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Abstract: Cardiac complications are frequently found following a stroke in humans whose patho-
physiological mechanism remains poorly understood. We used machine learning to analyse a large
set of data from a metabolipidomic study assaying 630 metabolites in a rat stroke model to investigate
metabolic changes affecting the heart within 72 h after a stroke. Twelve rats undergoing a stroke
and 28 rats undergoing the sham procedure were investigated. A plasmatic signature consistent
with the literature with notable lipid metabolism remodelling was identified. The post-stroke heart
showed a discriminant metabolic signature, in comparison to the sham controls, involving increased
collagen turnover, increased arginase activity with decreased nitric oxide synthase activity as well as
an altered amino acid metabolism (including serine, asparagine, lysine and glycine). In conclusion,
these results demonstrate that brain injury induces a metabolic remodelling in the heart potentially
involved in the pathophysiology of stroke heart syndrome.

Keywords: stroke heart syndrome; metabolomics; machine learning

1. Introduction

Stroke heart syndrome designates the diverse cardiac complications that may follow
a stroke. It is estimated that following a stroke, up to 20% of patients present at least one
cardiac complication [1]. Myocardial injury or infarction, takotsubo syndrome, ventricular
dysfunction or arrhythmia, notably atrial fibrillation, are the most common manifestations
of this syndrome [2].

Several mechanisms may participate in this secondary cardiac involvement, including
neuro-cardiac and neuro-hormonal regulation, especially with the central role of cate-
cholamines, immune and inflammatory responses, notably with the involvement of im-
mune cells such as macrophage and the key role of cytokines such as IL-1, and, finally, the
role of the gut–heart axis through gut dysbiosis [2,3].

In this study, we hypothesized that metabolic impairment may also be involved in the
deleterious impact of brain injury to the heart. Indeed, metabolic changes have been high-
lighted in patients following a stroke, such as those involving amino acids [4]. Compared to
healthy controls, the blood of stroke patients consistently showed decreased concentrations
of glycine, valine, isoleucine, leucine, lysine, citrate, alanine and serine and increased
concentrations of glutamate and lactate. The metabolic pathways most often found altered
after a stroke involve glycine, serine, threonine, valine, leucine, isoleucine, glutathione
and folate metabolisms [5]. Lipids are also consistently found to be altered following a

Int. J. Mol. Sci. 2023, 24, 12000. https://doi.org/10.3390/ijms241512000 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241512000
https://doi.org/10.3390/ijms241512000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2287-7252
https://orcid.org/0000-0001-6871-8711
https://orcid.org/0000-0003-0802-4608
https://doi.org/10.3390/ijms241512000
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241512000?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 12000 2 of 16

stroke, notably blood levels of lysophosphatidylcholines and phosphatidylcholines, which
several studies have found to be decreased and linked to inflammatory responses. Levels
of sphinganine, a ceramide precursor, have been shown to be increased in stroke patients,
while ceramides have been shown to be linked with higher risk of ischemic stroke [4]. Over-
all, these changes in metabolite concentrations in stroke patients are involved in energy
metabolism, oxidative stress, excitotoxicity and inflammation [4–6].

Metabolomics is a powerful tool allowing for the quantification of an increasing num-
ber of metabolites, which in turn allows us to capture and test the predictive power of
the metabolic signatures associated with pathological conditions. It has been successfully
used to understand metabolic pathways involved in the pathophysiology of stroke, both in
human and animal models [6]. The use of targeted metabolomics assays such as the one
used in our study allows the precise and rapid quantification of a finite and predefined
number of metabolites compared to untargeted methods. These methods are highly stan-
dardized, thanks to the use of internal controls (low, medium and high levels), as well as
calibration curves. The results are therefore highly comparable between user laboratories,
highly suitable for clinical and preclinical research. It was used to unravel new pathophysi-
ological mechanisms in multiple pathologies such as arterial hypertension [7], sickle cell
disease [8] or myocardial infarction and remote ischemic conditioning [9] where results
were demonstrated to be well correlated with untargeted metabolomics [10]. To date, to
our knowledge, metabolomics have never been used to investigate stroke heart syndrome
in patients or animal models, specifically in the search for the metabolic impact of stroke
on the heart metabolism.

Continuous improvements of metabolomic pipelines make it possible to study an
increasing number of metabolites, which contribute to generate larger and more complex
datasets. Traditional statistical approaches are themselves limited in this setting and the use
of machine learning is thought to facilitate better performance in this context [11]. Indeed,
machine learning approaches allow us to model nonlinear data representation as well as
large and heterogeneous data sets [12].

