains of MC1R regulate adenylyl cyclase
connections and signaling, while the extracellular and transmembrane domains interact
with MC1R ligands.

The extracellular N-terminal tail serves as a signal anchor and plays a crucial role in
ligand affinity. A conserved cysteine residue at the intersection of the N-terminus and the
first TM domain is crucial for receptor function [24–28]. The C-terminus is involved in
receptor interactions with the G protein at the plasma membrane, as well as protein traf-
ficking from the endoplasmic reticulum to the plasma membrane. Also, C-terminus affects
desensitization, internalization, and the plasma membrane location of the receptor [29–33].

The intracellular and extracellular loops (ils and els, respectively) lie between the
transmembrane domains of the melanocortin 1 receptor. These loops share conserved
sequences with other MC receptors. Despite being smaller than most GPCRs, MC1R els
are essential for constitutive basal signaling activity. Mutations in this area affect binding
affinity, as the els of the MC1R interact with ligands. Due to conserved proline and cysteine
residues, els appear to be essential for melanocortin affinity. Similarly, MC1R ils play
a crucial role in Gs protein binding and have phosphorylation sites that impact signal
modulation, internalization, and receptor cycling [25,27,28,31,34].

Recently, the Cryo-electron microscopy (Cryo-EM) structure of MC1R and the MC1R–
Gs complexes bound to the endogenous hormone α-MSH, the marketed drug afamelan-
otide, and a synthetic agonist called SHU9119 were determined [35]. These findings may
pave the way for resolving the lack of selectivity in MC drug discovery.

2.2. Signaling Pathway

The melanocortin 1 receptor (MC1R) is a receptor that forms a complex with het-
erotrimeric G proteins. When agonistic ligands bind to MC1R, the Gαs protein is separated,
and MC1R activates adenylyl cyclase, which leads to the production of cAMP, a crucial
second messenger that regulates many cellular processes. In melanocytes, cAMP activates
protein kinase A (PKA) and triggers downstream signaling pathways that activate different
effector pathways, including the CREB and MITF networks. These pathways lead to the
increased expression of tyrosinase and dopachrome tautomerase, two enzymes that are
involved in melanin synthesis, resulting in the production of melanin. The melanin pro-
duced is then transmitted to nearby keratinocytes, creating a protective layer that improves
the skin’s ability to prevent further UV damage. Moreover, the increase in cAMP levels
in melanocytes enhances antioxidant defenses and accelerates nucleotide excision repair
(NER), which is vital for safeguarding the skin from UV damage (Figure 1) [36–43].
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Moreover, it is also reported that there is a cAMP-independent pathway mediated
by cKIT, which is not discussed in this review. This pathway activates the extracellular
signal-regulated protein kinases 1 and 2 (ERK 1/2) by triggering the NRAS-BRAF-MEK-
ERK cascade and active ERKs can phosphorylate MITF. Furthermore, it has been suggested
that the activation of AKT downstream of α-MSH may also occur via cKIT [44].

Furthermore, the MC1R signaling axis has an anti-inflammatory effect through down-
stream pathways. When α-MSH binds to MC1R, it triggers the production of intracellular
cAMP, which activates protein kinases C and A, leading to the activation of the MAPK
and JAK-STAT pathways. These pathways prevent IκB degradation and activate CREB, a
transcription factor that regulates anti-inflammatory mediators such as IB and IL-10. In
addition, protein kinase activation enhances the levels of cytoplasmic IκB, inhibiting the
expression of downstream pro-inflammatory genes, including IL-1, TNF-a, IL-6, IL-8, and
IL-12, iNOS, and adhesion molecules (ICAM-1, VCAM-1, and MMPs) (Figure 2) [45–60].
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3. MC1R-Related Diseases
3.1. Melanoma

