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Abstract: Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1)
receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane
(MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence
indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer’s disease (AD),
and thus these receptors represent two potentially effective biomarkers for emerging AD therapies.
The availability of optimal radioligands for positron emission tomography (PET) neuroimaging
of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment
outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology
of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey
the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for
imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development
of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate
the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease
progression and AD drug efficacy.

Keywords: sigma-1 receptor; sigma-2 receptor; Alzheimer’s disease; positron emission tomography;
neuroimaging; diagnosis; therapeutic strategy

1. Introduction

Alzheimer’s Disease (AD) is the most common form of dementia, accounting for
60–80% of all cases. According to the World Alzheimer Report 2022, about 55 million people
lived with dementia worldwide in 2019. This number is expected to rise to 139 million in
2050 [1]. AD is characterized by two pathological hall markers—extracellular β-amyloid
(Aβ) plaques and intraneuronal fibrillary tangles (NFTs) composed of hyperphosphorylated
tau proteins. Based on the 2018 National Institute on Aging—Alzheimer’s Association
(NIA-AA) research framework, biomarkers of AD are grouped into those for Aβ (A),
pathologic tau (T), and neurodegeneration or neuronal injury (N) [2]. Currently, the ATN
research framework, grounded on the above biomarker-based definition of AD, has been
widely accepted for diagnosis of AD in clinical practice worldwide [2,3]. However, the
exact cause of AD has not been fully elucidated, although many hypotheses on its etiology
and pathogenesis have been put forward, including the Aβ cascade hypothesis [4], the
misfolded tau protein hypothesis [5], the cholinergic hypothesis [6–9], oxidative stress [10],
calcium dyshomeostasis [11,12], neuroinflammation [13,14] and the mitochondria cascade
(or MAM) hypothesis [15,16].

Medications currently available on the market for AD treatment are listed in Table 1.
Donepezil is a piperidine-based reversible inhibitor of acetylcholinesterase (AChE) with
high inhibitory activity (IC50(AChE) = 5.7 nM) and high selectivity over butyrylcholinesterase
(BuChE) (IC50(BuChE) = 7138 nM, 1252-fold) [17]. Interestingly, donepezil has also been
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shown to bind to the sigma-1 (σ1) receptors in the living human brain at therapeutic
doses [18]. Rivastigmine is a carbamate-based pseudo-irreversible (slowly reversible) dual
inhibitor of both AChE and BuChE with low inhibitory potency (IC50(AChE) = 32,100 nM,
IC50(BuChE) = 390 nM, 82-fold) [19]. However, this drug has no affinity for muscarinic, α-
or β-adrenergic, or dopamine (DA) receptors or opioid binding sites [20]. Galantamine
is a reversible competitive inhibitor for AChE (IC50(AChE) = 350 nM) rather than BuChE
(IC50(BuChE) = 18,600 nM, 53-fold) [21], and an allosteric modulator of nicotinic acetyl-
choline receptors [22]. The most common adverse events of these cholinesterase inhibitors
are gastrointestinal (GI) and cardiovascular side effects. They are generally well-tolerated
and all are still considered for first-line, symptomatic treatment of AD (for review, see [23–
27]).

Table 1. Drugs available on the market for AD treatment.

Agent Target a Mechanism b Chemical Structure

Donepezil AChE AChE reversible inhibition
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Memantine is a voltage-dependent, low affinity/fast off-rate and non-competitive
N-methyl-D-aspartate receptor (NMDA) receptor antagonist [28]. It exerts its neuronal
protective effects by inhibiting glutamate activity and is used for the treatment of moderate-
to-severe AD alone or in combination with donepezil [29–31]. Adverse effects of memantine
have been found to be comparable to those with a placebo, with the exception of an
increased incidence of dizziness, headache, confusion, and constipation [32].

Both Aducanumab (Aduhelm) and Lecanemab (Leqembi) are anti-amyloid mon-
oclonal antibodies (mAbs) and approved under the accelerated approval pathway for
treatment of Alzheimer patients with mild cognitive impairment (MCI). On 6 July 2023,
the US Food and Drug Administration (FDA) converted Leqembi to traditional approval.
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And thus, Leqembi represents the first Aβ-directed antibody fully approved for the treat-
ment of AD without any restrictions. Aducanumab is a human IgG1 monoclonal antibody
preferably targeting Aβ aggregates [33]. Lecanemab is a humanized monoclonal IgG1 of
the mouse mAb158 selectively binding to soluble Aβ protofibrils [34]. Adverse effects from
both medications include amyloid-related imaging abnormalities (ARIA) and infusion reac-
tions [33–36]. Patients with apolipoprotein E ε4 (ApoE ε4) gene carriers, especially ApoE
ε4 homozygotes, are at higher risk of ARIA such as brain swelling (edema or effusions)
and bleeding (hemosiderin deposits) [36–38].

Sodium Oligomannate Capsules (GV-971) were approved by the National Medical
Products Administration (NMPA) of China in 2019 for treatment of mild-to-moderate
AD [39]. GV-971 was noted to cause an induced liver injury side effect [40]. The other
side effects of GV-971 have not been extensively reported in the literature. However,
international multicenter clinical trials of GV-971 (Phase III) were stopped in May 2022.

Recent evidence has pointed to the significance of sigma receptors in AD. The σ1
receptor, situated at the mitochondria-associated endoplasmic reticulum (ER) membrane
(MAM), directly regulates Aβ generation in the MAM [41]. The sigma-2 (σ2) receptor has
been positively identified as the ER-resident transmembrane protein 97 (TMEM97) [42],
and the σ2 receptor/TMEM97, progesterone receptor membrane component 1 (PGRMC1)
and low-density lipoprotein receptor (LDLR) have been found to form a trimeric complex
and regulate the uptake of lipoproteins such as LDL and apolipoprotein E (ApoE) [43,44],
whose E4 allele (ApoE ε4) is the greatest risk factor for AD development [45]. Further, this
trimeric complex has been demonstrated to be a binding site for Aβ oligomers (AβOs).
Inhibition of one of the three proteins results in disruption of the complex and decreased
AβO uptake in neurons [44]. As a result, both the σ1 and σ2 receptors are increasingly
viewed as playing critical roles in AD pathogenesis and progression, and are thus important
targets for therapeutic intervention to inhibit Aβ neurotoxicity, neurodegeneration, and
progression of AD [46–53].

