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Abstract: Breast cancer (BC) is the most common cancer in women, with metastatic BC being
responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain
metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and
tumor–stroma interactions. Most of these interactions provide a unique opportunity for development
of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the
epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain
metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood–
brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted
therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such
as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new
drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic
strategies, have shown the potential to ease the disease in preclinical studies, but remain limited
by multiple resistance mechanisms. This review summarizes some of the current understanding
of the mechanisms involved in BC brain metastasis and highlights current challenges as well as
opportunities in strategic designs of potentially successful future therapies.

Keywords: blood–tumor barrier; pathogenesis; immunotherapy; therapeutic advantages

1. Introduction

Breast cancer (BC) has recently surpassed lung cancer to become the most frequently
diagnosed cancer among women in the world [1]. Furthermore, breast cancer represents
the second most frequent type of cancer that causes brain metastasis after lung cancer,
affecting approximately 10–16% of patients [2]. According to recent statistics from the World
Health Organization (WHO), in 2020 alone, BC was the primary cause of cancer-related
deaths in women, with over half a million individuals succumbing to this disease [3]. Poor
nutrition and lack of physical activity contribute to the greater incidence of BC in developed
countries, while the higher mortality rate commonly found in developing countries is most
often associated with missed or late diagnosis, lower screening frequencies, and limited
therapeutic options [4,5]. Beyond these external factors, metastatic disease (the spread of
cancer from the primary site) is an intrinsic event in tumor biology that is responsible for
the majority of BC deaths worldwide [6].
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BC initially spreads to neighboring lymph nodes that drain the breast, then progresses
to distal organs; in particular, the bone, liver, lung, and brain [7]. The preferred metastatic
site for BC cells is dependent on factors such as the BC subtype, intrinsic tumor biology,
tumor microenvironment, and clonal evolution (acquisition of gene mutations and cellular
adaptations that drive metastasis) [8]. An increased risk of brain metastasis is also associ-
ated with additional factors such as tumor size, grade stage, lymph node status, age, and
the presence of proliferation marker Ki67 [9].

Because specific tumor characteristics can vary greatly from one patient to another [8],
clinicians have adopted the presence or absence of the now well-characterized markers
as a guide to anticipate the behavior of the lesions and to determine the best course of
treatment. Histological features as well as established cell surface markers (progesterone
receptor—PR, estrogen receptor—ER, and the human epidermal growth factor receptor
2—HER2), genomic markers (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic sub-
unit alpha—PIK3CA, breast cancer gene 1—BRCA1, breast cancer gene 2—BRCA2), prolif-
eration marker (Ki67), and immunomarkers (tumor-infiltrating lymphocytes, programmed
death-ligand 1—PD-L1) are routinely used in the clinic for diagnosis [10]. However, the
standard approach to the treatment of BC mostly relies on the expression of the molecular
markers ER, PR, and HER2. The presence or absence of these markers has enabled the
development of targeted therapies, resulting in treatments that are more effective.

Triple Negative Breast Cancer (TNBC)

The absence of all three molecular markers is referred to as triple negative BC (TNBC) [11].
TNBC is typically a highly metastatic subtype of BC that is difficult to treat, as it often devel-
ops resistance to current forms of chemotherapy [12]. In addition to being highly metastatic,
TNBC has also been observed to cause brain metastasis more frequently compared with
other BC subtypes [13]. The reasons for the increased numbers of TNBC brain metastases
are not yet fully understood; however, they might be associated with the aggressive nature
of TNBC and its natural ability to invade distant tissues, including the brain.

2. Brain Metastasis and Breast Cancer Subtypes

The incidence rates for breast cancer brain metastasis vary according to the breast
cancer subtype. HER2-positive and TNBC subtypes are more frequently found causing
metastasis to the brain [14]. Approximately 50% of brain metastases attributed to BC are
found in patients diagnosed with the TNBC subtype, 33% with the HER2-positive subtype,
and 14% with the luminal subtype (Table 1) [13,15,16]. Although most brain metastases
occur during the advanced stages of BC, the TNBC subtype progresses very quickly to the
brain during the early disease stages. A recent study determined that patients with TNBC
had only 22 months between BC detection and brain metastasis, compared with 30 months
for HER2-positive BC and 63.5 months for the luminal BC subtype [17,18]. Additional
studies reveal that patients with TNBC brain metastasis exhibit the shortest overall survival
rate when compared with patients who developed brain metastases from any other BC
subtype [16,19,20].

Table 1. BC subtype relevance to brain metastasis incidence and OS rate.

Subtype Molecular Marker Ki-67 Incidence of CNS Metastasis OS Rate after BCBM 1

Luminal A and B ER+, PR+, HER2− Low or high 14% 7.1–9.3
HER2-positive ER+, PR+, HER2+ High 33% 11.5–18.9

TNBC ER−, PR−, HER2− High 50% 4.4–4.9
1 Numbers are represented in months. CNS: central nervous system; OS: overall survival; BCBM: breast cancer
brain metastases [13,15,16].

Further studies also show that patients whose BC has metastasized to the brain had
poorer outcomes compared with patients who displayed metastatic spread to other sites [21].
Those with brain metastases may also present with neurological comorbidities as well as
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associated downstream effects, ultimately resulting in a significant increase in mortality
rates [22]. The National Cancer Institute′s (NCI) Surveillance, Epidemiology, and End
Results (SEER) database estimates that the proportion of metastatic BC patients presenting
with brain metastasis is over 7% [23]. Clinical studies show that some patients with brain
metastases due to aggressive BC subtypes such as TNBC have a median survival of less
than a year [24]. While treatment approaches for BC metastasis to the brain depend on the
extent of the disease, general regimens include surgery, radiotherapy (including stereotactic
radiosurgery), and chemotherapy [25].