Melanoma is a highly aggressive and resistant cancer that results from the malignant
progression of melanocytes, which are pigment cells located in the skin’s epidermis [61].
The traditional chemotherapy treatments have demonstrated limited efficacy in treating
melanoma, which highlights the need for innovative therapeutic approaches that can
take advantage of the distinctive features of these tumors [62]. One such characteristic is
the overexpression of the MC1R cell surface endocytic receptor on the surface of human
melanomas, which makes it a crucial tumor marker [63,64]. The activation of MC1R is
necessary to regulate melanocyte cell division and melanin production, which provides
the skin with protection from UV radiation. Additionally, MC1R has potential applications
in diagnostics and targeted drug delivery [65,66]. Innovative treatment approaches are
currently being developed based on MC1R for melanoma. MC1R expression is frequently
elevated in both melanoma cell lines and melanomas, and contrary to earlier claims that
MC1R activation could cause melanoma, recent scientific evidence demonstrates that this
receptor not only does not cause melanoma but that its activation can actually stimulate
DNA repair processes that have the potential to prevent the disease [67–69]. In addition,
the MC1R is also implicated in vitiligo, a pigmentation disorder characterized by the loss
or destruction of melanocytes in the skin and hair follicles. This results in the inability to
produce melanin, which is necessary for normal pigmentation. Thus, MC1R emerges as a
potential therapeutic target for vitiligo since MC1R plays a crucial role in regulating skin
pigmentation. Recently, a novel MC1R peptide agonist is reported, and we will introduce it
in the synthetic peptide modulators section [70].

3.2. Systemic Sclerosis

Systemic sclerosis (SSc), or scleroderma, is an autoimmune disorder characterized by
dysregulation of the immune system and inflammation, microvascular dysfunction, and
widespread fibrosis in various organs [71]. While no approved medications exist for SSc
apart from those for SSc-associated ILD (interstitial lung disease), there is a pressing need
for innovative treatments that can effectively target fibrosis in multiple organs, including
the skin [72–74]. Activating the melanocortin 1 receptor has been shown to have broad
anti-inflammatory and antifibrotic effects. Thus, a recent study investigated the potential of
a novel oral MC1R agonist, dersimelagon (MT-7117), as a treatment for SSc. In preclinical
SSc models, MT-7117 exhibited disease-modifying effects. Target expression analysis
and research into its mode of action indicated that MT-7117 has a favorable effect on
inflammation, vascular dysfunction, and fibrosis, all of which are key pathologies in SSc.
These findings suggest that MT-7117 may have potential as a treatment for SSc. A phase
2 clinical trial is currently underway to evaluate the efficacy and tolerability of MT-7117
in patients with early, progressive diffuse cutaneous SSc [74]. More information about
dersimelagon will be discussed in the section on small molecule modulators.

3.3. Neuroinflammation

Neuroinflammation is a critical factor in the progression of neurological damage
caused by hypoxic-ischemic (HI) events, and microglia play a significant role in this pro-
cess [75,76]. In various neurological disorders, MC1R activation has been shown to have
anti-inflammatory and neuroprotective effects [77,78]. Recently, researchers investigated
the potential of MC1R activation to mitigate neuroinflammation and repair neurologi-
cal impairments in neonatal rats with hypoxic-ischemic neurological damage [79]. The
results showed that BMS-470539, an MC1R activator, reduced neuroinflammation and
repaired neurological impairments in these rats. The study also revealed that the anti-
inflammatory and neuroprotective effects of MC1R activation were mediated through the
MC1R/cAMP/PKA/Nurr1 signaling pathway. The findings suggest that MC1R activation
could be a promising therapeutic target for the treatment of hypoxic-ischemic encephalopa-
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thy (HIE) in newborns. Additional details regarding BMS-470539 will be provided in the
small molecule modulators section.

3.4. Atherosclerosis

Monocytes and macrophages are known to express the MC1R, which mediates anti-
inflammatory effects and helps prevent macrophage foam cell production by increas-
ing cholesterol efflux via ABCA1 and ABCG1 transporters [80–82]. Recently, a study
investigated whether a systemic deficiency of MC1R signaling affects the development of
atherosclerosis. The study highlighted the significant role of MC1R in the development
of atherosclerosis. The findings suggested that a lack of MC1R signaling may exacerbate
atherosclerosis by disrupting cholesterol transport and increasing arterial monocyte deposi-
tion [83]. Furthermore, MC1R plays a role in immunomodulation. Specifically, α-MSH has
been shown to decrease pro-inflammatory cytokines in various pulmonary inflammatory
disorders, including asthma, sarcoidosis, and acute respiratory distress syndrome. Animal
models of pulmonary fibrosis have also demonstrated that α-MSH can reduce fibrogene-
sis [84]. In addition to the diseases previously mentioned, MC1R has also been implicated in
other diseases, such as intestinal and ocular inflammation [85] and Parkinson’s disease [86].
Recent research has shown that modulating MC1R may have therapeutic potential for the
diseases previously mentioned.

