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Abstract: Diabetes has gradually become a serious disease that threatens human health. It can induce
various complications, and the pathogenesis of diabetes is quite complex and not yet fully elucidated.
The zebrafish has been widely acknowledged as a useful model for investigating the mechanisms
underlying the pathogenesis and therapeutic interventions of diabetes. However, the molecular basis
of zebrafish diabetes induced by overfeeding remains unknown. In this study, a zebrafish diabetes
model was established by overfeeding, and the molecular basis of zebrafish diabetes induced by
overfeeding was explored. Compared with the control group, the body length, body weight, and
condition factor index of zebrafish increased significantly after four weeks of overfeeding. There
was a significant elevation in the fasting blood glucose level, accompanied by a large number of
lipid droplets accumulated within the liver. The levels of triglycerides and cholesterol in both the
serum and liver exhibited a statistically significant increase. Transcriptome sequencing was employed
to investigate changes in the livers of overfed zebrafish. The number of up-regulated and down-
regulated differentially expressed genes (DEGs) was 1582 and 2404, respectively, in the livers of
overfed zebrafish. The DEGs were subjected to KEGG and GO enrichment analyses, and the hub
signaling pathways and hub DEGs were identified. The results demonstrate that sixteen genes
within the signal pathway associated with fatty acid metabolism were found to be significantly up-
regulated. Specifically, these genes were found to mainly participate in fatty acid transport, fatty acid
oxidation, and ketogenesis. Furthermore, thirteen genes that play a crucial role in glucose metabolism,
particularly in the pathways of glycolysis and glycogenesis, were significantly down-regulated in the
livers of overfed zebrafish. These results indicate insulin resistance and inhibition of glucose entry
into liver cells in the livers of overfed zebrafish. These findings elucidate the underlying molecular
basis of zebrafish diabetes induced by overfeeding and provide a model for further investigation of
the pathogenesis and therapeutics of diabetes.
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1. Introduction

Diabetes is a major contributor to mortality around the world. The global number of
diabetes cases is projected to increase from approximately 537 million today to 783 million
by 2045. It is estimated that around 6.7 million adults between the ages of 20 and 79 have
died as a result of diabetes or its complications. In China, the number of people with
diabetes was 140.9 million in 2021 [1]. Diabetes mellitus (DM) is caused by insufficient
insulin secretion or decreased sensitivity of cells to insulin, leading to high blood glucose
levels for an extended period followed by damage to many tissues and organs in the
body, such as kidney failure, cardiovascular disease, nerve and brain damage, and other
microvascular complications [2]. There are three main types of diabetes mellitus: type
1 diabetes (T1DM), type 2 diabetes (T2DM), and gestational diabetes.
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T2DM is the most common type of diabetes mellitus, accounting for 95% of diabetes
cases, and begins with insulin resistance. The body obtains glucose from three main
sources: the intestinal absorption of food, the breakdown of glycogen (glycogenolysis),
and gluconeogenesis. Insulin is the principal hormone that regulates the uptake of glucose
from the blood into most cells of the body, especially the liver, adipose tissue, and muscle.
Therefore, a deficiency of insulin or the insensitivity of its receptors plays a central role
in all forms of diabetes mellitus [3]. Insulin not only promotes the absorption of glucose
but also stimulates the synthesis of fat. High triglyceride levels and hepatic steatosis are
associated with insulin resistance [4,5].

Many people with T2DM have evidence of prediabetes such as impaired fasting glu-
cose and/or impaired glucose tolerance before meeting the criteria for T2DM [6]. The
impaired glucose tolerance in particular is a major diagnosis risk factor for progression to
full-blown diabetes mellitus. High levels of cholesterol and triglycerides in the blood, as
well as increased systolic and diastolic blood pressure, are also risk factors for developing
diabetes [7]. Patients with diabetes often experience metabolic syndrome such as dyslipi-
demia characterized by abnormal cholesterol and triglyceride metabolism [8–10]. Cardio-
vascular disease (CVD) is the primary cause of morbidity and mortality in T2DM patients.
One significant factor that increases the risk of CVD in diabetic patients is atherosclerotic
lipid abnormalities, and the increased levels of cholesterol and triglycerides in the blood
are important markers for lipid evaluation [11]. The previous studies indicate that hepatic
lipid metabolism is also significantly disturbed in individuals with T2DM [12,13].