The development of brain metastases is unique in that the cancer cells must cross and
modify the blood–brain barrier (BBB) to facilitate invasion into the brain. This very same
BBB that restricts cancer cells from crossing into the brain, also limits the access of treatment
options to the brain. Thus, chemotherapy, targeted therapy, and hormonal therapy are
often unsuccessful due to their inability to cross the BBB [9].

3. Brain Metastasis: Mechanisms and Pathophysiology
3.1. Dissemination of BC Cells to the Brain

The metastatic process is highly complex and poorly understood, including multiple
steps such as genetic and epigenetic alterations, angiogenesis, tumor–stroma interactions,
intravasation through the basement membrane, survival in the circulation, and extravasa-
tion into distal tissues. It begins with the initial detachment of BC cells from the primary
tumor and comprises a sequence of critical and orchestrated steps. This involves invasion
of the cancer cells through the basement membrane into adjacent tissues, intravasation
into the blood vessels/lymphatic system, survival and arrest in the circulatory system,
extravasation via trans-endothelial migration into distant tissues, colonization, and the
eventual formation of distant metastatic lesions [26–28].

The early steps of tissue invasion and intravasation are critical events necessary to the
formation of metastatic lesions and involve the activation of epithelial-to-mesenchymal
transition (EMT), extracellular matrix remodeling, and induction of angiogenesis. To
intravasate into the circulation, BC cells must break down endothelial junction proteins.
Perivascular macrophages or interactions between tumor cells and endothelial cells (ECs)
facilitate the intravasation process [29].

During extravasation, metastatic cells present in the circulation cross through the cell
junctions between the distant endothelial cells under the support of specific factors, where
they can remain dormant. Eventually, surviving metastatic cells escape the dormant stage
to form micro-metastatic foci along blood vessels and multiply, interacting with local host
cells. One of the primary metastatic sites for a small number of BCs, especially the TNBC
subtype, is the brain. However, here, the BC cells are confronted with the formidable
challenge of crossing the BBB [28,30].

3.2. The Blood–Brain Barrier

Metastasis to the brain is a process that, in most cases, is the result of a much longer
latency following the initial detection of the primary breast tumor and requires specific
cellular adaptations and interactions [31]. The delayed latency in brain metastasis is pri-
marily attributed to the presence of the BBB, a highly specialized structure in the brain
microenvironment that limits the access of unwanted molecules or cells into the brain
parenchyma [32]. The BBB consists of a protective network comprising polarized ECs
connected by adherent and tight junctions, endothelial and parenchymal basement mem-
branes, pericytes, astrocytes (endfeet), and microglia (Figure 1). Not only does the BBB
control the permeability of the brain microenvironment to macromolecules, but it is also in-
volved in transmitting signals and maintaining the homeostasis of the nervous system [33].
Microvascular ECs in the brain are crucial to maintaining and ensuring the integrity of
the BBB. They constitute the first layer of the BBB and are polarized in structure, with
luminal and abluminal surfaces having unique biochemical and functional features [34].
An important feature of the ECs in the BBB is their specific expression of transmembrane
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proteins, such as occludins (zonula occludens 1 and 2), claudins, JAMs (junctional-adhesion
molecules), and accessory proteins that constitute the tight junctions as well as proteins
that constitute the adherent junctions (VE-Cadherin, PCAM1, and catenins) [33]. Thus,
the entry of substances through the endothelial cells is tightly regulated, and paracellu-
lar transport (between ECs) is limited by the expression of proteins that constitute these
junctions. The formation of tight and adherent junctions between ECs stabilizes the BBB
integrity and creates a non-fenestrated vasculature that prevents unwanted molecules
from entering the brain [35]. Consequently, ECs express a variety of uptake and efflux
transporters, which play a crucial role in maintaining the brain homeostasis. The transport
of soluble factors such as carbohydrates, amino acids, and hormones uses carrier-mediated
transporters; however, other substances, such as peptides, transferrin, or growth factors
use receptor-mediated transporters [36]. Additionally, the transport of substances from the
brain parenchyma or endothelium to the bloodstream is mediated by efflux pumps, such
as the ATP-binding cassette family (ABC), that export metabolites and most anticancer
drugs [37,38].
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Figure 1. Schematic representation of the blood–brain barrier (BBB). The BBB is a specialized structure
comprising endothelial cells (ECs), pericytes, basement membrane, and astrocytes (a). The ECs are
anchored together by tight-junction (claudins, JAMs) and adherent-junction (VE-cadherin, PCAM1)
proteins, thereby limiting any paracellular transport into the brain. The transport of soluble factors
into the brain parenchyma is facilitated by carrier-mediated or receptor-mediated transporters (b).
Pericytes, which surround the blood vessel, also play an important role in regulating BBB permeability
by modulating the formation of tight junctions in ECs as well as by secreting the components of
the endothelial basement membrane with the support of the ECs. The astrocytes also play a role
in supporting the maintenance of the BBB barrier by secreting the components of a second layer
of basement membrane (parenchymal basement membrane) and by connecting their endfeet to
surround the BBB (c).