Comparing a rat stroke model with controls, we investigated whether a machine
learning approach could unravel a metabolomic signature specifically affecting the heart in
comparison with the blood signature.

2. Results

Of the 60 rats initially included in the study (30 rats undergoing the sham proce-
dure and 30 rats undergoing the stroke procedure), 10 did not survive the experimental
procedure (two in the sham and eight in the stroke group). Furthermore, we eliminated
10 rats from the stroke group that had a percentage of brain necrosis below 10% based on
post-mortem brain histological sections, guaranteeing a significant stroke was generated.
The remaining 40 rats were thus explored, 28 of which were exposed to the sham proce-
dure, whereas 12 had a significant stroke with brain infarction. Mean ± standard deviation
for the percentage of necrosis evaluated on brain histological sections was 25.9 ± 10.4%.
After applying quality controls and filtering as described in the methods section, we accu-
rately measured 400 metabolites in rat plasma and 154 metabolites in heart extracts (full
metabolites list in Supplementary Table S1).

On plasma samples, principal component analysis (PCA) displayed no spontaneous
clustering according to the stroke or sham procedure, and it did not reveal any outliers. On
the heart samples, PCA displayed no spontaneous clustering but it highlighted one outlier
sample that was removed from subsequent analyses.

Random stratified sampling was carried out: for the plasma dataset, the training set
comprised 28 rats and the remaining 12 rats were kept for the test set, whereas for the heart
dataset the training set comprised 28 rats and the remaining 11 rats were kept for the test set.
A machine learning approach was used, including feature selection, testing and fine-tuning
of multiple classical machine learning models for the classification of rats subjected or
not subjected to stroke based on plasma and heart samples. The whole machine learning
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pipeline was reiterated 30 times to obtain more stable and robust results. A global overview
of the study design is described in Figure 1.
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2.1. Metabolomic Signature in Plasma

On plasma samples, the best obtained model was a support vector machine that
achieved a median AUC-ROC on the test set of 0.91 (±0.1) on the 30 different samples of
the plasma dataset into training and test data (Figure 2). Twenty metabolites contributing to
the stroke prediction were identified as the most consistently selected for achieving this per-
formance (Figure 3, Table 1). This signature highlighted alterations in the concentration of
six different phosphatidylcholines and lyso-phosphatidylcholines and seven sphingolipids
(five different ceramides and hexosylceramides as well as two sphingomyelins). Some sph-
ingomyelins (C16:0 and C14:1), ceramides (d18:1/16:0) and hexosylceramides (d18:1/16:0,
d18:1/20:0) had higher concentrations in the stroke group, whereas some ceramides were
found decreased in this group. Phosphatidylcholines (aa C42:2, aa C42:5, aa C40:2, ae
C38:2) and lyso-phosphatidylcholines (a C26:1, a C28:1) showed decreased concentra-
tions. In addition, sum/ratios univariate analysis found that the ratio of sphingomyelin to
phosphatidylcholines was increased in stroke group.

Regarding the amino acids component of the stroke signature, we found alterations in
the concentrations of (by decreasing order of importance) trans-4-hydroxyproline, citrulline,
lysine and ornithine. Sum/ratios univariate analysis found that the ratio of proline to cit-
rulline (indicator of the relative arginase activity compared to NO synthase) was increased
in the stroke group, the activity of NO-synthase (citrulline/arginine) was decreased in the
stroke group, and the global arginine bioavailability ratio was augmented in this group.

Other metabolites, such as 3-indolepropionic acid (3-IPA), cholic and desoxycholic
acid (Figure 3), were also impacted by stroke. They were all decreased in the plasma of
the rats in the group that had strokes compared to the sham group. Finally, the ratio of
dihexosylceramides to ceramides was found diminished in the stroke group.
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Table 1. Descriptive statistics of the twenty metabolites contributing to the stroke prediction found in
plasma samples. CA: cholic acid, DCA: desoxycholic acid, 3-IPA: 3-indolepropionic acid. Cer:
ceramides, HexCer: hexocylceramides. SM: sphingomyelin, PC: phosphatidylcholine, lysoPC:
lysophosphatidylcholine, Cit: citrulline, Lys: lysine, Orn: ornithine, Pro: proline, Gly: glycine,
Hex2Cer: dihexocylceramides, HexCer: hexocylceramides, std: standard deviation.