4. Modulators
4.1. Endogenous Ligands

After UV damage, melanocortins such as α-MSH and ACTH are induced in the
skin, and these ligands protect the skin by binding to MC1R and triggering changes in
melanocytes that enhance their resistance to UV (Figure 3) [87–89]. However, the MC1R can
also be affected by other ligands, such as agouti signaling protein (ASIP) and β-defensin
3 (βD3), which can have a significant impact on MC1R signaling [90–93]. Melanocortins
stimulate MC1R signaling, while ASIP inhibits MC1R signaling and reduces cAMP lev-
els [94,95]. In contrast, βD3 has little effect on signaling but can act as a competitive
inhibitor, interfering with the binding of α-MSH or ASIP [96,97]. Synthetic modulators of
MC1R, including both peptides and small molecules, have been reported, and now some
of these modulators will be introduced.
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4.2. Synthetic Peptide Modulators

As previously explained, the endogenous ligands for melanocortin receptors are
ACTH and α-, β-, γ-MSH. The most important finding in early drug development was
that the amino acid sequence, His6-Phe-Arg-Trp9, was the key sequence needed to activate
the melanocortin receptor [98]. And the sequence was modified to solve the instability,
which was a problem of α-MSH, leading to the development of [Nle4, D-Phe7]-α-MSH
(melanotan I) [99,100]. Additionally, studies on the cyclization of peptides were conducted
to obtain melanotan II using NDP-MSH as a scaffold [101,102]. With these findings, efforts
are currently underway to produce selective and stable peptides on the melanocortin 1
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receptor, such as PL-8177 [67]. Among them, we would like to introduce melanotan I and
II, which are key substances in the development of peptide drugs (Figure 4).
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4.2.1. Melanotan I (MT-I)

Melanotan I is an early analog of α-MSH that acts as a non-selective agonist of
melanocortin receptors and stimulates melanin production. During the development
of peptide-based drugs, researchers focused on the common sequence of MSH, namely
His6-Phe-Arg-Trp9, and further studies were conducted on this sequence (Figure 4) [98].
Eventually, in the frog skin bioassay, it was observed that Ac(Acetyl)-α-MSH7-10-NH2 and
Ac-α-MSH6-8-NH2 had no activity, while Ac-α-MSH6-9-NH2 did. This led to the discovery
that the minimal sequence required for the biological activity of α-MSH is His6-Phe-Arg-
Trp9 [99]. Furthermore, to increase the stability of the initial α-MSH analog, Sawyer et al.
replaced Phe at position 7 with D-Phe and Methionine at position 4 with the amino acid
norleucine to prevent oxidation of methionine, as highlighted in green ball. These changes
resulted in the production of [Nle4, D-Phe7]-α-MSH (NDP-MSH, melanotan I), a peptide
with higher potency and stability than α-MSH [100].

When melanotan I activates MC1R, cAMP is produced, and it activates microphthalmia
transcription factor (MITF) expression, which induces the expression of enzymes for eume-
lanin production. This process increases the production of eumelanin in melanocytes. In
addition, melanotan I activates tyrosinase and induces an increase in eumelanin content in
melanocytes [103–105].

Afamelanotide, well-known as the international nonproprietary name of melanotan
I, has been used in patients with erythropoietic protoporphyria (EPP) since 2019. EPP
is a disease that causes abnormal hemoglobin synthesis in red blood cells, which can
cause skin damage even with a little sunlight. When afamelanotide binds to MC1R, it
activates melanocytes and stimulates eumelanin synthesis. Eumelanin protects against
UV light by absorbing and scattering it, scavenging free radicals and reactive oxygen
species, and acting as a neutral density filter capable of decreasing transmission of all
wavelengths of light [106,107]. Recent studies have shed light on the binding structure of
MC1R and ligands, while no information has yet been disclosed about the binding structure
of receptors and peptides. Afamelanotide, the compound that was switched from Phe7 to
D-Phe7 in α-MSH, has an extra hydrogen bond with the TM2 domain in D-Phe7. It has
been demonstrated that afamelanotide has a higher affinity for receptors than α-MSH, as
evidenced by its capacity to make cAMP, which is superior to α-MSH, as determined by
various mutants (Figure 5) [35].
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4.2.2. Melanotan II (MT-II)