Pericytes are found at regular intervals along the capillary walls and play a crucial
role in the formation of the BBB by attaching to and creating tight junctions with the ECs.
These cells have a direct influence on BBB permeability by regulating the formation of
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ECs’ tight junctions and adherent junctions [39,40]. In addition, astrocytes, another group
of cells, surround the BBB with their endfeet connected to the basement membrane via
junctional molecules (i.e., dystroglycan) and channels (i.e., aquaporin 4/AQP4, which
helps maintain water balance in the brain). Astrocytes have multiple functions in the
regulation of the BBB [41]. They aid in controlling cerebral blood flow by responding
to neuronal perturbations via Ca2+ signaling. Additionally, astrocytes directly influence
vascular growth and proliferation through angiotensin 1 (ANG-1) and vascular endothelial
growth factor (VEGF) secretion [33,41–43]. The resident immune cells of the brain, known as
microglia, have the unique ability to modulate both pro- and anti-inflammatory responses
through the expression of either M1 or M2 phenotypes and the release of a variety of
molecular cytokines [44,45].

The BBB consists of two basement membranes: an inner endothelial membrane, de-
posited by ECs and pericytes, and an outer parenchymal membrane, secreted by astrocytes.
Rather than just being a solid layer of tissue, the basement membrane acts as a reservoir for
secreted signaling proteins and a barrier to incoming unwanted molecules and cells [41].

The specific mechanism by which BC cells cross the BBB remains unclear. How-
ever, it has been reported that expression of α2,6-sialyltransferase (ST6GALNAC5) cyclo-
oxygenase (COX-2), and the epidermal growth factor receptor (EGFR) ligand HBGF, medi-
ate the passage of BC cells across the BBB. Interestingly, ST6GALNAC5 has been identified
as a distinct mediator that plays a role in promoting metastasis to the brain rather than
any other organs [46]. Chemokines and their specific receptors are demonstrated to be
other factors involved in the migration of BC through the BBB. The stromal-cell-derived
factor 1α chemokine (SDF-1α or CXCL12) and its receptor (CXCR4) have been reported to
play several roles in BCBM, such as homing, cell motility, and metastasis progression. The
CXCL12/CXCR4 signaling pathway plays a crucial role in facilitating the migration of BC
cells through the BBB. As well, the expression of CXCL12 by BC cells induces instability
in the blood vessels, and it was found to be significantly more abundant in BC cells com-
pared with normal tissues [47,48]. Additionally, among the various chemokine receptors
expressed in cancer, CXCR4 is one of those most frequently found at the metastatic site.
The activation of CXCL12/CXCR4 has been shown to enhance adhesion and activate trans-
endothelial migration by activating PI3K/Akt [48,49]. Altogether, the CXCL12/CXCR4
signaling axis appears to play an important role in facilitating BC cell migration through
the BBB and promoting the formation of brain metastasis.

Additionally, extracellular vesicles (EVs) play an important role in facilitating the
passage of BC cells across the BBB. Metastatic breast cancer cells can secrete EVs that
facilitate the BC cells’ disruption of the BBB. It has been reported that breast cancer cells can
secrete small EVs containing microRNA miR-105, which can reduce the expression of ZO-1
(zonula occludens 1) in endothelial cells, resulting in the disruption of the intercellular
junctions [50]. More recent studies have now demonstrated that BC cells can transfer the
microRNA miR-181c to endothelial cells with small EVs, resulting in the decrease in actin
dynamics, which leads to the accumulation of tight-junction proteins in the cytoplasm [51].

3.3. The Blood–Tumor Barrier (BTB)

Upon initial metastatic colonization, newly “seeded” tumor cells residing in the brain
vasculature activate the process of neo-angiogenesis and microenvironment remodeling
to facilitate tumor regrowth and invasion. This results in the formation of a blood–tumor
barrier (BTB), a newly established neurovascular-tumor unit with distinct physiological
properties when compared with the intact BBB [41].

The BTB is inherently “leaky” due to the lack of tight junctions and astrocytic–
endothelial cell contacts, resulting in a fenestra and discontinuous endothelia, which
contribute to increased permeability (Figure 2) [30]. As metastatic lesions begin to outgrow
their oxygen supply, angiogenesis occurs, mainly driven by VEGF [52]. The dynamic
angiogenesis that occurs during brain metastatic progression is very heterogeneous among
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lesions, such that this is thought to be one of the main contributing factors to the hetero-
geneity observed in tumor permeability to chemotherapy [53].
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Figure 2. Schematic representation of the brain–tumor barrier (BTB). After initial metastatic colo-
nization in the brain, BC cells induce the process of neo-angiogenesis, resulting in the formation of
a new neurovascular-tumor unit known as the BTB. The BTB is not selective when compared with
the intact BBB, mainly due to the loss of tight junctions between endothelial cells, which results in
a discontinuous endothelium along the blood vessel that allows easy access of many cells, such as
cancer and immune cells, to the brain parenchyma. Additionally, the decreasing and the misaligning
of the astrocyte endfeet around the blood vessels contribute to the increase in permeability of the BTB
(*). To further boost oxygen supply to the brain, endothelial cells stimulate angiogenesis by increasing
the expression of VEGFR.

Astrocytes, pericytes, and microglia confer additional cellular and molecular proper-
ties to the BTB. Astrocytes support and protect neuronal cells from damage and apoptosis by
secreting inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin
1 (IL-1), and interleukin 6 (IL-6) [54]. However, the constant release of these cytokines stim-
ulates tumor proliferation and survival. As well, astrocytes release exosomes containing
miRNA-19a, which induces loss of the phosphatase and tensin homolog (PTEN) to promote
outgrowth and invasion of tumor cells within the brain [54,55]. Microglia in the brain tumor
microenvironment also secrete multiple growth factors and cytokines, such as transforming
growth factor beta (TGFβ), TNFα, IL1, IL6, VEGF, epidermal growth factor (EGF), as well
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as metalloproteinases, which further promote tumor proliferation and invasion in addition
to supporting angiogenesis [44,45,56]. Microglia cell populations also support metastatic
colonization through the wingless-related integration site (Wnt) pathway. Additionally,
subpopulations of desmin-positive pericytes are found in high numbers in brain metastases,
and their presence is associated with an increased permeability of the BTB [57,58].