2. Sigma Receptors in AD
2.1. The Sigma (σ) Receptors

The sigma (σ) receptors were initially identified in 1976 and thought to belong to the
class of “opioid receptors” [54]. They were later found to possess binding sites distinct from
those of opioid receptors [55], and divided into two subtypes termed σ1 and σ2 [56], based
on the different binding sites of the radioligands (+)-[3H]pentazocine and [3H]1,3-di(2-tolyl)
guanidine ([3H]DTG) [57]. Both σ1 and σ2 receptors are widely distributed in the central
nervous system (CNS) [57,58] and peripheral tissues [59–62], acting as integral membrane
proteins and playing crucial roles in a variety of human diseases [63]. However, the regional
expression patterns of σ1 and σ2 receptors in the brain are clearly different [57,64–66].
Recent quantitative autoradiography studies with postmortem human brain tissues found
higher concentrations of σ2 than σ1 receptor in all brain regions examined, except the red
nucleus, as well as upregulation of σ2 receptors in the aged brains [67,68].

The σ1 receptor, consisting of 223 amino acids with molecular weight of 25.3 kDa [69],
has been cloned from several tissues, including those from mice, rats and guinea pigs [70–73],
and proved to be a unique “ligand-operated receptor chaperone” that is regulated by the
agonist/antagonist activity of endogenous or synthetic ligands [74,75]. The crystal structure
of the human σ1 receptor was elucidated in 2016, and found to have a trimeric structure
with a single transmembrane domain in each protomer and a β-barrel cupin fold in the
carboxy terminal domain [76]. Currently, there is no consensus on endogenous ligands for
the σ1 receptor (for review, see [63]), even though some candidates such as the hallucinogen
N, N-Dimethyltryptamine [77] have been proposed.

Compared with the σ1 receptor, the identification process for the σ2 receptor is more
convoluted. In 1994, Bowen et al. employed [3H]azido-DTG to estimate the molecular
weight of σ2 receptor isolated from rat liver membrane, at 21.5 kDa [60]. Subsequently, this
enigmatic protein has been hypothesized to contain a histone binding site [78,79]. The σ2
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receptor complex was also found to contain PGRMC-1 protein complex [80,81]. Then, in
2017, the σ2 receptor was positively identified as the four-domain TMEM97 (also known
as meningioma-related protein 30, MAC30), residing in the ER membrane [42]. Finally, in
2021, Alon et al. successfully determined the crystal structure of the bovine σ2 receptor
using high-affinity ligands [82]. The σ2 receptor/TMEM97 is now revealed as an intimately
associated homodimer, with each of the two protomers having four kinked transmembrane
helix sections, and both the N and C terminals facing the cytoplasm. The binding site of the
σ2 receptor ligand is deeply embedded in the membrane, which suggests that a lipid may
be the endogenous ligand [82]. The binding pocket opens laterally into the lipid bilayer, and
its opening is lined with hydrophobic and aromatic residues [82]. Up to date, two putative
endogenous ligands, histatin-1 [83] and 20(S)-hydroxycholesterol (20(S)-OHC) [84], have
been reported.

2.2. Sigma-1 Receptor in AD

The σ1 receptor participates in various physiological and pathological processes, such
as neurotransmission, neuroprotection and neuroinflammation, through interaction with
diverse ion channels, ER proteins, neurotrophins and G protein-coupled transporters
(GPCRs) [85]. Consequently, the σ1 receptor has been considered as a therapeutic tar-
get for a range of diseases [50,86] including amnesia and AD [46,85,87,88], Parkinson’s
disease (PD) [89–93], Huntington’s disease (HD) [94,95], amyotrophic lateral sclerosis
(ALS) [96,97], retinal disease [98–101], multiple sclerosis (MS) [102], major depressive disor-
der (MDD) [89,103], stroke [104–106], pain [107,108] and drug or alcohol addiction [109].
In cancers, the σ1 receptor is involved in tumor occurrence, development, metastasis and
survival [110–113].

Increasing evidence has proved that the σ1 receptor holds great potential as a biomarker
for early AD diagnosis and progression and the monitoring of AD drug efficacy [49]. Hall-
marks of human AD include progressive cognitive decline that follows chronic neuroin-
flammation and the emergence of hyperphosphorylated tau protein aggregates and Aβ
plaques [46], with all playing critical and perhaps interrelated roles in the progression of
AD. In particular, Ca2+ plays a critical role in learning and memory processes [114–118],
and Ca2+ dyshomeostasis is a pathological feature of AD and other neurodegenerative
diseases [114–118]. The σ1 receptor forms a Ca2+-sensitive chaperone complex with the
binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78), and pro-
longs Ca2+-signaling from ER into mitochondria by stabilizing inositol 1,4,5-trisphosphate
receptor (IP3R) at the MAM [74]. The σ1 receptor participates in the regulation of in-
tracellular Ca2+ migration and maintains homeostasis and protects cognitive function
damage [119,120]. Research on the role of the σ1 receptor in mediating mitochondrial func-
tion has found that the σ1 receptor attenuates hippocampal dendrite formation through
scavenging of free radicals, and protects cells from damage by mitochondria-derived re-
active oxygen species (ROS) [121–123]. The ER stress sensor inositol-requiring enzyme
1 (IRE1) facilitates mitochondrion-ER-nucleus signaling for cellular survival via the σ1
receptor chaperone [75,124].

More importantly, the σ1 receptors regulate early Aβ generation in AD at the MAM [41],
and thus could be considered as a bona fide MAM marker and responsible for neuropro-
tective regulatory functions [87]. It has been proposed that σ1 receptor comprises part of
the endogenous cellular defense against toxic Aβ [85,87]. Growing evidence has demon-
strated the neuroprotective activity of the σ1 receptor against Aβ neurotoxicity (for review,
see [46,125]). Activation of σ1 receptor potentiates nerve growth factor (NGF)-induced
neurite outgrowth through modulating the PLCγ-DAG-PKC, Ras-Raf-MEK-ERK-MAPK
signaling pathways and protects Aβ25–35-impaired dentritic growth and survival of new-
born neurons through a modulation of PI3K-Akt-mTOR-p70S6k signaling [119,126,127].
Moreover, activating the σ1 receptor increases vascular endothelial growth factor (VEGF)
and low-density lipoprotein receptor-related protein 1 (LRP-1) expression levels and atten-
uates the blood–brain barrier (BBB) dysfunction caused by amyloid deposition in AD [48].
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Additionally, the mixed muscarinic/σ1 ligand ANAVEX2-73 prevents tau hyper-
phosphorylation in Aβ25–35-injected mice [128]. Further, the σ1 receptor regulates proper
tau phosphorylation and axon development by promoting p35 turnover via σ1 receptor–
myristic acid interaction, thereby avoiding cyclin-dependent kinase 5 (CDK5)/P25 overac-
tivity [129,130].