Sham Stroke

Feature Mean 95% Confidence
Interval (Mean) Std Range Mean 95% Confidence

Interval (Mean) Std Range Effect Size
(Cohen’s d)

HexCer(d18:1/20:0) 0.16 [0.14;0.19] 0.06 0.23 0.26 [0.2;0.32] 0.09 0.26 1.31

t4-OH-Pro 27.12 [24.63;29.61] 6.43 26.80 35.48 [31.46;39.51] 6.34 21.9 1.31

Cit 54.61 [50.30;58.91] 11.10 43 44.43 [37.24;51.63] 11.33 35.4 0.91

SM (OH) C14:1 0.56 [0.52;0.59] 0.09 0.35 0.64 [0.58;0.70] 0.10 0.32 0.89

Cer(d18:0/24:1) 0.10 [0.09;0.12] 0.03 0.11 0.07 [0.05;0.1] 0.04 0.14 1.10

Lys 352.79 [324.20;381.37] 73.72 302 453.25 [405.48;501.02] 75.19 226 1.35

PC ae C38:2 1.15 [1.06;1.25] 0.25 0.92 0.87 [0.78;0.96] 0.15 0.51 1.28

lysoPC a C26:1 1.65 [1.48;1.81] 0.42 1.55 1.19 [0.91;1.46] 0.43 1.49 1.08

SM C16:0 34.31 [31.38;37.24] 7.56 26.50 44.37 [39.07;49.67] 8.34 25.20 1.29

lysoPC a C28:1 0.94 [0.86;1.03] 0.21 0.81 0.73 [0.58;0.88] 0.24 0.76 0.97

PC aa C40:2 0.29 [0.26;0.31] 0.07 0.25 0.21 [0.17;0.25] 0.06 0.19 1.19

3-IPA 1.39 [1.08;1.71] 0.81 3.06 0.51 [0.15;0.87] 0.57 2.12 1.18

Cer(d18:1/16:0) 0.89 [0.81;0.97] 0.20 0.84 1.21 [1.00;1.42] 0.33 1.12 1.31

PC aa C42:5 0.23 [0.21;0.24] 0.04 0.16 0.18 [0.16;0.21] 0.04 0.13 1.18

Orn 115.46 [101;129.91] 37.28 162.6 93.74 [52.76;134.72] 64.50 246.30 0.46

HexCer(d18:1/16:0) 0.58 [0.52;0.65] 0.16 0.57 0.82 [0.65;1.00] 0.28 1.08 1.19

PC aa C42:2 0.22 [0.21;0.24] 0.04 0.18 0.17 [0.14;0.19] 0.04 0.15 1.35

Cer(d18:1/26:0) 0.47 [0.42;0.53] 0.15 0.58 0.34 [0.25;0.43] 0.14 0.52 0.92

CA 2.44 [1.69;3.19] 1.94 9.57 0.95 [0.01;1.90] 1.49 4.96 0.82

DCA 0.76 [0.46;1.05] 0.77 3.34 0.45 [−0.12;1.02] 0.90 3.17 0.38
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Figure 3. The average of all SHAP values of important plasma metabolites allowing us to distinguish
between rats subjected to stroke and those not subjected to stroke. SHAP values were computed
based on the predictions of the best model fitted on each of the 30 different train/test sampling of the
plasma dataset. The most important metabolites have the highest SHAP values and are at the top and
the least important have the lowest values and are at the bottom. CA: cholic acid, DCA: desoxycholic
acid, 3-IPA: 3-indolepropionic acid. Cer: ceramides, HexCer: hexocylceramides. SM: sphingomyelin,
PC: phosphatidylcholine, lysoPC: lysophosphatidylcholine, Cit: citrulline, Lys: lysine, Orn: ornithine.
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2.2. Cardiac Metabolomic Signature

On heart samples, one rat was detected as an outlier with PCA and was removed
from subsequent analysis. The best obtained model was also a support vector machine that
achieved a median AUC-ROC on the test set of 0.89 (±0.16) on the 30 different train/test
sampling of the heart data (Figure 2).

Among the 154 metabolites accurately measured in heart samples, seven important
metabolites were identified as the most consistently selected for our models’ performances
(Figure 4, Table 2).
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Table 2. Descriptive statistics of the seven metabolites contributing to the stroke prediction found in
heart samples. 5-AVA: acid 5-aminovaleric, CA: cholic acid, t4-OH-Pro: trans4-hydroxyproline, Lys:
lysine, Ser: serine, Asn: asparagine, Pro: proline, Cit: citrulline, Gly: glycine, AAs: amino acids, std:
standard deviation.