Altogether, the distinct physical and molecular properties of the BTB add to the
complexity of treating breast cancer brain metastases (BCBMs). Studies using preclinical
animal models of BCBMs have revealed that despite the fact that varying levels of BBB
disruption are observed, the buildup of chemotherapeutic agents remained restricted,
resulting in decreased apoptosis and cytotoxicity in almost 90% of metastatic lesions [58,59].
Such observations have led to the development of techniques targeting disruption of the
BBB to improve drug delivery to brain tumor tissues.

3.4. The Brain Tumor Microenvironment Cellular Composition

For BC cells to survive and expand at the metastatic site, they need to adapt to
the new microenvironment and develop interactions with surrounding host stroma cells
(Figure 3). In the brain, the microenvironment primarily comprises neurons, astrocytes,
and microglia [41], which are described in greater detail below.
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Figure 3. Schematic representation of the established interactions between metastatic BC and host
stroma cells. Metastatic BC cells in the brain can express high levels of serpins to prevent the astrocyte
metastasis-suppressive effect and can also stimulate these astrocytes to secrete TGF-β, IL-1β, and
TNF-α, leading to tumor cell expansion. These BC cells can also secrete exosomes that stimulate
microglia to support tumor progression through Wnt signaling and microglia polarization to an M2
phenotype. Furthermore, BC cells can exploit neurotransmitters secreted by neurons (e.g., GABA), as
bio-precursors for the generation of NADH, further promoting tumor cell proliferation.

3.4.1. Neurons

Neurons are the essential functional component of the central nervous system (CNS).
Recent studies have demonstrated that within the brain microenvironment, BC cells adopt
a brain-like phenotype, exhibiting characteristics similar to native neurons, with elevated
GABA (γ-aminobutyric acid) receptor and transporter levels. These attributes provide a pro-
liferative advantage for the BCBM cells, as the augmented GABA uptake and metabolism
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promote NADH formation, subsequently boosting adenosine triphosphate production [60].
Studies conducted by Zeng et al. (2019) showed that BC cells are capable of glutamate up-
take, which can then activate N-methyl-D-aspartate (NMDA) receptors. This activation is
essential for metastatic colonization within the brain and is correlated with an unfavorable
prognosis [61].

3.4.2. Astrocytes

Astrocytes are considered the most abundant glial cells present in the brain parenchyma,
and they exhibit a crucial role in sustaining the BBB. These cells surround the brain micro-
blood vessels and neuronal processes; express functional proteins, such as dystroglycans,
dystrophin, and AQP4; and secrete laminin α1 and α2, which play critical roles in pre-
serving the BBB [35,62]. It has been suggested that during the initial process of brain
colonization by BC cells, astrocytes target and attack the newly seeded metastatic cells
as a defense mechanism. As well, reactive brain-stroma-derived plasmin cleaves the
Fas ligand (FasL) present on the surface of the astrocytes, facilitating interaction with its
receptor, Fas, and consequently inducing apoptosis in the tumor cells. However, plas-
minogen activator (PA) inhibitory serpins, which are highly expressed in BCBM cells, can
disrupt this process [54,63]. Gong et al. (2019) demonstrated that TNBC cells exposed to
astrocyte-conditioned medium (ACM) have a higher tendency to form brain metastases,
with upregulation of angiopoietin-like 4 (ANGPTL4) being a key factor [64]. Knockdown
of ANGPTL4 in TNBC cells decreased the ACM-induced tumor cell metastatic growth
in the brain and improved survival. This study also determined that astrocytes produce
transforming growth factor-beta 2 (TGF-β2), which is responsible in part for ANGPTL4
upregulation via suppressor of mothers against decapentaplegic (SMAD) signaling. They
also showed that tumor cells communicate with astrocytes, thereby increasing TGF-β2 ex-
pression through interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) [64,65].
Altogether, these findings suggest that TNBC cells interact with astrocytes, facilitating brain
metastasis through a TGF-β2/ANGPTL4 axis.

BC cells that survive the brain microenvironment can exploit the astrocytes through
communication via gap junctions composed of connexin 43 (Cx43) and protocadherin 7
(PCDH7). This interaction provides the BC cells with advantages in growth, chemoresis-
tance, stemness, and autophagy [66]. The transfer of the second messenger cGAMP from
tumor cells to astrocytes leads to the increased secretion of interferon-α (IFN-α) and tumor
necrosis factor-α (TNF-α) by the astrocytes. This, in turn, activates the signal transducer
and activator of transcription 1 (STAT1) and nuclear factor κB (NF-κB) pathways in the
brain metastatic cells to promote tumor growth and chemoresistance [67].

Astrocytes also can release polyunsaturated fatty acids, which can then trigger the
activation of peroxisome proliferator-activated receptor γ (PPARγ) in BCBM cells, thereby
leading to increased proliferation. Furthermore, astrocytes can modify the structure of the
BCBM cells through cytoskeleton remodeling, improving actin stress fiber organization,
and promoting cell elongation, ultimately enhancing their migratory capacity [68,69].