T2DM is primarily caused by lifestyle factors and genetics. A number of lifestyle
factors are known to be important in the development of T2DM, including obesity (defined
by a body mass index greater than 30), lack of physical activity, poor diet, stress, and
urbanization [14,15]. Dietary factors, such as sugar-sweetened drinks, are associated with
an increased risk [16–18]. The type of fats in the diet are also important factors since
saturated fat and trans fats increase the risk and polyunsaturated and monounsaturated
fat decrease the risk [19]. Excessive consumption of white rice may increase the risk of
diabetes, especially in Chinese and Japanese people [20]. The progression of prediabetes to
overt T2DM can be slowed or reversed by lifestyle changes or medications that improve
insulin sensitivity or reduce the liver’s glucose production [21].

However, molecular mechanisms underlying the development of diabetes remain
largely not elucidated. Zebrafish have been widely used in the field of metabolic disease
research. In terms of diabetes research, zebrafish possess several characteristics. Zebrafish
have a similar blood glucose regulation mechanism to mammals [22], and several approved
T2DM drugs can significantly lower blood glucose in zebrafish high models [23]. Addition-
ally, zebrafish have been used to study the mechanisms of pancreatic β-cell regeneration
and to screen compounds that promote pancreatic β-cell regeneration [24]. In terms of fat
metabolism, zebrafish have been used to study the fat metabolism and the development
of weight-loss drugs [25], and to screen and evaluate drugs that can lower cholesterol
levels in the body [26]. However, zebrafish have a relatively low blood volume, which is
not conducive to performing large-scale and repetitive blood sampling experiments [27],
such as studying the mechanisms of blood glucose metabolism regulation. Considering
the conservation of lipid metabolism across different species, the zebrafish is considered a
good model for studying metabolic disorders such as diabetes and obesity [28], and the
use of the zebrafish as a model organism to study diabetes has gained recognition over
time. Multiple techniques have been developed to establish zebrafish diabetes models,
including chemical methods, dietary induction, glucose soaking, and gene knockout [29].
The zebrafish model of diabetes is employed for investigating stem cell therapy for treating
diabetes [30] and diabetic heart failure [31]. Dietary-induced diabetes leads to increased
insulin secretion in the pancreases of zebrafish [23,32]. Nevertheless, the alterations at the
molecular level within zebrafish diabetes induced by dietary factors remain undisclosed.

In this study, we generated a zebrafish model of diabetes by overfeeding. We found
that overfed zebrafish had excessive accumulation of lipid droplets in their liver. Compara-
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tive analysis by high-throughput RNA-seq revealed novel molecular factors that contribute
to lipid droplet accumulation and insulin resistance in overfed zebrafish. These findings
support the successful induction of zebrafish diabetes by overfeeding and provide a model
for further studying the etiology and treatment of diabetes.

2. Results
2.1. The Elevation of Fasting Blood Glucose Levels in Male Zebrafish after Four Weeks
of Overfeeding

The body length, body weight, and condition factor index of male zebrafish in the
overfed (OF) group were significantly higher than those in the control (CK) group after
overfeeding for four weeks. Among them, the average body length of zebrafish in the
CK group was 3.03 cm, while the average body length of zebrafish in the OF group was
3.25 cm. The average weight of zebrafish in the CK group was 0.42 g, whereas the average
weight of zebrafish in the OF group was 0.58 g. The average condition factor index of
zebrafish in the CK group was 1.52, and the average condition factor index of zebrafish in
the OF group was 1.69. After one month of overfeeding, the body length, body weight, and
condition factor index of zebrafish increased 1.1-fold, 1.4-fold, and 1.1-fold, respectively,
when compared to those of the CK group (Figure 1A–C).
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Figure 1. The variation of body index, fasting blood glucose, triglycerides, and total cholesterol
in male zebrafish after overfeeding. The body length (A), body weight (B), condition factor index
(C), fasting blood glucose (D), and the levels of triglycerides (E) and total cholesterol (F) in the serum
of male zebrafish were significantly increased in the overfed groups (*, p < 0.05; **, p < 0.01; n = 13).
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In addition, the average level of fasting blood glucose in OF group was 3.25 mmol/L,
which was significantly higher than that of the CK group at 2.03 mmol/L (Figures 1D and S1A).
However, the fasting blood glucose level of female zebrafish in the OF group did not show
a significant change compared to that in the CK group (Figure S1B).

The average level of triglycerides in the serum of the CK group and OF group was
1.44 mmol/L and 7.89 mmol/L, respectively. The level of triglycerides in the serum of the
OF group was increased 5.5-fold when compared to that in the CK group (Figure 1E). The
average level of cholesterol in the serum of the CK group and OF group was 3.67 mmol/L
and 7.33 mmol/L, respectively. The level of cholesterol in the serum of the OF group was
significantly increased twofold compared to that in the CK group (Figure 1F).