Sham Stroke

Feature Mean 95% Confidence
Interval (Mean) Std Range Mean 95% Confidence

Interval (Mean) Std Range Effect Size
(Cohen’s d)

t4-OH-Pro 9.64 [8.99;10.29] 1.68 6.73 12.86 [10.5;15.22] 3.51 12.63 1.38

5-AVA 0.51 [0.4;0.62] 0.29 1.28 0.29 [0.15;0.43] 0.21 0.54 0.82

Lys 76.35 [69;83.69] 18.95 82.40 105.20 [87.58;122.82] 26.23 77.40 1.36

Ser 56.92 [51.03;62.81] 15.20 57.60 93.29 [68.06;118.53] 37.56 136.20 1.55

CA 0.08 [0.06;0.09] 0.05 0.18 0.04 [0;0.08] 0.06 0.20 0.65

Asn 39.43 [35.76;43.1] 9.47 34.70 58.23 [49.27;67.19] 13.34 46.90 1.76

Betaine 31.77 [28.96;34.58] 7.25 28.60 26.99 [19.84;34.14] 10.64 34.30 0.58

No particular lipid signature was found in this tissue. The amino acids (by decreasing
order of importance) trans-4-hydroxyproline, lysine, serine and asparagine were found
consistently increased in the left ventricles of rats after stroke, compared to the sham group.
Sum/ratios univariate analysis found that the ratio of proline to citrulline was augmented
in the stroke group, the activity of NO-synthase (citrulline/arginine) was diminished in
the stroke group, the glycine synthesis ratio (glycine/serine) was diminished in the stroke
group and the sum of ketogenic amino acids was augmented in the stroke group.

Three other metabolites were found with altered concentrations: 5-aminovaleric acid,
cholic acid and betaine (Figure 4). These three metabolites were decreased in the stroke
group compared to the sham group (Figure 5).
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Figure 5. (A,B) Volcano plot of the metabolites found in plasma samples (A) and heart samples (B).
Log2 fold change (stroke/sham) is in the x-axis and –log10 of the univariate p-value (after correction
with Benjamini–Hochberg) in the y-axis. Important metabolites highlighted by the machine learning
pipeline are in blue (if more abundant in the sham group) or in red (if more abundant in the stroke
group). (C) Venn diagram of important metabolites altered by stroke based on plasma or heart samples.
Important metabolites identified in plasma samples are inside the orange circle. Important metabolites
identified in heart samples are inside the red circle. Metabolites in blue are at a higher concentration
in the sham group while metabolites in red are at a higher concentration in the stroke group.

2.3. Common Metabolomic Signature in Heart and Blood

Three metabolites were found in common between the plasma and heart samples.
Two metabolites had higher concentrations in the stroke group compared to the sham
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group, including lysine and trans-4-hydroxyproline, both of which had a log2 fold change
(stroke/sham) of 0.41. The third metabolite, cholic acid, was found decreased in the stroke
group with an average log2 fold change (stroke/sham) of −1.1 (Figure 5). Ratios of proline
to citrulline were augmented in both samples of the stroke group, and the NO-synthase
activity (citrulline/arginine) was diminished in both samples of the stroke group.

We used metabolite set enrichment analysis to interpret these metabolomic signatures
in the heart and plasma. We found significant enrichment of the arginine and proline
metabolism as well as arginine biosynthesis, both of which were similar to our findings
using metabolic ratios (Figure 6).
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Figure 6. Metabolite set enrichment analysis for heart (A) and plasma (B) samples revealing signifi-
cant metabolic pathways impacted by stroke (red dot).
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3. Discussion

The main objective of our study was to investigate whether a biological signature
could be detected in the hearts of rats subjected to stroke. With a combined targeted
metabolomics and machine learning approach, we detected such a signature. This biological
signature appearing in the heart, which involves seven metabolites with modified concen-
trations, is much more modest than the signature appearing in the blood, which comprises
20 discriminant metabolites. It nevertheless attests to the indirect deleterious impact of
stroke on the heart observed in clinical settings. This signature constitutes an opportunity
to explore the mechanisms involved in this secondary heart damage.