3.4.3. Microglia

Microglia are a unique group of resident macrophages in the CNS that function to
clear cellular debris and actively survey the brain parenchyma. Microglia exhibit two
distinct activation states with contrasting roles in brain metastasis [56]. The M1-like
phenotype stimulates BBB disruption to enable leukocyte infiltration, while the M2-like
phenotype contributes to angiogenesis and immunosuppression. Thus, together the M1
and M2 microglia promote tumor progression [70]. When stimulated by physical contact,
microglia produce and accumulate reactive oxygen species (ROS), which trigger apoptosis
or other oxidative damage as part of the cellular immune defense. Moreover, the impact
of these processes is mitigated by the increased expression of MYC in the BCBM cells,
which in turn stimulates the production of glutathione peroxidase 1 (GPX1), an antioxidant
enzyme [71,72].



Int. J. Mol. Sci. 2023, 24, 12034 9 of 22

Like other immune cells, microglia also perform cytotoxic functions. However, during
brain colonization, metastatic BC cells can secrete high levels of neurotrophin-3 (NT-3),
which promotes metastatic growth by reversing EMT to mesenchymal–epithelial transitions
(METs), thereby increasing the cellular expression of E-cadherin [73,74]. As well, BC cells
can increase the secretion of exosomes containing miRNA-503, resulting in the microglia
M2 phenotype polarization and accumulation of immune-suppressive cytokines in the
microglia that subsequently inhibit T-cell proliferation [75–77].

4. Signaling Pathways Involved in BCBM

Cancer stem cells are widely recognized as the primary initiators of tumorigenesis
and metastasis. The Notch and Wnt signaling pathways are crucial to maintaining normal
stem cell function but have also been implicated in cancer stem cells, with deregulation
observed in multiple malignancies, including BC, glioblastomas, and lung cancer [78–80].
An expanding collection of evidence shows the importance of the Notch signaling pathway
in maintaining the stem-like properties of BC stem cells in distinct microenvironments [81].
Earlier studies demonstrated that BC cells with a high propensity to metastasize to the brain
(MDA-MB-231) exhibit increased activation of the Notch pathway via Notch1 and Jagged-2
(JAG2) [82]. Moreover, studies by Xing et al., 2013, determined that BC cells located in
the brain display an elevated expression of interleukin 1β (IL-1β), which stimulates local
astrocytes to express Jagged-1 through the NF-κB signaling pathway. This interaction
between astrocytes and BC stem cells greatly enhances the activation of the Notch signaling
pathways within the cancer cells [83]. Notably, earlier studies demonstrated that silencing
Notch1 in MDA-MB-231 cells diminishes the CD44high/CD24low phenotype, leading to
reduced brain metastasis [84]. Additionally, microglia can contribute to the infiltration and
colonization of brain tissue by BC cells by functioning as active transporters and guiding
rails in a Wnt-dependent manner [57].

Numerous studies have also explored the clinical and functional significance of EGFR,
HER2, HER3, and the associated downstream signaling pathway components, including
phosphoinositide 3-kinases (PI3K), serine/threonine kinase (AKT), mammalian target of
rapamycin (mTOR), and PTEN in the context of BCBM [85–88]. The PI3K/AKT/mTOR axis
is known to impact BC cell growth, survival, migration, and metabolism and holds a con-
siderable influence in the regulation of CNS metastasis [89–91]. Studies by Blazquez et al.,
2018, have shown that the PI3K/AKT/mTOR pathway leads to the increased expression of
immune-related genes (PD-L1, CSF1, and CSF1R) or cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) in microglia or cancer cells within the brain metastasis microenviron-
ment. The expression of these genes and the invasive BCBM cells significantly diminish
when a pharmacological inhibitor targeting the PI3K/AKT/mTOR signaling pathway is
employed [92].

Alternatively, PTEN is a lipid phosphatase that exhibits a pivotal role in the negative
regulation of the PI3K/AKT signaling pathway. Thus, loss of PTEN in neoplastic cells
underlies the activation of the PI3K/AKT pathway [93,94]. This was demonstrated by
Wikman et al., 2012, who reported that the expression of PTEN was considerably lower
in brain metastases than in nonmetastatic primary tumors. The frequency of PTEN gene
mutations in the BCBM was significantly higher than that of the primary tumor in the
mammary gland [95]. Further studies by the same group found that BC cells with a normal
expression of PTEN would lose PTEN expression upon brain metastasis but restore its levels
once leaving the brain microenvironment. Interestingly, the modulation of this mechanism
was governed by astrocyte-derived microRNAs (miRNAs). As well, the depletion of PTEN
in cerebral metastatic cells led to an upregulation of cytokine chemokine (C-C motif) ligand
2 (CCL2), consequently fostering the proliferation of brain metastatic tumor cells [55].

The ERBB family of receptor tyrosine kinases (RTKs) comprises EGFR, alternatively
designated as ERBB1 (HER1), ERBB2 (HER2), ERBB3 (HER3), and ERBB4 (HER4) [96].
Members of this family contribute to the regulation of essential cellular functions, such as
differentiation, proliferation, angiogenesis, migration, survival, apoptosis, and metabolism,
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by activating downstream signaling cascades, including PI3K/Akt, Ras/MEK/ERK, Janus-
activated kinase/signal transducer and activator of transcription (JAK/STAT), as well as
phospholipase Cγ (PLCγ)/PKC [97].

Within the ERBB family, the expression of HER2 and EGFR is frequently increased
in various cancer types, including BC [98]. In fact, there is a correlation between HER2
overexpression and the development of brain metastases in BC patients [99]. In vivo
studies suggest that increased HER2 expression enhances the expansion of BCBM [100].
The overexpression of HER3, another member of the EGFR family, is also linked to the
development of brain metastases in individuals with BC. The increased prevalence of brain
metastases in HER2/HER3-positive BC patients is attributed to several factors [101]. There
is a significant level of heregulin, the primary ligand of HER2/HER3 heterodimers, in
the human brain, and a growing body of evidence suggests that it promotes the trans-
endothelial migration of HER2/HER3-positive BC cells across the brain microvascular
endothelia. This process is mediated by the activation of intracellular pathways leading
to the secretion of MMP-9 [102]. Although the treatment of HER2-positive patients with
trastuzumab prolongs the lifespan of the patient, its limited ability to penetrate the BBB
may in fact cause the brain to serve as a “sanctuary” site for metastases, allowing brain
metastasis to manifest more prominently with time [103].