Together, these data indicate that the OF male zebrafish have developed characteristics
of diabetes after four weeks of overfeeding.

2.2. The Hepatic Accumulation of Lipid Droplets in Male Zebrafish after Four Weeks
of Overfeeding

The liver plays an important role in regulating the level of blood sugar. Sections of
the liver in the CK and OF groups were stained with oil red O. An increased accumulation
of lipid droplets in the livers of OF zebrafish was found (Figure 2A). When quantified by
ImageJ, the area of the oil red region increased 80-fold in the OF group when compared
with that in the CK group (Figure 2B).
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Figure 2. Accumulation of lipid droplets in livers of overfed zebrafish. Images of Oil Red O staining
for section of livers in control and overfed groups (A). The fold change of lipid droplet accumulation
according to the results of Oil Red O staining between the control group and the overfed group were
quantified by Image J software (version 1.50i) and showed in histogram (B). The levels of triglyceride
(C) and cholesterol (D) from liver in control and overfed group. (Values are means ± SEM; *, p < 0.05;
**, p < 0.01; CK: control group, OF: overfed group; n = 5.)
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The levels of triglycerides and cholesterol in the livers of zebrafish were also signifi-
cantly affected by overfeeding. The average level of triglycerides in the livers of the CK and
OF groups was 0.78 × 10−5 mmol/mg and 3.47 × 10−5 mmol/mg, respectively. Compared
with that of the control group, the level of triglycerides in the livers of the OF zebrafish
increased 4.5-fold (Figure 2C).

Theaverage levelsofcholesterol in the liversof theCKandOFgroupswere1.02 × 10−5 mmol/mg
and 1.46 × 10−5 mmol/mg, respectively. Compared with that of the CK group, the level of
cholesterol in the livers of the OF zebrafish increased 1.4-fold (Figure 2D).

These findings suggest that overfeeding has a severe effect on lipid metabolism in
zebrafish, leading to the accumulation of lipids in the liver.

2.3. RNA-Seq Analysis to Identify Differentially Expressed Genes

To identify the phenomenon of insulin resistance at the molecular level in the livers
of the OF group, transcriptome analysis of the livers in the CK and OF groups was per-
formed (Figure S2A). The raw data of RNA-sequencing ranged from 19.29 to 22.81 M. After
removing the adapters and low-quality data, the clean reads ranged from 19.25 to 22.77 M,
and the ratio of clean reads was above 99% in all groups, indicating that the quality of
RNA-sequencing data is reliable (Figure S2B). The clean reads in each group were mapped
to the reference genome of zebrafish, and the mapping rate was above 92% (Figure S2B).

The principal component analysis (PCA) showed that the OF group and the CK
group were clustered together, respectively, and the differences between the groups were
obviously identified (Figure 3A). A total of 3986 differentially expressed genes (DEGs) were
obtained, including 1582 up-regulated and 2404 down-regulated DEGs (fold change ≥ 1.5
and p-value ≤ 0.05) (Figure 3B and Table S1).
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Figure 3. The results of data analysis for the transcriptome of livers in control and overfed groups.
Principal component analysis (PCA) of gene expression profiles for differentially expressed genes
(A). The number of differentially expressed genes (DEGs) for up- and down-regulated in zebrafish
liver after overfeeding is shown in the histogram (B). (Fold change ≥ 1.5 and p-value ≤ 0.05.)

2.4. KEGG Enrichment Analysis for DEGs

KEGG enrichment analysis of DEGs was performed using the online software KOBAS
(version 3.0) (Table S2). The most enriched KEGG pathways (p-value ≤ 0.05) of up-regulated
DEGs were metabolic pathways, fatty acid degradation, valine, leucine and isoleucine
degradation, peroxisome, and beta-alanine metabolism. The most enriched KEGG path-
ways (p-value ≤ 0.05) of down-regulated DEGs were tight junction, apoptosis, the C-type
lectin receptor signaling pathway, the NOD-like receptor signaling pathway, and the
cytokine–cytokine receptor interaction (Figure 4A,B).
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Figure 4. The results of KEGG enrichment analysis for DEGs in livers after overfeeding. Dot
plot of KEGG enrichment analysis results for up-regulated DEGs (A) and down-regulated DEGs
(B). Network of the top 10 hub pathways with the highest maximal clique centrality (MCC) for
up-regulated DEGs (C) and down-regulated DEGs (D). (Edges between nodes represent Jaccard
similarity coefficients; the colors and sizes of nodes stand for the p-value of pathways and the number
of genes in the pathway, respectively.)