Melanotan II is a cyclic peptide that is derived from melanotan I (Figure 6). In
particular, the peptide is modified by replacing Glu5 with Asp and Gly10 with Lys. Previous
studies by Obeidi and Hadley have demonstrated that cyclic peptides are more stable and
potent than linear peptides. Their research investigated the efficacy and stability of a
linear form of Ac-[Nle4, D-Phe7, Lys10]-α-MSH4-10-NH2 and a cyclic form, in which
Asp5 and Lys10 were linked. The findings of their bioassay demonstrated that cyclic
peptides exhibited greater potency and stability than linear peptides [101,102]. Melanotan
II has been shown to activate melanocytes as an MC1R agonist, but it is weaker than
melanotan I. However, melanotan II was proven to have a stronger sexual effect [108]. It
has been reported to induce penile erections in male rats and sexual inspiration [109,110]
and increases the sexual activities of female rats [111]. Bremelanotide (PT-141), an acid
derivative of melanotan II, acts as an agonist of the MC1R and MC4R and has been
demonstrated to increase erectile function and sexual desire (Figure 6) [112,113].
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In 2020, Zhou et al. reported an attractive study in which melanotan II was utilized
as a probe for selective drug delivery [114,115]. The authors synthesized and designed
ligand-drug conjugates with the melanocortin 1 receptor (MC1R) agonist melanotan-II
(MT-II) to couple a cytotoxic drug, camptothecin with low cancer resistance (Figure 7).
The drug-MT-II conjugates efficiently bound to MC1R and selectively delivered drugs
to A375 melanoma cells in vitro. Camptothecin-MT-II was used to study the inhibitory
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activity on A375 melanoma cells and yielded an IC50 of 16 nM. This approach of drug-
MT-II conjugates offers more options in cytotoxic drug selection and is noteworthy for
potentially overcoming the cancer-resistant problem of melanoma.
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4.2.3. Peptide Agonist for Vitiligo Treatment

As a key regulator of skin pigmentation, MC1R may be an effective therapeutic
target for vitiligo. However, α-MSH not only binds to MC1R but also other melanocortin
receptors. This leads to diverse physiological changes including sexual function and
immunomodulation. Furthermore, the short half-life of peptide drugs has been suggested
as a major obstacle. This emphasizes the need for potent and highly selective MC1R
agonists, distinct from α-MSH, to effectively treat vitiligo.

In 2023, Zhu et al. introduced a novel MC1R agonist capable of self-assembling
into nanofibrils (Figure 8). This peptide, known as Peptide 1, forms a hydrogel that
exhibits enhanced stability compared to free peptides. Notably, this hydrogel demonstrates
resistance to enzymatic proteolysis. In vitro and ex vivo experiments have convincingly
shown that Peptide 1 stimulates MC1R and enhances melanin production by activating
tyrosinase and tyrosinase-related protein. Researchers propose that these findings support
the MC1R agonist hydrogel as a promising treatment for vitiligo. Moreover, the peptide
hydrogel shows potential for preventing UV-induced melanoma and other skin cancers.
Consequently, Zhu et al. suggest that this selective and potent MC1R agonist hydrogel
presents an alternative for the treatment or prevention of skin pigmentation disorders such
as EPP and melanoma [70].
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4.3. Small Molecule Modulators

During the development of peptide-based drugs, challenges such as low stability
of enzymes and selectivity for receptors were encountered. For example, the peptide
agent, melanotan I (afamelanotide) is a non-selective agonist of melanocortin receptors
except for MC2R [116]. To address the limitations of peptide-based therapeutics, small
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molecule development has been rapidly evolving, utilizing peptides as starting scaffolds
and screening compound libraries [117]. As a result, BMS-470539, derived from an MC4R
agonist, has been developed [118]. Additionally, various agonists, including AP1189 and
CD08108, are under development [119,120]. Recently, dersimelagon (MT-7117), which
selectively acts on MC1R, has been approved in Europe for the treatment of EPP and
also has an anti-inflammatory effect [74,116]. Furthermore, JNJ-10229570, an antagonist
of the melanocortin 1, 5 receptors, has been developed, and it has been reported to affect
sebaceous lipid production [121].