5. Current Treatments and Therapies for BCBM

Despite advances in the early detection and treatment of BCBM, the 5-year overall
survival (OS) rate remains lower than 30% [28]. Local stereotactic radiosurgery (SRS)
and whole-brain radiotherapy (WBRT) result in early and late neurotoxicity, without any
considerable improvement in OS [16,104–106]. Standard systemic chemotherapy has been
observed to increase OS in BCBM patients compared with no chemotherapy [107,108], but
an increase in the rate of metastatic progression has also been reported. However, these
reports lack clarification of the direct effect of the systematic approach on BCBM [107,108]. As
well, a low treatment efficacy was also observed using immunotherapy alone or associated
with other treatment approaches. Once the BCBM evolves multiple resistance mechanisms
to evade the immune system, the physical impairment imposed by the BTB and formation
of a new tumor microenvironment supports the growth of the metastatic tumor [109–111].

5.1. Utilization of New Anticancer Drugs

While local interventions remain the most important method of targeting brain metas-
tasis in BC, systemic therapy plays a significant role in the treatment. As well, monoclonal
antibodies (trastuzumab and pertuzumab) and tyrosine kinase inhibitors (TKIs; lapatinib,
neratinib, tucatinib, and pyrotinib) combined with capecitabine are also frequently utilized.
More recently, antibody–drug conjugates (ADCs; trastuzumab emtansine and trastuzumab
deruxtecan) have also been employed as a strategy for treating HER2+ BC with brain metas-
tasis [112]. Initial studies primarily focused on TKIs because of their small molecular mass.
However, it soon became evident that due to the extensive damage of the BBB attributed
to metastasis, the larger ADCs were also able to penetrate the brain parenchyma, thereby
providing superior outcomes. In a recent single-arm, phase II clinical trial (TUXEDO-1),
trastuzumab deruxtecan exhibited a high intracranial response rate of 73.3% and median
progression-free survival (PFS) of 14 months [113]. In the hormone receptor positive/HER2
negative (HR+/HER2−) and the TNBC subset of BC patients with brain metastasis, the
overall prognosis and response to therapies is less successful, with fewer studies on po-
tential systemic treatments [114]. Some responses have been documented on the use of
aromatase inhibitors and fulvestrant in HR+/HER2− patients, while in TNBC, the anti-
angiogenic bevacizumab and the microtubule inhibitor eribulin have shown some CNS
activity [115,116]. The list of potential new drugs being tested for brain metastasis includes
PARP inhibitors, PI3K inhibitors, ATM inhibitors, and blood–brain barrier disruptors [25].
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5.2. Utilization of Immunotherapy

Due to the limited brain penetration of drugs administered systemically and the previ-
ous belief that brain metastases are poorly immunogenic, patients with brain metastasis
were initially excluded from clinical trials involving systemic immunotherapies (ITs) [117].
However, it is currently known that enhancing immune responses against BCBMs does
improve the disease outcome [25]. Immunotherapeutic strategies against BCBMs can be
classified broadly into two categories: (1) those that enhance immune responses, leading to
anti-tumor activity such as T-cell-focused immunotherapies and vaccinations, and (2) those
that inhibit immunosuppression, thereby removing the brakes on anti-tumor immunity
(e.g., immune checkpoint inhibitors, ICIs; tumor-associated macrophages, TAMs; and
microglia-targeted therapies). Currently, several immunotherapies have been employed in
treating BCBMs, some of which are highlighted below.

5.2.1. T-cell-Focused Immunotherapies

The immunotherapeutic strategies not directed against immunosuppression, mostly
are directed toward improving the anti-tumor responses of T cells [118]. Adoptive cell
therapy (ACT) involves the expansion of T-cell-receptor (TCR)-transduced lymphocytes
or autologous tumor-infiltrating lymphocytes (TILs), which are later transferred back into
the patient in the presence or absence of lymphodepletion and/or concurrent BC. Eight
infusions of polyclonal activated T cells, transduced with anti-CD3 and anti-HER2 bispecific
antibodies (HER2Bi) [119], resulted in anti-tumor responses [120]. Furthermore, another
form of ACT that has yielded promising results in the management of solid tumors is the
adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells [121]. Priceman
et al., 2018, demonstrated that HER2-targeted CAR (HER2-CAR) T cells containing tumor
necrosis factor ligand superfamily member 9 (4–1BB) intracellular co-stimulatory domains
suppressed T-cell exhaustion as well as enhanced proliferative capacity compared with
those with the CD28 domain for co-stimulation [121].

5.2.2. Vaccinations

Most cancer vaccinations involve dendritic cells (DCs), which are antigen-presenting
cells (APCs) that capture and present antigens to T cells for activation [122]. Because BC is
now considered an immunogenic disease, various BC tumor-associated antigens (TAgs),
including HER2 and mucin 1 (Muc1), are currently being explored as potential vaccines
for patients with extracranial BC tumors [123,124]. Several ongoing clinical trials are
investigating the potential of DC vaccines as potential therapeutic agents against BCBMs in
patients with BC (NCT02808416, NCT01782274), including a phase I trial investigating the
autologous, tumor-lysate-pulsed DC vaccine DCVax-Direct [125].