Studies with σ1 receptor knock-out mice showed that σ1 receptor deletion resulted in
neurogenesis impairment [131] and cognitive dysfunction [132] including memory deficit,
neurocyte susceptibility to Aβ-mediated toxicity and impairment to the intracellular lipid
metabolism and immune response, and thus accelerated neural degeneration and oxidative
stress-induced neural death [132]. Emerging evidence indicates that certain polymor-
phisms of the σ1 receptor gene, especially when present alongside the known AD risk
factor ApoE ε4, are linked to the onset of AD neurodegeneration [133]. In a postmortem
study, reduction in σ1 receptors was observed in the hippocampus of patients with AD [134].
Compounds with σ1 agonist activity have been shown to possess anti-amnestic and neuro-
protective efficacy in both pharmacological and pathological AD models [119], including
those resulting from cholinergic destruction [135,136], Aβ administration [135,137–141],
glutamatergic/serotonergic [142] or calcium channel deficits [143] and normal aging [144],
as well as senescence-accelerated mouse (SAM) model [145].

Taken together, it becomes increasingly evident that the σ1 receptor plays a key role in
mediating AD pathology, and therefore presents as promising therapeutic target for AD.

2.3. Sigma-2 Receptor in AD

Compared to the σ1 receptor, there are only a few reports on the cellular and molecular
biological roles of the σ2 receptor. It functions as a housekeeping protein under normal
settings [146]. The σ2 receptor/TMEM97, a member of the expanded emopamil binding
protein (EPR) superfamily, has sterol isomerase activity [147,148] and plays a critical role in
cholesterol biology, with correlated expression genes taking part in lipid metabolism [147].
High expression of the σ2 receptor was found in a variety of tumor cells, with nearly 10-fold
higher expression in a proliferating state tumor compared to a quiescent state [149–152].
The differential expression of σ2 receptors is associated with tumor stage, metastasis,
and survival. As such, the σ2 receptor can act as a novel biomarker for tumor prolifer-
ation [152], and is thus a candidate target for the diagnosis and treatment of common
hyperplastic tumors [153]. Further, results from recent studies have indicated the critical
involvement of the σ2 receptor in the pathophysiology of many brain disorders. Thus, the
σ2 receptor has been proposed as a novel therapeutic target for AD, HD, PD [147,154,155],
depression [156], schizophrenia [157], neuropathic pain [158,159], and age-related macular
degeneration [148].

In AD pathology, the σ2 receptor interacts with PGRMC1 and LDLR to block AβO
from binding neuronal synapses and regulates cholesterol homeostasis [44], and acts as a
novel biomarker for AD diagnose and drug development [160].

Recent consensus regards AβO as one of the most toxic and pathogenic forms of Aβ,
and elevated AβO levels in the brain as the key causative factor in the formation of Aβ
plaques [161]. Studies have shown that AβO-induced neurotoxicity subsequently caused
synaptic injury and hampered synaptic plasticity, resulting in abnormalities in synaptic
composition, structure and density [162]. The effects of AβO on receptors and signal-
ing pathways are neurodegenerative changes, neuronal injury, synaptic dysfunction and
neurofibrillary tangles (NFTs), which eventually lead to memory, learning and cognitive
dysfunction. Compared with Aβmonomers and Aβ fibrils, soluble AβOs are more likely
to induce neuronal loss and cognitive deficits in amyloid precursor protein (APP)/tau trans-
genic mice, and their concentrations correlated better with AD severity [163]. Hence, the
prevention or reversal of AβO-induced neurotoxicity is thought to be key to AD treatment.

Several lines of evidence have pointed to the critical involvement of the σ2 receptor in
mediating AβO neurotoxicity and thus the key role it plays in AD pathogenesis and progres-
sion [67]. Synthetic AβOs derived from the brains of AD patients were discovered to attach



Int. J. Mol. Sci. 2023, 24, 12025 6 of 26

to nerve cells and display typical receptor–ligand pharmacological interaction [160,164].
AβOs specifically and saturably bound to hippocampal and cortical neurons both in vivo
and in vitro. AβO treatment induced progressive upregulation of σ2 receptor expression in
neurons, with more intense AβO binding associated with higher σ2 expression. Selective
σ2 receptor modulators competitively inhibited/reversed AβO binding to neurons, and
prevented synapse loss in a dose-dependent manner both in vitro, and in rat models of
AD [164].

The σ2 receptor regulates the binding and signal transmission of AβO in CNS, and its
antagonists can decrease AβO binding to nerve cells and disassociate the attached AβO
from neurons [53,160]. Studies have found that the σ2 receptor/TMEM97, PGRMC1 and
LDLR can form a ternary complex (σ2R-PGRMC1-LDLR) [43], which is a binding site for
monomeric and oligomeric amyloid Aβ42, and plays an essential role in the uptake of fibers
and oligomers via ApoE-dependent and independent mechanisms [44]. The knockout of
the TMEM97/σ2 receptor, or PGRMC-1, or both, as well as inhibition of the TMEM97/σ2
receptor were all shown to reduce the uptake of Aβ1–42 and ApoE in primary neurons [44].
Moreover, the expression of the σ2 receptor is dramatically increased by approximately
1.5-fold in AD [165], and is localized to an increased area of synapses (approximately
1.8-fold) in brain tissue taken from people suffering from AD compared with healthy
controls, suggesting a compensatory response to AD-related synaptic depression [148,165].
Neurons with knockout of the PGRMC-1 protein also displayed reduced capacity in binding
to AβO [160]. The σ2 receptor/TMEM97 is present in synaptic fractions biochemically
isolated from human temporal cortex, and its concentrations appeared to be higher in
samples isolated from AD patient brains compared to those from healthy controls [165].