3.1. Phospholipids Signature

An important lipids signature was found in the plasma, but not in the heart of rats
in the days following stroke. Phosphatidylcholines (PC) have a choline head group, a
glycerophosphoric acid and two fatty acids of different sizes. They are particularly present
in cell membranes and are involved in multiple processes such as inflammation. Lysophos-
phatidylcholines (LPC) are derived from PC thanks to the hydrolytic action of phospholi-
pases A2 or A1. LPCs are also known for their role in myelin sheath phagocytosis through
the recruitment of macrophages and microglia [13]. Multiple studies have found them to be
diminished in the plasma of patients after a stroke. In a lipidomic study on the plasma of
35 patients following a stroke, 13 lipids were found altered in comparison to the 21 healthy
controls. Four LPCs were found up-regulated in patients, a potential sign of phospholipase
A2 activation [14]. Another study comparing 66 patients after ischemic stroke versus
63 controls found a decrease in PC and LPC levels after stroke [15]. Previous rat models of
stroke have found decreased PC and LPC in serum [5,16,17]. Accordingly, we also found
PC and LPC levels diminished in our rat model, which can be attributed, at least partly, to
the inflammatory processes found following a stroke. A publication studying a rat model
of ischemic stroke also found a pattern of decreased PC and increased LPC levels in brain
sections following stroke [18].

3.2. Sphingolipids Signature

Sphingolipids are essential components of cellular membranes, which also regu-
late diverse cell functions. Among sphingolipids, ceramides occupy a central position
and are well known as lipid mediators involved in cell death, differentiation, senes-
cence and autophagy [19]. Ceramides also have a role in plaque formation and throm-
bosis [20]. They have been found increased in the plasma of patients in an untargeted
metabolomics study comparing 42 patients in the week after an ischemic stroke with 30 con-
trols [21]. Ceramides are, furthermore, useful in risk prediction, as showcased in a study on
1767 patients followed for 7 years; here, plasma ceramide concentrations were found posi-
tively associated with cardiovascular outcomes [22]. In a study of the plasma of patients
following a stroke, glucosylceramides were found decreased and were a strong predictor of
stroke status [14]. We also found that rats in the stroke group had a diminished proportion
of dihexosylceramides (Hex2Cer) relative to the hexosylceramide (HexCer) pool. This
result supports the observation that the synthesis of hexosylceramides is a way to control
the pool of ceramides [23].

Alongside all of the above, we found an augmented ratio of sphingomyelins to phos-
phatidylcholines in the plasma of rats after a stroke. It represents sphingomyelin synthase
activity through sphingomyelin synthesis from phosphatidylcholines. Sphingomyelin
synthase generates sphingomyelin from ceramide by the transfer of phosphocholine from
phosphatidylcholine with the generation of diacylglycerol. Commonly found in plasma
membranes and in myelin sheath, sphingomyelins are structured around a phosphocholine
head group, a sphingosine and a fatty acid of variable length. In conjunction with ce-
ramides, sphingomyelin have also been found to be increased in the plasma of patients
following an ischemic stroke [21]. In our study, we found two sphingomyelins signifi-
cantly augmented in plasma samples of rats after stroke, in parallel with higher activity
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of sphingomyelin synthase. Interestingly, on the one hand, mice KO for sphingomyelin
synthase had inhibited atherosclerosis as well as decreased the inflammatory response.
By contrast, overexpression of sphingomyelin synthase promoted atherosclerosis over
weeks through lowering non-HDL lipoprotein retention/aggregation in plaque [19]. On
the other hand, ceramides, the precursor of sphingomyelin, have an increased synthesis
thanks to the stimulating role of inflammatory cytokines such as TNFα and IL-1β [23]. The
inflammatory responses elicited by a stroke therefore contribute to increased ceramides
and sphingomyelin production, which have pro-apoptotic, autophagic and atherosclerotic
effects. These shingolipid alterations may contribute to cardiac complications by acceler-
ating atherosclerosis and plaque rupture as well as pro-thrombotic mechanisms found in
stroke heart syndrome.

Interestingly, we found this lipid signature in plasma, but not in heart samples of rats
after a stroke. This sphingolipids signature is coherent with the other studies in humans,
but was not as extensively described in rat models, which validates the relevance of our
approach. It is likely to result from brain infarction and subsequent releases of these lipids
present in high quantities in the brain.

3.3. Amino Acid Signature

Trans-4-hydroxyproline levels were augmented in both the plasma and hearts of rats
subjected to stroke. Hydroxyproline, generated through collagen hydrolysis, is a marker
of collagen turnover, especially from skeletal muscle and bone mass. In heart samples, it
means that a remodelling activity may be present in the heart in the days immediately
following a stroke, a phenomenon that could be linked to cardiac complications [2]. This
elevation of trans-4-hydroxyproline was also found in the plasma, where it could also
be due to the brain damage caused by a stroke. This finding has not been described in
previous rat models of stroke.