5.2.3. Immune Checkpoint Inhibitors (ICIs) Targeted Therapies

Immune checkpoint blockade involves the use of ICIs that target molecules such as
programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) inhibitory receptors, expressed on T cells, and their ligands (PD-L1 and PD-L2),
expressed on tumor cells and stromal cells, to avert immunosuppression [126]. To increase
their endurance in a patient, cancer cells may co-opt these inhibitory signaling pathways to
evade recognition and elimination by host T cells, thereby counteracting host anti-tumor
immune responses. [126]. Currently, some available ICIs include monoclonal antibod-
ies against PD-L1 (durvalumab, avelumab, and atezolizumab), PD-1 (pembrolizumab,
nivolumab, and cemiplimab), and CTLA-4 (ipilimumab and tremelimumab) [127,128].
Combination therapies involving these ICIs have been reported to increase ICI efficacy.
For instance, a combination of nivolumab and ipilimumab enhanced the response rates
in some melanoma patients (approx. 50–55%) [127,128] compared with ipilimumab alone,
with response rates of 16–25% [129]. One drawback to the use of combinatorial ICI therapy
is the presence of adverse effects in 96–97% of the patients that received dual ICI therapy
compared with 68% in monotherapy trials with nivolumab [130].
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5.2.4. Tumor-Associated Macrophages (TAMs) and Microglia-Targeted Therapies

In addition to ICI, strategies targeting specific cells are also being investigated as
therapies for treating BCBMs. For instance, the PI3K pathway is reported to be activated in
over 70% of BCBMs [87,131], and it plays a critical role in the metastasis-promoting capacity
of TAMs by enhancing the expression of immunosuppressive genes like PD-L1 and the
colony-stimulating factor (CSF) 1 receptor (CSF1R) [132]. The use of BKM120 (buparlisib)
to inhibit PI3K in infiltrating TAMs [133] led to the repolarization of TAMs to a more
anti-tumor phenotype, resulting in a reduction in BC infiltration into the brain parenchyma
tissue [132]. However, a phase II clinical trial of BKM120 in patients with metastatic TNBC
recently showed that BKM120 alone may not be sufficient in preventing metastasis in
this BC subtype [134]. Nevertheless, there is currently an ongoing phase II clinical trial
(NCT02000882) of BKM120 in combination with chemotherapy (capecitabine) to prevent
BCBM in patients; the results have not yet been published in a peer-reviewed journal. It is
now well recognized that the activation of PI3K signaling pathways leads to downstream
activation of the protein kinase B (Akt) as well as the mechanistic target of rapamycin
(mTOR) pathways [135]. These pathways have been implicated in the progression of
different cancers, including BC [135]. Therefore, various drugs have now been engineered
to target some critical components of these pathways in an effort to prevent BCBMs,
although only a few of them have made it to clinical trials [135]. Everolimus is an mTOR
complex 1 (mTORC1) inhibitor with the ability to penetrate the BBB [135] that was approved
for late-stage HER + BC patients in combination with aromatase inhibitors [136]. Currently,
everolimus, in combination with vinorelbine and trastuzumab, is in a phase II clinical trial
against BCBMs [137]. Furthermore, the CSF1/CSF1R signaling axis (downstream effector
of the PI3K pathway) involved in the differentiation and survival of macrophages [138]
has been under active investigation against BCBMs. In a murine model, TAM CSF1R
signaling promotes the intravasation and invasiveness of BC [139]. Therefore, using murine
BC models, studies show that neutralizing the CSF1/CSF1R signaling pathway with anti-
CSFR1 antibodies and some small inhibitory molecules leads to reduced tumor growth by
suppressing TAM and enhancing CD8+ T-cell infiltrations, respectively [140].

5.3. Additional Therapies

Current studies have focused on the role of truncated glioma-associated oncogene
homolog 1 (tGLI1) as a BCBM driver [141]. tGLI1 is a splicing variant of the oncogenic tran-
scription factor GLI1 with multiple regulation sites in the genome, promoting angiogenesis,
invasion, tumor growth, migration, and stemness [141–144]. The expression of tGLI1 in
different tumor types, including BCBM, and its absence in normal tissues, draws attention
to its potential as a specific therapeutic target to treat BCBM [141–145].

The FDA (U.S. Food and Drug Administration, Silver Spring, MD, USA) has recently
approved the use of ketoconazole (KCZ), an antifungal agent (already in clinical use), for the
treatment of BCs that express tGLI1 [146]. In mouse models of BCBM, KCZ was shown to
inhibit tumor progression [146], and KCZ-derived compounds exhibited pronounced BTB
diffusion while keeping tGLI1 target specificity [146]. Preliminary results from an ongoing
phase I clinical trial (NCT03796273) demonstrated that KCZ was able to accumulate in
BCBM samples, highlighting its ability to penetrate the BTB [147].

The activation of the PI3K/AKT/mTOR pathway, present in 40–70% of BCBM pa-
tients [89,90], confers resistance, adaptability, and survival of BCBM-associated circulating tu-
mor cells (CTCs), promoting the establishment of secondary tumors in the brain [127,148,149].
Targeting the PI3K/AKT/mTOR pathway in orthotopic patient-derived xenografts of
HER2+ BC in mice promoted tumor regression and increased survival [150]. In the BCBM
orthotopic patient-derived xenografts model, the pan-Akt inhibitor GDC-0068 inhibited
tumor growth and increased the OS rate compared with the control mice [89,90]. GDC-0068
is also being investigated for the treatment of gliomas and glioblastomas due to its inherent
ability to permeate the BTB [151,152], and it may hold promise as a treatment strategy
for BCBM. Additionally, a dual PI3K/mTOR inhibitor, GDC-0084, is currently under in-
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vestigation for the treatment of BCBM, with both in vitro and in vivo models showing a
high efficacy with few side effects [89]. As well, an ongoing clinical trial (NCT03765983)
is investigating the use of GDC-0084 combined with trastuzumab to treat BCBM derived
from HER2 + BC [153].