4.3.1. BMS-470539

BMS-470539 is a small molecule agonist selective for MC1R, which was synthesized
by modifying the structure of a known MC4R agonist (Figure 9). In a study conducted
by Timothy et al., the selectivity for receptors of several compounds was measured by
comparing their activity using EC50 values of other isotypes. The EC50 (nM) value for
MC1R of Compound A (BMS-470539) was 28 ± 12 nM, which was higher than Compound
B, Compound C, and Compound D, indicating relatively low activity compared to other
compounds (Table 1). However, when expanded to other receptors, it was found that
Compound 1 did not activate MC3R, and the selectivity for MC4R and MC5R was signifi-
cantly lower than that of MC1R. Also, the other compounds had receptors with relatively
similar efficacy to MC1R and had relatively high intrinsic activity (IA) for all receptors.
This suggests that other compounds may have higher activity but lower selectivity than
compound 1 [118]. Therefore, Compound 1, known as BMS-470539, was identified as
having much better selectivity than other compounds (Table 1).
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BMS-470539 is also known for its anti-inflammatory effects. BMS-470539 was admin-
istered to mice in which an immune response was induced by LPS, and the amount of
TNF-α, an inflammatory factor, was measured. The results showed a rapid decrease of up
to 92 percent at 100 µmol/kg of BMS-470539 [118]. Kang et al. investigated the activity of
NF-κB associated with inflammation to prove the anti-inflammatory effect of BMS-470539
and found a noticeable decrease in the activity of NF-κB. Moreover, it induced a decrease in
the infiltration of white blood cells in the lungs of mice by LPS [78]. Recently, BMS-470539
was found to decrease the phosphorylation of p38, ERK1/2, and JNK involved in the MAPK
pathway associated with inflammation in neutrophils stimulated by LPS [122].
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MC1R MC3R MC4R MC5R

Compound EC50(nM) EC50(nM) EC50(nM) EC50(nM)

A 28 ± 12 NA 2600 ± 200 4400 ± 1300

B 0.19 ± 0.02 250 ± 170 2.9 ± 0.04 2100 ± 400

C 0.35 ± 0.07 2200 ± 1000 23 ± 12 3900 ± 900

D 2.5 ± 1.3 7000 ± 1700 840 ± 150 9400 ± 200

4.3.2. MT-7117 (Dersimelagon)

MT-7117, or dersimelagon, is a selective agonist of MC1R that has been found to have
a much higher selectivity for MC1R than NDP-MSH (afamelanotide), a peptide effective
in treating erythropoietic protoporphyria (EPP). In binding affinity and agonistic activity
measurement experiments conducted by Suzuki et al., MT-7117 was demonstrated to have a
Ki value of 2.26 nM for hMC1R (human MC1R), with much higher selectivity ranging from
at least 15 to as much as 700 times compared to other receptors (Figure 10). On the other
hand, NDP-MSH showed only a 10-fold difference in selectivity for MC1R compared to
other receptors, which suggested that NDP-MSH has lower selectivity than MT-7117 [123].
Due to issues with enzyme stability associated with peptide drugs and higher selectivity
for MC1R, MT-7117 has been recently approved in Europe as an alternative treatment for
EPP [116].
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A recent study revealed that MT-7117 exhibits anti-inflammatory effects [74]. The
study showed that daily oral administration of MT-7117 to rats with fibrosis induced by
bleomycin significantly delayed skin fibrosis and lung inflammation. In addition, it was
found to significantly reduce the expression of ACTA2 (α-smooth muscle actin) mRNA in
human skin fibroblasts that had been increased by TGF-β. This effect was attributed to
the inhibition of inflammatory signaling pathways such as IL-6 signaling. Based on these
effects, a clinical trial is currently underway to investigate the association of MT-7117 with
SSc patients.