The ratio of proline to citrulline (proline/citrulline) was significantly higher in the
stroke group compared to the sham group in both plasma and heart samples. This ratio is
an indicator of the conversion of ornithine to proline by ornithine aminotransferase and
pyrroline-5-carboxylate reductase and serves as an indirect indicator of the relative arginase
activity that competes with NOS activity. Inflammatory factors and atherothrombosis
mediators, such as oxidized low-density lipoprotein and thrombin, can activate arginases.
It also results in depriving arginine from the NOS pathway, decreasing NO bioavailability,
which has been linked to inflammation, endothelial dysfunction as well as cardiovascular
disorders, including atherosclerosis [24]. The decreased NO bioavailability could therefore
be an additional mechanism contributing to the local cardiac complications found in this
syndrome such as myocardial lesions to infarctions due to endothelial dysfunction and/or
atherosclerotic plaque destabilization or rupture. In parallel, we found that arginine
bioavailability was increased in the plasma of rats from the stroke group. This is surprising
since lower arginine bioavailability has been found to correlate with endothelial dysfunction
and cardiovascular mortality in a longitudinal study involving 2236 patients followed for
coronary artery disease for eight years [25]. Enriched metabolic pathways also confirmed
the importance of these same significant pathways, namely arginine and proline metabolism
and arginine biosynthesis. This highlights the critical role of NO generation and regulation
in both plasma and heart samples that is impaired after stroke.

The serine to glycine ratio is an indicator of mitochondrial serine hydroxymethyl-
transferase (SHMT) activity converting serine to glycine. It was found to be diminished
in heart samples of rats after a stroke in conjunction with an elevated serine level. Serine
and glycine are non-essential amino acids that contribute to one carbon metabolism, with
roles in nucleotide synthesis, the folate cycle and responses to oxidative stress through glu-
tathione synthesis. This elevation of serine may hint at a lower utilization of serine to fuel
one carbon metabolism, notably glycine synthesis, leading to a reduction in cells’ ability to
sustain oxidative stress damage [26]. Simultaneously, we found elevated asparagine levels
in the hearts of rats from the stroke group. Asparagine is synthesized from glutamine, and
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has been linked with amino acid uptake, notably the uptake of serine [27], hence providing
another explanation for high serine levels in the same rats. Asparagine production is found
to be correlated with macrophage activation [28], which points to the role of the systemic
inflammation found following a stroke as an explanation for asparagine augmentation.

3.4. Other Metabolites

Betaine, also known as trimethylglycine, was found diminished in the heart samples
of rats following a stroke. It has a neuroprotective role, preserves myocardial function and
prevents liver diseases mainly through its anti-oxidant and anti-inflammatory properties.
These properties come from its ability to protect cells from osmotic stress, being a methyl
donor in the conversion of homocysteine to methionine, and inhibiting NF-κB and NLRP3
inflammasome activity [29,30]. The depletion of betaine in the heart following a stroke
highlights the vulnerability of the myocardium to further inflammatory processes and to
oxidative stress. Low levels of betaine correlate with increased risk of secondary heart
failure and acute myocardial infarction [31].

Cholic and desoxycholic acids are bile acids that were found to be diminished in
the plasma and heart samples of rats belonging to the stroke group. They are derived
from cholesterol and have gained attention in recent years for roles as vasoactive ligands
involved in vascular tone and myocardial contractility on top of more general roles in energy
metabolism, cell proliferation and immunomodulation. Cholic acid has been described to
have an arrythmogenic effect [32,33]. Elevated levels of bile acids have been linked with
cardiac dysfunction through the inhibition of fatty acid β-oxidation. In view of the data in
the literature and the decrease in bile acids in our experiment, there is no evidence to date
that these metabolites are involved in stroke heart syndrome.

Two microbiota-derived metabolites were found to be altered in rats after a stroke.
First, 5-aminovaleric acid (5-AVA) was elevated in heart samples of rats following a stroke,
which might reflect alterations in the gut–heart axis [34], and 3-indolepropionic acid (3-IPA),
a microbiota-derived metabolite of tryptophan, was found to be diminished in the plasma
of rats belonging to the stroke group, which might reflect the impact of gut dysbiosis
found in stroke heart syndrome [3]. This metabolite has multiple roles, notably limiting
inflammation, diminishing lipid peroxidation and anti-oxidant function. Circulating 3-IPA
levels were found to be decreased in cardiovascular pathologies such as atherosclerosis [35].
This decrease could also be linked to inflammation or oxidative stress states during stroke.

3.5. Limits

Our study has some limitations. It is based on a rat model, which means that some of
our observations may not be applicable to humans. Also, the use of targeted metabolomics,
while allowing precise measurements, limits our analysis to a predefined set of metabolites,
excluding metabolites that are potentially significant in heart injury. Finally, several rats
did not survive the experimental procedure, which led to a lower number of rats being in
the stroke group than in the control group.