6. Future Perspectives

The frequency of BCBM has increased over the past two decades, likely due to the
substantial improvements in overall survival of advanced BC patients. However, new
knowledge of the key players contributing to this disease process, as well as the develop-
ment of recent technologies, are providing new opportunities and paving the way for the
orchestration of a more personalized approach to BC treatment in the clinic.

6.1. Addressing the BBB

A crucial step in the spread of BC to the brain is overcoming the BBB. Therefore, it is
essential to fully understand how BC cells interact with the BBB to facilitate their entry into
the brain. Another group of players and a key component of the BBB are the tight-junction
proteins claudins and occludins [35]. Tight-junction proteins play an important role in
maintaining the integrity of blood vessels in nonpathological conditions. However, studies
show they also exhibit a role in cancer development and possibly metastasis. Our group
has focused on broadening our understanding of the role of the tight-junction protein
Claudin-1 in BC. We have previously shown that Claudin-1 expression in ER-negative BC
correlates with markers of the basal-like phenotype [154] and have observed the possibility
of a “claudin high” subset of BCs, suggesting that Claudin-1 may be a multifaceted player
in cancer progression [155].

Although Claudin-1 promotes collective migration in human BC cell lines [156] and
is downregulated in invasive human BC [157], little is known about its potential role in
metastases to the brain. There is accumulating evidence to suggest that it has an impact on
the BBB during certain disease states. For example, in a mouse model of stroke, increased
Claudin-1 levels were associated with increased permeability of the BBB post stroke [158].
As well, in a mouse model of multiple sclerosis, Claudin-1 is associated with reduced BBB
permeability, especially in the chronic course of the disease [159]. In some cancers that
metastasize to the brain, Claudin-1 has been implicated to play a role. For instance, in
melanoma, there is a report of an interaction of Claudin-1 with brain ECs, resulting in
metastatic cells being inhibited from entering the brain [160].

6.2. Accessing the Blood–Brain Barrier

Because the BBB limits the entry of medications used to treat metastatic lesions, several
methods have been investigated to make the BBB more permeable, including the use of
intrathecal and intra-arterial injections as well as radiotherapy. However, further research
is still needed to optimize such approaches. The slow progress in immunotherapy for
BCBMs has been attributed to limited known targets, limitations for drug delivery, as
well as substantial safety concerns. Emerging studies suggest that nanomedicine may
be a tool that could be explored to improve the progress of immunotherapy in BC brain
metastasis [110]. Nanoparticles, which are small and can be designed to cross the BBB, have
been developed to deliver anticancer medications (such as chemotherapy) to the brain [161].
However, there is little evidence to support the use of nanotherapy for the treatment of
BCBM clinically [161]. More clinical trials demonstrating the efficacy of nanotherapeutic
agents are required before adopting this technology in clinical practice.

6.3. Personalized Medicine

Genomic profiling of BCBM samples reveals an altered genomic landscape in BCBM
when compared with cells in the primary tumor [162,163]. These key adaptations drive the
primary tumor cells to invade the systemic blood circulation and enable them to thrive at
distant organs, further establishing secondary tumors [164]. The identification of metastatic



Int. J. Mol. Sci. 2023, 24, 12034 14 of 22

drivers in primary tumors and CTCs could serve as predictive and prognostic tools for the
treatment of BCBM [164]. Furthermore, detection of metastatic driver genes could reveal
potential therapy targets, specifically for BCBM derived from TNBC tumors [165,166].
However, because BCBM tumor biopsies are in most cases impossible to attain, genomic
mapping of BCBM cells is unlikely, highlighting the importance of multi-omics screening
of CTCs to propose a personalized treatment approach [167].

6.4. Targeting the EMT Process

It is now well recognized that EMT is a key metastatic driver in BC [168]. EMT
is required for cellular detachment from the primary tumor and the establishment of
CTCs that can further colonize distant organs [169,170]. The downregulation of epithelial
markers such as claudin, E-cadherin, and epithelial cell adhesion molecule (EpCAM), and
the upregulation of mesenchymal markers, vimentin, CD44, and ALDH1A3, are key events
during the EMT process [169–172]. Given the importance of EMT to the metastatic process
in BC, only a few studies have explored this therapeutically. Targeting the ALDH1A3
gene using shRNA or using the small inhibitor MF-7 demonstrated impairment of tumor
formation in a BCBM human xerograph mouse model [172]. Furthermore, downregulation
of ALDH1A3 in glioblastoma cells was able to restore drug sensitivity in temozolomide-
resistant cells [173], which suggests its use in different brain tumors. The development
of drugs targeting EMT in BC is needed to determine their clinical utility as potential
coadjutants in the treatment of BC patients with high risk of brain metastases.

7. Conclusions

In this review, we explored recent advances in the research and management of BCBM.
Significant progress has been made in several aspects of our understanding of BCBM,
including the areas of genomic technologies. Despite these remarkable advancements, it is
imperative that researchers continue working to both further our understanding of BCBM
and to develop therapeutic approaches to ultimately improve the prognosis and quality
of life for patients afflicted with BCBM. Collaborative efforts across multidisciplinary
teams will be crucial to drive forward this essential research, developing innovative and
personalized treatment modalities for BCBM patients.
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