As a cholesterol-regulating protein [51], the malfunctions of the σ2 receptor/TMEM97
are involved in AD pathology [51,52]. The σ2 receptor ligands also potentially influence Aβ
synthesis via cholesterol, which has been demonstrated to directly affect APP cleavage in
neuronal cultures by boosting β- and γ-secretase activity [166]. In CNS, the neurons obtain
cholesterol mostly via multiple ApoE receptors including LDLR, very-low-density lipopro-
tein receptor (VLDLR), and LDLR-related protein 1 (LRP1) [167]. High cholesterol levels
are recognized to be a risk factor for AD [168]. The σ2 receptor ligands can potentially inter-
rupt lipoprotein transport [167], decrease the level of cholesterol and exert anti-AD effects.
Similarly, σ2 receptor ligands can influence tau phosphorylation via cholesterol [169]. Si-
multaneously, the hyperphosphorylated tau is found in lipid rafts, implying that cholesterol
has the ability to control tau hyperphosphorylation [170]. More recently, a close physical
colocalization of TMEM97 and TSPO was found in MP cells. The σ2 receptor ligands
such as siramesine modulated TMEM97-TSPO association [171]. In addition, σ2 receptor
ligands have been also reported to activate liver X receptors (LXRs) through oxysterols and
inhibit the expression of inflammatory genes, thereby regulating neuroinflammation in
AD [147,172]. Therefore, the σ2 receptor is a novel regulator of cholesterol homeostasis in
the AD pathological process, and its ligands may target cholesterol homeostasis for AD
treatment [147].

Similar to the σ1 receptor, the σ2 receptor is involved in the regulation of intracellular
Ca2+ levels [173–175]. Binding of AβO to neurons upregulates the σ2 receptor in AD and
triggers ER stress, to disrupt Ca2+ homeostasis. Antagonism of the σ2 receptor is believed
to reduce ER stress, maintain Ca2+ homeostasis and protect neurons [176]. Small molecules
acting at the σ2 receptor have also been shown to exert their neuroprotective activity via
regulation of neuroinflammation and the nerve growth factor (NGF) [176–178].

Taken together, the intact σ2 receptor/TMEM97-PGRMC1-LDLR complex is a pathway
for the cellular uptake of AβO via ApoE-dependent and independent mechanisms. The
loss or pharmacological inhibition of one or both of these proteins results in the disruption
of the complex leading to decreased uptake of AβO and ApoE in neurons. Targeting the σ2
receptor/TMEM97 represents a new strategy for inhibiting Aβ neurotoxicity and slowing
neurodegeneration in AD [53,148].
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3. Ligands Targeting σ1 or σ2 Receptors
3.1. Agonists/Antagonists of σ Receptors and Their Therapeutic Potential in Clinical Trials

Many ligands targeting σ1 and σ2 receptors have been investigated for their therapeutic
potential [46,49,50,179–185]. Representative agents in clinical trials are provided in Figure 1
and Table 2. The progress of these ligands has been covered in some recent reviews [50,185].
Here, we describe only the ligands with therapeutic potential for AD.
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Dextromethorphan (AVP-923), a σ1 receptor agonist, has been found to have multiple
mechanisms of action that could be beneficial in AD, such as anti-inflammatory and antioxi-
dant effects, modulation of neurotransmitters, and a neuroprotective effect by inhibiting Aβ
aggregation and tau hyperphosphorylation in AD [186–188]. ANAVEX2-73 (blarcamesine),
a σ1 receptor agonist, has been shown in Phase II clinical trials to provide significant and
sustained improvement in cognitive function and reduce neurodegenerative pathology in
mild-AD patients [189]. Endonerpic maleate (T-817MA), an orally available neurotropic
drug with high affinity to the σ1 receptor [50,190], attenuates Aβ-induced neurotoxicity
and memory deficits, promotes neurite outgrowth, and preserves hippocampal synapses,
likely via σ1 receptor activation [191,192]. CT1812, a σ2 receptor allosteric antagonist for
mild-to-moderate AD treatment [193], has proved to displace toxic AβO from the synaptic
receptor, facilitate oligomer clearance into the CSF and restore cognitive function [193,194].

It is important to note that while these σ receptor ligands have shown promising
results in preclinical studies, their efficacy and safety in human clinical trials are still being
evaluated. It will require further research and development to determine their potential as
therapeutic options for AD.

Table 2. Representative σ1 and σ2 ligands in clinical trials a.

Agents Property Disease Clinical Trials ID Phase/Status

Pridopidine σ1 receptor agonist HD

NCT03019289
NCT00724048
NCT04556656
NCT00665223
NCT02006472
NCT01306929
NCT02494778

I/Completed
II/III/Completed

III/Recruiting
III/Completed
II/Completed
II/Completed
II/Terminated
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Table 2. Cont.

Agents Property Disease Clinical Trials ID Phase/Status

Levodopa-induced
dyskinesia (PD) NCT03922711 II/Terminated

ALS NCT04297683
NCT04615923

II/III/Recruiting
II/III/Active, not

recruiting

Dextromethorphan
(AVP-923) b

σ1 receptor agonist
mu (µ) opioid agonist
and NMDA receptor

antagonist [195]

AD

NCT00788047
NCT01584440
NCT01832350
NCT02446132
NCT02442778
NCT02442765
NCT00726726
NCT04947553
NCT05557409
NCT04797715
NCT00056524

I/Completed
II/Completed

IV/Terminated
III/Recruiting
III/Completed
III/Completed
I/Completed
III/Recruiting
III/Recruiting
III/Completed
III/Completed

SA4503 σ1 receptor agonist Ischemic stroke NCT00639249 II/Completed
MDD NCT00551109 II/Completed

MR309 (E-52862) σ1 receptor antagonist Oxaliplatin-induced
neuropathy Ref. [196] IIa/Completed

ANAVEX2-73
(blarcamesine)

σ1 receptor agonist
muscarinic receptor

modulator

Moderate AD

NCT04314934
NCT03790709
NCT02756858
NCT02244541

IIb/III/Recruiting
IIb/III/Completed

II/Completed
IIa/Completed

Rett syndrome
NCT04304482
NCT03941444
NCT03758924

II/Recruiting
III/Completed
II/Completed

PD NCT03774459 II/Completed

Edonerpic maleate
(T-817MA)