4. Materials and Methods
4.1. Animals

All the experiments were performed in accordance with the European Community
Guiding Principles for the care and use of animals (Directive 2010/63/UE; Décret n◦2013-
118). The study protocol was approved by the regional ethics committee (Comité d’Ethique
en Experimentation Animale des Pays de la Loire) and by the French Ministry of Higher Ed-
ucation and Research (agreement APAFIS#27253-2020091713561456 v7). We used Sprague–
Dawley male rats weighing 300–350 g (Envigo, Gannat, France). They were allowed
to acclimatize for at least seven days before entering the experiment. The temperature
(22 ± 2 ◦C) and humidity (55 ± 20%) were controlled with a 12/12 h light/dark cycle. The
access to pelleted food and water was ad libitum. Rats were pre-emptively allocated to two
groups: 30 were allocated to the sham group and 30 to the stroke group.
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4.2. Transient Middle Cerebral Artery Occlusion

The intraluminal filament model of focal ischemia was used. Rats were anaesthetised
by intraperitoneal injection of sodium pentobarbital (60 mg/Kg) and analgesia was obtained
with subcutaneous administration of buprenorphine at 0.05 mg/kg. The body temperature
was monitored using a rectal probe and maintained at 37 ± 0.5 ◦C throughout the procedure
using a heating mat. After a midline neck incision, a standardized silicone-coated 6-0 nylon
monofilament (Doccol Corporation, Sharon, MA, USA) was inserted into the right internal
carotid artery and advanced to occlude the origin of the middle cerebral artery. The filament
was kept in place for 90 min, and then withdrawn allowing reperfusion. The sham animals
underwent the same procedure, but without the insertion of the filament to the right internal
carotid artery. Rats were euthanized at 72 h after the experimental stroke procedure. Blood
from vena cava and left ventricle samples were collected for subsequent analyses.

4.3. Triphenyl Tetrazolium Chloride (TTC) Staining

TTC staining was used to assess histological necrosis. The brains were quickly ex-
tracted, and sectioned at 1.5 mm intervals with a brain slicer matrix. The brain slices
were stained with 1% 2,3,5-triphenyltetrazolium chloride (TTC) for 8 min and fixed in
formalin. They were then photographed, and the infarcted areas were measured blindly
using ImageJ software (v1.53p). Brain infarction was expressed as a percentage of total
brain area. To guarantee a sufficient biological stroke effect, we included rats for statistical
processing only if they had brain infarctions superior to 10% based on post-mortem brain
histological sections.

4.4. Analytical Workflow

Plasma samples were prepared from the blood and stored at −80 ◦C. The left ventricle
samples were immediately plunged into liquid nitrogen before their conservation at −80 ◦C
until the extraction of metabolites. Before extraction, the samples were weighed using an
XA105DU analytical balance (Mettler Toledo, Viroflay, France) with an accuracy of 0.01 mg
and the weight of the samples was used for in-between sample normalization. Tissue
samples were collected in pre-cooled (dry ice) 2.0 mL homogenization Precellys tubes
prefilled with 1.4 mm diameter ceramic beads and 3 µL/mg cold methanol (Zukunft et al.,
2018). Tissues were homogenized by two grinding cycles, each at 6600 rpm for 20 s, spaced
20 s apart, using a Precellys homogenizer (Bertin Technologies, Montigny-le-Bretonneux,
France) kept at +4 ◦C. The supernatant was recovered after centrifuging the homogenate
and kept at −80 ◦C until mass spectrometric analysis. We used a targeted quantitative
metabolomic approach using the Biocrates® MxP® Quant 500 kit (Biocrates Life sciences
AG, Innsbruck, Austria). This kit allows for the quantification of up to 630 metabolites
and the computation of 234 ratios or sums of metabolites indicative of various metabolic
processes using mass spectrometry (QTRAP 5500, SCIEX, Villebon-sur-Yvette, France).
These ratios and sums of metabolites are indicators of a wide range of metabolic functions
and pathways. Carnitine, acylcarnitines, lipids and hexoses were analysed by flow injection
analysis coupled with tandem mass spectrometry (FIA-MS/MS), whereas amino acids
and biogenic amines were quantified using liquid chromatography coupled with tandem
mass spectrometry (LC–MS/MS). The distribution of samples of the different rats was
randomized according to the experimental procedure (with or without stroke) over the
plate to prevent batch-effect variations: one run was used for analysing plasma samples and
a second one was used to study heart samples. Peaks were integrated in order to retrieve
raw data as a matrix including the measurements of the 630 metabolites, in addition to
pool, calibration and quality control samples. Three quality controls (QCs) composed of
three concentrations of human plasma samples, i.e., low (QC1), medium (QC2) and high
(QC3), were used to evaluate the performance of the analytical assay. A seven-point serial
dilution of calibrators was used to generate calibration curves for the quantification of
amino acids and biogenic amines. We applied a filtering step designed to remove unusable
data: metabolites with more than 30% of values lying outside the limits of quantification
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were removed if no statistically significant association between the out of bound values
of the metabolite and the class (sham or stroke) was found with a Chi-squared test (i.e., a
metabolite is only quantifiable in one group and not in the other). We thus obtained two
separate datasets (one for plasma and the other for heart samples) that were independently
processed through the statistical workflow.