4.3.3. AP1189 (Resomelagon)

A series of pyrrole aminoguanidine derivatives were investigated as ligands in the
melanocortin receptors by Lundstedt et al. In order to assess the activity of melanocortin
receptors, researchers measured the binding affinities (Ki) of pyrrole aminoguanidine
derivatives for MC1R, MC3R, MC4R, and MC5R. While most of the compounds did not
display significant activity or selectivity, the phenylpyrrole allylidene derivatives exhibited
enhanced binding affinities towards MC1R and therefore, meaningful selectivities. The
phenyl group was found to be particularly important for binding to MC1R. AP1189 ([1-(4-
chlorophenyl)-1H-pyrrol-2-yl-allylideneamino]guanidinium acetate) was identified as an
agonist for melanocortin receptors MC1R and MC3R. (Figure 11) [119,124].
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AP1189 has a unique mechanism that distinguishes it from other compounds. It does
not stimulate cAMP production and is not involved in melanogenesis. Instead, it induces
phosphorylation of ERK1/2, resulting in a decrease in cytokine levels in macrophages. This
may help resolve acute inflammation and potentially alleviate arthritis in mice [125]. Based
on these findings, AP1189 is currently being evaluated in clinical trials for the treatment of
rheumatoid arthritis and idiopathic membranous nephropathy [67].

4.3.4. CD08108

Selective novel MC1R agonists were discovered by the research group in GALDERMA
research and development in 2013 [120]. Imidazolyl-linked azetidine derivatives were
synthesized and evaluated for activity for human melanocortin receptors. Among them,
CD08108 exhibited a significant hMC1R agonistic activity with EC50 of 70 nM and showed
the selectivity of MC1R over MC4R up to 64 times (Figure 12). In 2015, Boiteau et al.
reported an efficient synthetic route for CD08108 in a kilogram scale [126]. CD08108 has
been implicated in the process of melanogenesis, indicating its potential as a therapeutic
target for the treatment of skin conditions such as hypodermic or photosensitive diseases.
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4.3.5. JNJ-10229570

2,3-Diphenyl-5-anilino [1,2,4]thiadiazole has been confirmed to act as an agonist
for MC4R, thereby inhibiting food intake and affecting eating behavior in mice. JNJ-
10229570 is a compound with 2,3-(2-methoxyphenyl) at 2,3-Diaryl and reported to function
as an antagonist for MC1R and MC5R, which are melanocortin receptors expressed in
sebocytes (Figure 13). Melanocortin receptors in sebocytes are known to play a crucial
role in producing sebaceous lipids. Studies on the relationship between MC5R activation
and sebocytes indicate that the activation of MC5R increases the production of cAMP,
inducing the production of sebaceous lipids [127–129]. Sebaceous lipids are essential for
skin integrity and inflammatory processes. However, excessive sebum production is shown
to be a significant contributor to the pathophysiology of Acne vulgaris [130–132]. Eisinger
et al. demonstrated that JNJ-10229570 acts as an antagonist for MC1R and MC5R present
in human sebaceous cells, inhibiting sebaceous secretion and reducing sebaceous gland
size [121]. The IC50 measurements for MC1R and MC5R, using 125I-NDP-α-MSH, were
found to be 270 ± 120 and 200 ± 50 nM (Mean ± S.D.), respectively, indicating that JNJ-
10229570 binds to both receptors. Furthermore, the reduction in the amount of cAMP,
elevated by NDP-MSH after the sebocyte was exposed to 0.6 nM of JNJ-10229570, suggests
that this compound acts as an antagonist for MC1R and MC5R. In addition, human skin
transplanted into SCID mice and treated with JNJ-10229570 showed a decrease in squalene,
wax esters, and triglyceride, suggesting new information about the effect of JNJ-10229570
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conditions such as systemic sclerosis, neuroinflammation, rheumatoid arthritis, fibrosis,
and others. With numerous innovative molecules and clinical trials currently underway,
it is possible that these drugs may soon improve the quality of life for those with chronic
inflammatory conditions. Furthermore, the development of MC1R ligands using multiple
chemistry approaches and knowledge of the receptor’s crystal structure may lead to the
creation of additional drugs to treat new conditions in the future.
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