σ1 receptor activation
Mild-to-moderate AD NCT00663936

NCT04191486
II/Completed
II/Recruiting

Aβ inhibitor NCT02079909 II/Completed
Hepatic impairment NCT02693197 I/Completed

Roluperidone
(MIN-101)

σ2 receptor antagonist
and 5-HT2A receptor

antagonist

Negative symptoms of
schizophrenia

NCT03397134 III/Completed
NCT02232529 I/Completed

Schizophrenia NCT03038646 I/Completed
Healthy subjects NCT03072056 I/Completed

CT1812 σ2 receptor antagonist

Healthy volunteers NCT03716427 I/Completed

AD

NCT05531656 II/Not recruiting
NCT04735536 II/Completed
NCT02907567 I/II/Completed
NCT05248672 I/Completed
NCT05225389 I/Completed
NCT03507790 II/Recruiting
NCT03493282 I/II/Completed
NCT03522129 I/Completed

Age-related macular
degeneration NCT05893537 II/Recruiting

Dementia with Lewy
bodies NCT05225415 II/Recruiting

Cognitive impairment NCT02570997 I/Completed
a The clinical trials were obtained from https://www.clinicaltrials.gov (accessed on 14 July 2023). b There are
115 clinical trials for Dextromethorphan. Only AD-related trials are listed.

https://www.clinicaltrials.gov


Int. J. Mol. Sci. 2023, 24, 12025 9 of 26

3.2. Development of Radioligands for Neuroimaging of σ Receptors
3.2.1. Characteristics of Optimal σ1 or σ2 Receptor Radioligands for PET Imaging in AD

Non-invasive radioligand-based molecular imaging technique such as positron emis-
sion tomography (PET) imaging is a powerful tool for the investigation of protein target
expression and function in living subjects. It can visualize molecular biological processes
in normal and disease states [197]. PET imaging of AD pathologic biomarkers such as Aβ
and tau has been widely used for evaluating the pathologic features of AD, tracking AD
progression, monitoring therapeutic interventions and facilitating drug development based
on the ATN research framework [198]. Increasing evidence in recent years has proved
that the σ1 and σ2 receptors play significantly distinct roles in AD pathology [46,147].
In vivo visualization of the σ1 and σ2 receptor changes in the progression of AD with PET
radioligands will shed new light on the involvement of these receptors in the etiology and
pathophysiology of AD, and provide a tool to monitor the treatment effect of σ1 and σ2
receptor-targeted therapeutic agents.

Similar to other neuroimaging radioligands, the development of suitable PET radioli-
gands targeting the σ1 or σ2 receptor is a great challenge, due to the limited information of
the target protein in the brain and presence of the blood–brain barrier (BBB). The optimal
radioligands for imaging of the σ1 or σ2 receptors in the brain need to meet the follow-
ing requirements: (1) appropriate affinity for the σ1 or σ2 receptors and high selectivity
over other receptors, transporters and ion channels (> 50-fold); (2) an efficient method
for radiosynthesis, with good radiochemical yield and high molar activity; (3) suitable
physical–chemical properties, including desirable lipophilicity (log D = 1–3) and in vitro
stability; (4) high brain uptake (SUV > 1) and high brain-to-blood ratios; (5) excellent
in vivo stability without radioactive metabolites able to enter the brain; (6) appropriate
pharmacological properties that reflect the regional expression of σ1 or σ2 receptors in the
brain; (7) high specific binding to the σ1 or σ2 receptors in vivo in brain tissue; (8) suitable
kinetic (reversible binding) in the human brain; and (9) acceptable toxicological properties,
with no side effects in the range of injectable doses.

3.2.2. Radioligands Targeting the σ1 Receptor

Over the last two decades, many efforts have been devoted to the development
of PET radioligands for the σ1 receptors. However, only a few radioligands have been
investigated in non-human primates and humans, due to the difficulties in meeting the
critical requirements outlined above [49,153,199–201]. They are depicted in Figure 2 and
reviewed below.

[11C]SA4503 ([11C]1) was the first PET radioligand used for imaging the σ1 receptor in
humans [202]. SA4503 was reported as a σ1 receptor agonist with high affinity and subtype
selectivity over the σ2 receptor, and with low affinity for 36 other target proteins in the
brain, except for the vesicular acetylcholine transporter (VAChT), with moderate affinity
(Ki = 50.2 nM) [203–205]. Later, several groups reinvestigated the binding properties of
SA4503 and reported slightly different affinities and subtype selectivity (Ki(σ1) = 3.3–4.6 nM;
Ki(σ2) = 51–242 nM; Ki(σ2)/Ki(σ1) = 14–55) [203,206–208]. Density (Bmax) of the σ1 receptor
was estimated to be 30–600 fmol/mg protein (approximately 3–60 nM) in the human
brain [134,209,210]. Radioligands with nanomolar affinity (1–6 nM) appear to be suitable
for σ1 receptor imaging in the brain, suggesting that SA4503 has a suitable range of affinity
for quantitative in vivo imaging. Studies in rodents, cats, monkeys and humans indicated
its potential to map σ1 receptors in the brain [58,202,211–215]. As a result, [11C]SA4503 has
been used to investigate the σ1 receptor density in the brains of patients with AD [216,217]
and PD [218], and σ1 receptor occupancy by fluvoxamine [219] and donepezil [18] at
clinical doses. It should be noted that two studies with [11C]SA4503 to image σ1 receptor
density in the brains of patients with AD have reported discrepant results. In an initial
study, decreased accumulation of [11C]SA4503 was observed in the brains of AD patients,
seemingly indicating downregulation of the σ1 receptor in AD [202,216]. However, a recent
study using the same radioligand clearly demonstrated increased σ1 receptor expression
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(approximately 27% increase) in the brains of early-onset AD patients [217]. It was proposed
that the lower σ1 receptor in AD observed in the previous study [216] may be attributed to
the individuals treated with donepezil, which has high affinity for the σ1 receptor [220],
and thus can act as a blocking agent to decrease the binding of [11C]SA4503 [217]. Despite
these uses of [11C]SA4503 in clinical imaging research, it is not an optimal radioligand
for neuroimaging, because of its relatively low subtype selectivity over the σ2 receptor
(Ki(σ1) = 3.3–4.6 nM; Ki(σ2) = 51–63 nM; Ki(σ2)/Ki(σ1) = 14–15) [206–208] and relatively slow
kinetics for a 11C-labeled radioligand in non-human primates and humans. Further, the use
of [11C]SA4503 needs an on-site cyclotron, due to the short half-life of 11C (T1/2 = 20.4 min).
Therefore, more recent efforts have been focused on the search for an optimal radioligand
labeled with the longer-lived radionuclide 18F (T1/2 = 109.8 min), and thus are more
amenable to translation into clinics for diagnostic applications and multicenter studies of
drug-target occupancy and the dose–efficacy relationship.
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Among the 18F-labelled radioligands shown in Figure 2, [18F]FTC-146 ([18F]2) [221,222]
and [18F]FPS ([18F]3) [223] were found to display irreversible kinetics in the human brain
and therefore are not suitable for neuroimaging applications.