4.5. Statistical Workflow

Data pre-processing including fold-change calculation for each compound, matrix
standardisation with mean centring and variance scaling, was carried out. Univariate
analyses of all metabolites and ratios or sums of metabolites were achieved by using Mann–
Whitney U tests with Benjamini–Hochberg correction. Tests were considered statistically
significant if the corrected p-value was below 0.05. Multivariate unsupervised Principal
Components Analysis (PCA) was used to identify outliers as well as spontaneous clusters.
Then, a machine learning pipeline was used to analyse each dataset (plasma and heart
samples) separately. We used random stratified sampling to split each dataset into a training
set (70% of the initial samples) and a test set (approximately 30% of the initial samples,
in order to retain at least 12 samples in the test set). The stratified sampling allowed us
to respect the original proportion of sham and stroke samples in both the train and test
datasets. We use the train set to perform a feature selection of relevant variables while
discarding non-informative ones, using the BorutaPy algorithm [36]. Features selected
were then used to train multiple machine learning models including regularized logistic
regression, support vector machines (with either linear or nonlinear kernels) and random
forest. Each model had its hyperparameters fine-tuned on 10 resamplings of the training
set into a train and a validation set with a bootstrap without replacement strategy. The
best model performance was then assessed on the test set with its AUC-ROC (Area under
Receiver Operating Characteristic Curve). This whole process (data partitioning, feature
selection, model selection and testing) was repeated on 30 different random stratified
samplings of the initial data into different train and test datasets to average the results
and metrics of the best performing model, allowing for more robust results. Average
feature importance was computed using the SHAP values [37] of each selected metabolite
through the feature selection process, across the 30 iterations. In order to better highlight
the most important metabolites for a correct prediction, models whose AUC-ROC belonged
to the lower 25 percentile of all models were excluded. Then, metabolites that were
selected in more than half of the iterations of the data partitioning/models remaining were
considered as significantly contributing to the best model performance across varying
data splits. Finally, over representation analysis was conducted with top metabolites with
the MetaboAnalyst 5.0 web application (https://www.metaboanalyst.ca/, accessed on
8 september 2022) [38] to identify significantly enriched metabolic pathways in plasma and
heart samples. We only retained metabolites that were selected at least 3 times with our
feature selection methods.

4.6. Computational Tools

All data processing was performed using Python (3.7.7) and Python packages includ-
ing: pandas (1.0.5), scikit-learn (0.23.1), tensorflow (2.2.0), BorutaPy (0.3), SHAP (0.40.0),
seaborn (0.10.1), matplotlib_venn_wordcloud (0.2.5) and matplotlib (3.3.0).

5. Conclusions

This study identified metabolites that have already been shown to change following
a stroke in the blood of patients and animal models, such as PC, LPC and ceramides. It
also revealed metabolites newly involved in the plasma in the context of stroke, such as
3 indolepropionic acid and cholic acid. Most importantly, this study revealed for the first
time a metabolic signature appearing specifically in the heart after stroke, involving the
following seven metabolites: lysine, serine, asparagine, trans-4-hydroxyproline, cholic acid,
5-aminovaleric acid and betaine. This signature suggests an increase in collagen turnover,

https://www.metaboanalyst.ca/
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an increase in arginase activity with a decrease in NO production and an alteration in the
metabolism of serine, asparagine, lysine and glycine. These metabolic changes provide
evidence that brain injury induces metabolic changes in the heart that are likely to be
involved in the pathophysiology of stroke-related cardiac damage. Additionally, these
metabolite changes need to be further studied in patients after stroke as they may be
potential biomarkers which could correlate with the apparition of potential secondary
cardiac complications. In the future, altered pathways in heart after stroke could be
interesting to explore in order to find potential therapeutic targets which could prevent
these complications.
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