Radioligands [18F]4, [18F]5 [224], (S)-(–)-[18F]fluspidine ([18F]6) and (R)-(+)-[18F]fluspidine
([18F]7) [225] are 18F-labeled spirocyclic piperidine ligands derived from the lead compound,
1′-benzyl-3-methoxy-3H-spiro [2-benzofuran-1,4′-piperidine], with nanomolar affinity for
σ1 receptors and excellent selectivity over σ2 and more than 60 other receptors, transporters,
and ion channels [226–228]. Their binding affinity, lipophilicity (Log D), the free fraction
in monkey plasma (f P) and the regional non-displaceable binding potential (BPND) val-
ues are listed in Table 3. As expected, and consistent with results from rodent and pig
studies [224,229–232], radioligands [18F]4 and (R)-(+)-[18F]fluspidine, with subnanomolar
affinity for the σ1 receptors, exhibited irreversible binding kinetics in monkey brain re-
gions, with no appreciable washout during the 4 h scan. And thus, they were judged as
unsuitable for human neuroimaging. On the other hand, [18F]5 and (S)-(–)-[18F]fluspidine,
with nanomolar affinity, displayed fast and reversible kinetics with good uptake and high
specific binding signal in the monkey brain. These results again reinforce the principle
in PET radioligand development: for a given target protein, higher affinity of the radi-
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oligand will lead to slower kinetics in the brain. Moreover, radioligand [18F]5 displayed
on average > 2 times higher BPND values than (S)-(–)-[18F]fluspidine [233]. Note that
(S)-(−)-[18F]fluspidine has been used to evaluate σ1 receptor changes in patients with major
depression [234] and the σ1 receptor occupancy by pridopidine in the human brain of
healthy volunteers and in patients with Huntington’s disease [235]. However, there has
been no report on the use of this radioligand to investigate the σ1 receptor in AD.

In the past decades, most of the σ1 receptor ligands have been designed and synthe-
sized based on Glennon’s pharmacophore model (two hydrophobic regions and a basic
nitrogen atom) [236]. Encouraged by the results from the spirocyclic piperidine radioli-
gands described above, we undertook a study to develop a radioligand constructed from a
novel scaffold and with optimal lipophilicity. Wuensch considered the benzene ring of the
O-heterocycle of the spirocyclic piperidine derivative as the “primary hydrophobic region”
and the phenyl group of the N-substituent as the “secondary hydrophobic region” of the σ1
ligands in Glennon’s pharmacophore model [237]. We replaced the spirocyclic piperidine
moiety in [18F]4 with a more hydrophilic group 1,4-dioxa-8-azaspiro [4.5]decane and simple
piperidine [238]. The resulting ligands were found to maintain nanomolar affinity and
subtype selectivity for σ1 receptors, indicating that removal of the benzene ring from the
spiro(isobenzofuran piperidine) moiety still preserves the high affinity for the σ1 recep-
tors [238]. Later, we replaced 1,4-dioxa-8-azaspiro [4.5]decane with 1,3-dioxane [239] or a
tetrahydrofuran moiety [240], and found that these derivatives also maintained nanomolar
affinity for the σ1 receptors. These findings demonstrated that smaller and less lipophilic
moieties may serve as the “primary hydrophobic region” in the piperidine series of ligands.
Thus the “primary hydrophobic region” in Glennon’s pharmacophore model appears to
be more flexible, and can accommodate diverse structural moieties, not just those with an
aromatic component.

Inspired by these new discoveries in Glennon’s pharmacophore model for σ1 receptor
ligands, we designed and synthesized a novel radioligand [18F]FBFP with the smallest
primary and secondary hydrophobic regions up to date for a σ1 receptor ligand. Grat-
ifyingly, [18F]FBFP was found to have nanomolar affinity for the σ1 receptor, and high
selectivity over the σ2 receptor, VAChT, and ten other receptors [240]. Studies in rodents
and non-human primates indicated that this radioligand displayed fast, good brain up-
take, favorable tissue kinetics, the highest plasma-free fraction and the highest specific
binding signals in non-human primates among the σ1 receptor radioligands evaluated to
date [240,241].

Similar to [18F]fluspidine, [18F]FBFP has a chiral center at the tetrahydrofuran moiety
(denoted with an asterisk * in the structures shown in Figure 2), and thus is composed of
two enantiomers. Enantiopure (S)-FBFP and (R)-FBFP were prepared from chiral synthesis
with > 98% enantiomeric purity. In vitro evaluation demonstrated that (R)-FBFP with
minus specific rotation behaved as an antagonist, while (S)-FBFP with plus specific rotation
behaved as an agonist [242]. Both enantiomers possessed comparable low nanomolar
affinity for the σ1 receptors and high selectivity over more than 40 other proteins. The
enantiomerically pure radioligands (S)-(+)-[18F]FBFP and (R)-(−)-[18F]FBFP were obtained
from their corresponding iodonium ylide precursors. Evaluation in rodents demonstrated
excellent properties of both (S)-(+)-[18F]FBFP and (R)-(−)-[18F]FBFP with high brain up-
take, high brain-to-blood ratios, high metabolic stability in the brain and high specific
binding to the σ1 receptors [242]. In rhesus monkeys, both enantiomers display high brain
uptake. Compared to (S)-(−)-[18F]fluspidine, both enantiomers exhibited much higher
binding potential (BPND) in rhesus monkeys (ranging from 9.6 (thalamus) to 27.7 (frontal
cortex) for (R)-(−)-[18F]FBFP vs. 6.3 (cerebellum) to 14.8 (cingulate cortex) for (S)-(+)-
[18F]FBFP) [243]. Although additional validation is required to assess utility in humans,
both (R)-(−)-[18F]FBFP and (S)-(+)-[18F]FBFP, with the highest BPND values among the
current available σ1 receptor ligands, meet all the requirements mentioned above for an
optimal radioligand, and thus hold great potential for PET imaging and quantification
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of the σ1 receptor changes in AD patients. Both radioligands are currently undergoing
evaluation in humans.

In summary, it appears that subnanomolar affinity for the σ1 receptors (Ki < 1 nM) will
result in near-irreversible binding kinetics in the non-human primate brain. Radioligands
[18F]5, [18F]6, [18F]8 and [18F]9 are suitable candidates for imaging σ1 receptors in humans.

Table 3. Binding affinity (Ki, nM), Log D, f P and BPND of the σ1 receptor radioligands.

Ligand Ki(σ1) Ki(σ2) Selectivity Log D f P BPND

[18F]4 a 0.79 277 351 2.55 8% -
[18F]5 a 2.30 327 142 2.50 18% 2.78–5.21
[18F]6 a 2.30 897 390 2.80 2% 0.77–1.85
[18F]7 a 0.57 1650 2895 2.80 2%
[18F]8 b 2.26 299 127 0.76 c 73% 6.3–14.8
[18F]9 b 1.61 246 152 0.76 c 67% 9.6–27.7

a From Ref. [233]. b From Ref. [243]. c From Ref. [240].

3.2.3. Radioligands Targeting the σ2 Receptor

During the last decades, efforts in the development of σ2 receptor radioligands have
been largely directed toward in vivo imaging of tumors in which upregulation of the
σ2 receptor is found. Currently, [18F]ISO-1 ([18F]10) (Figure 3 and Table 4) is the only
σ2 receptor radiotracer used in humans for tumor imaging [244,245]. However, it is not
suitable for investigating neuronal σ2 receptors, due to its low brain uptake. There has been
rekindled interest in the σ2 receptor as a therapeutic target for the treatment of neurologic
and psychiatric diseases, especially AD. For example, the σ2 receptor antagonist CT1812
(Figure 1) is reported to prevent the binding of Aβ oligomers to neuronal receptors, and
thus holds potential as a novel drug for the treatment of AD [193,194,246]. Hence, there
remains an unmet clinical need to develop a suitable radioligand for neuroimaging of the
σ2 receptor/TMEM97 in the human brain to investigate this target in AD progression, and
to elucidate target engagement and the treatment mechanism of σ2 receptor-targeted drug
candidates such as CT1812, in clinical trials.

Figure 3. Chemical structures of potential radioligands for neuroimaging of σ2 receptors.
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Similar to what was found for σ1 receptor radioligands, the radiotracers for imaging σ2
receptors in the brain must meet the critical requirements outlined above. Due to undefined
σ2 density in the brain of healthy human subjects and AD patients, the suitable affinity
range required for effective imaging of σ2 receptors is yet to be defined. There has also
been a paucity of ligands with high affinity and selectivity for the σ2 receptors. Although
CT1812 is currently in Phase II clinical trial for treatment of mild-to-moderate AD, its
affinity and subtype selectivity is only moderate [193]. Therefore, development of a suitable
radioligand for neuroimaging of the σ2 receptors is even more challenging than the σ1
receptors. Nonetheless, there have been some recent activities in this endeavor, with several
reports of brain-penetrant σ2 receptor radioligands, as depicted in Figure 3 [247–250].

In our search for highly selective radioligands for imaging σ2 receptors in the brain,
we turned to the synthesis and evaluation of indole-based derivatives. Structure-activity
relationship studies revealed that ligands with a four-carbon chain between the indole
ring and the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline or 5,6-dimethoxyisoindoline
pharmacophore displayed high σ2 receptor affinity and selectivity. Initial in vivo results
indicated that radioligands with the 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline phar-
macophore had lower brain uptake, brain-to-blood ratio, and σ2-specific binding [248,250].
Therefore, we focused on ligands with the 5,6-dimethoxyisoindoline pharmacophore to
examine the influence of the fluoroethoxy group at different positions of the indole ring on
tracer kinetics and specific binding. In biodistribution studies of three radioligands (named
[18F]SYB4 ([18F]11), [18F]SYB5 ([18F]12), and [18F]SYB6 ([18F]13) (Table 4) in mice, they were
found to readily enter the brain with good uptake (3.76–4.55% ID/g, 2 min) and high
brain-to-blood ratios (10.6 for [18F]11, 30–60 min; 3.1 for [18F]12 and 4.5 for [18F]13, 15 min),
and to bind specifically to the σ2 receptor, indicating a significant achievement as the first
set of radioligands demonstrated to be suitable for brain imaging purposes [248,250].

Ex vivo autoradiography and blocking studies demonstrated a high level of regionally
heterogeneous specific binding of [18F]11 in the mouse brain [248], with the distribution
pattern clearly different from that we observed recently with a σ1 receptor radioligand [239].
Analysis results from a metabolism study in ICR mice indicated that the parent compound
[18F]11 or [18F]13 was the predominant radioactive species (> 95%), indicating negligible
entry of radiometabolites into the brain. Dynamic PET imaging and blocking studies in
Sprague-Dawley rats confirmed regionally distinct distribution and high specific binding
of radioligand [18F]11 to the σ2 receptors in the rat brain [248].

Table 4. Binding affinity (Ki, nM) and Log D of the σ2 receptor radioligands.

Ligand Ki(σ1) Ki(σ2) Selectivity Log D

[18F]SYB4 a 371 1.79 207 2.43 b

[18F]SYB5 a 187 3.27 57 2.29 b

[18F]SYB6 a 376 2.63 143 2.17
[18F]ISO-1 c 330 6.95 48 3.06
[18F]ISO-1 d

[18F]ISO-1 e
102
95.1

28.2
13.3

4
7

3.06
3.06

a From Ref. [250]. b From Ref. [248]. c From Ref. [244]. d From Ref. [251]. e From Ref. [252].

In evaluation in monkeys, [18F]SYB4 ([18F]11) [253] and [18F]SYB6 ([18F]13) [254] exhib-
ited fast and reversible kinetics, with peak SUV of 2.2–4.5 and 2.5–3.6, respectively, within
30 min in grey matter regions. The highest uptake was in the cerebellum and putamen,
followed by similar uptake values in the hippocampus and caudate. Pretreatment with
CM398 (0.2 mg/kg) reduced tracer uptake significantly across all brain regions. Regional
BPND values ranged from 0.56 (amygdala) to 2.59 (cerebellum) for [18F]11 and 0.92 (amyg-
dala) to 2.11 (cerebellum) for [18F]13, indicating specific binding of both radioligands to
the σ2 receptors [253,254]. These two radioligands represent the first generation of PET
radiotracers demonstrated to be suitable for imaging and quantification of the σ2 receptor
in the primate brain.
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In addition to [18F]SYB4 and [18F]SYB6, several other putative σ2 receptor probes
([18F]14, [11C]15, [11C]16, and [18F]17, Figure 3) have been reported to have good brain
uptake in mice. No further reports are available for their evaluation in non-human primates
or humans.

4. Concluding Remarks

Hallmarks of human AD pathology (Aβ plaques and hyperphosphorylated tau protein
tangles) have been proved to play critical and interrelated roles in AD pathogenesis and
progression. However, increasing evidence has demonstrated the central role of the MAM
dysfunctions in AD pathogenesis [255–259]. As a key chaperone situated at the MAM, the
σ1 receptor is closely related to early Aβ generation, tau neurotoxicity, oxidative stress, and
calcium dyshomeostasis [257]. Indeed, donepezil, the ‘gold standard’ acetylcholinesterase
inhibitor (AChEI) in the symptomatic treatment of AD, has been found to have significant
σ1 binding affinity (IC50 of 29.1 nM) [220], and to exert its anti-amnestic and neuropro-
tective activities against Aβ toxicity through activation of the σ1 receptors [139,220,260].
Rivastigmine, another AChEI used for AD treatment, is also found to derive its activity to
enhance neuronal growth through interaction with the σ1 and σ2 receptors [178]. Finally,
ANAVEX2-73, a σ1 receptor agonist, has been shown to provide significant and sustained
improvement in cognitive function in mild-AD patients [189]. As a regulator of Aβ produc-
tion and a surrogate biomarker for mitochondrial function, the σ1 receptor is increasingly
viewed as playing a critical role in AD pathogenesis and progression, and thus holds great
potential as an important target for therapeutic intervention and as a biomarker for early
diagnosis, progression and monitoring of AD drug efficacy [49].

As a cholesterol-regulating gene, the σ2 receptor/TMEM97, PGRMC1 and LDLR
form a trimeric complex (TMEM97/PGRMC1/LDLR) and behave as a binding site for
monomeric and oligomeric amyloid β-peptide (1–42) (Aβ1–42) [44]. CT1812, a σ2 receptor
antagonist in clinical trial for AD treatment, is reported to prevent the binding of Aβ
oligomers to neuronal receptors [194,246], and to reduce the interaction between the σ2
receptor and Aβ oligomers in synapse in a dose-dependent manner [193,194,246]. The
recently FDA-approved mAb for AD therapy, Leqembi, is shown to prevent the formation
of Aβ oligomers which bind to the σ2 receptor/TMEM97-PGRMC1-LDLR complex [34].
Hence, the σ2 receptor/TMEM97 is considered a therapeutic target for AD.

For in vivo investigation of σ receptors, radioligands [18F]5, [18F]6, [18F]8 and [18F]9
have been proved to be suitable candidates for neuroimaging of σ1 receptors in non-human
primates [233,241,243], with [18F]6, [18F]8 and [18F]9 in the clinical trials. Two radioligands,
[18F]SYB4 and [18F]SYB6, have been found to be promising for neuroimaging of the σ2
receptors in rodents and non-human primates [248,250,253,254]. Their further investigation
in clinical studies may finally afford us a radioligand suitable for imaging the σ2 receptor
in humans. Advancement of these novel radioligands for imaging the σ1 and σ2 receptors
in AD, especially in longitudinal studies, will visualize the changes in these receptors along
the disease progression pathway, and thus help to elucidate the key roles of the σ1 and
σ2 receptors in AD pathogenesis and progression, and to facilitate the development of
effective therapeutic strategies for AD.
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Abbreviations

AD Alzheimer’s disease
AChEI Acetylcholinesterase inhibitors
APP Amyloid precursor protein
ApoE Apolipoprotein E gene
ARIA Amyloid-related imaging abnormalities
Aβ β-amyloid
AβOs Aβ oligomers
ALS Amyotrophic lateral sclerosis
BBB Blood–brain barrier
BuChE Butyrylcholinesterase
BiP Binding immunoglobulin protein
CNS Central nervous system
CDK5 Cyclin-dependent kinase 5
DA Dopamine
ER Endoplasmic reticulum
EPR Emopamil binding protein
GI Gastrointestinal
GPCRs G protein-coupled transporters
GRP78 Glucose-regulated protein 78
HD Huntington’s Disease
IP3R inositol 1,4,5-trisphosphate receptor
IRE1 Inositol-requiring enzyme 1
LDLR Low-density lipoprotein receptor
LRP-1 Low-density lipoprotein receptor-related protein 1
LXRs Liver X receptors
mAb Monoclonal antibody
MAM Mitochondria-associated ER membrane
MAC30 Meningioma-associated protein 30
MDD Major depressive disorder
MS Multiple sclerosis
MCI Mild cognitive impairment
NFTs Neurofibrillary tangles
NMDA N-methyl-D-aspartate receptor
NGF Nerve growth factor
PD Parkinson’s disease
PET Positron Emission Tomography
PGRMC1 Progesterone receptor membrane component 1
ROS Reactive oxygen species
SAM Senescence-accelerated mouse
TMEM97 Transmembrane protein 97
VEGF Vascular endothelial growth factor
VAChT Vesicular acetylcholine transporter
VLDLR Very-low-density lipoprotein receptor
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