Since different KEGG signaling pathways may share the same DEGs, the Jaccard simi-
larity coefficient was introduced to calculate the distance between two signaling pathways
based on the proportion of shared DEGs (Table S3). The networks of KEGG pathways for up-
and down-regulated DEGs were obtained. Then, the hub pathways in the networks were
identified using CytoHubba. Among the signaling pathways enriched from up-regulated
DEGs, the top five hub pathways were metabolic pathways, fatty acid degradation, va-
line, leucine and isoleucine degradation, tryptophan metabolism, and lysine degradation
(Figure 4C and Table 1). Among the signaling pathways enriched from down-regulated
DEGs, the top five hub signaling pathways were the C-type lectin receptor signaling path-
way, the AGE-RAGE signaling pathway in diabetic complications, the NOD-like receptor
signaling pathway, apoptosis, and the toll-like receptor signaling pathway (Figure 4D and
Table 2). Additionally, twenty-two DEGs were mapped to the KEGG pathway of fatty acid
degradation, which was the first of the hub signaling pathways enriched from up-regulated
DEGs (Figure 4C and Table S2). Among the hub signaling pathways enriched from down-
regulated DEGs, forty-seven DEGs were mapped to the MAPK signaling pathway, which
was the first of hub pathways (Figure 4D and Table S2).
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Table 1. Top 10 hub terms of up-regulated genes ranked by the MCC method.

Rank Signaling Pathway Score

1 Metabolic pathways 2.11 × 108

2 Valine, leucine and isoleucine degradation 2.11 × 108

2 Fatty acid degradation 2.11 × 108

4 Tryptophan metabolism 2.07 × 108

5 Lysine degradation 2.07 × 108

6 Carbon metabolism 1.71 × 108

7 Propanoate metabolism 1.67 × 108

8 Fatty acid metabolism 1.67 × 108

9 Butanoate metabolism 1.63 × 108

10 Beta-Alanine metabolism 1.31 × 108

Table 2. Top 10 hub terms of down-regulated genes ranked by the MCC method.

Rank Signaling Pathway Score

1 C-type lectin receptor signaling pathway 8.06 × 107

2 AGE-RAGE signaling pathway in diabetic complications 8.06 × 107

3 NOD-like receptor signaling pathway 8.06 × 107

3 Apoptosis 8.06 × 107

3 Toll-like receptor signaling pathway 8.06 × 107

3 FoxO signaling pathway 8.06 × 107

7 Focal adhesion 8.06 × 107

8 Cellular senescence 8.06 × 107

9 Metabolic pathways 7.98 × 107

10 VEGF signaling pathway 7.98 × 107

A total of eleven up-regulated hub DEGs were shared by the hub pathways of va-
line, leucine and isoleucine degradation, fatty acid degradation, tryptophan metabolism,
and lysine degradation (Figure 5A). Among these hub DEGs, eight were up-regulated at
least one-fold, including aldh2.1, CABZ01032488.1, acads, aldh2.2, hadh, ehhadh, and ehhadh
(Figure 5B). Additionally, a total of fourteen hub down-regulated DEGs were shared by the
hub pathways of C-type lectin receptor signaling pathway, AGE-RAGE signaling pathway
in diabetic complications, NOD-like receptor signaling pathway, apoptosis, and toll-like re-
ceptor signaling pathway (Figure 5C). Among these hub DEGs, eight were down-regulated
at least one-fold, including il1b, nfkbiaa, tnfa, hrasb, nfkb1, oik3ca, traf2b, and rhoab (Figure 5D).
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top 4 hub pathways enriched from up-regulated DEGs (A). The fold change of up-regulated hub
genes after overfeeding (B). Network of 14 hub genes mapped to top 5 hub pathways enriched from
down-regulated DEGs (C). The fold change of down-regulated hub genes after overfeeding (D).
Round and diamond stand for genes and pathways, respectively; edge represents the gene mapped
to the pathway in (A,C).

2.5. GO Enrichment Analysis of DEGs

GO enrichment analysis of DEGs was performed using KOBAS. A total of 133 GO
terms were enriched from up-regulated DEGs, including 58 terms related to biological
processes, 15 GO terms related to cellular component, and 60 GO terms related to molecular
function (Table S4). Additionally, a total of 238 GO terms were enriched from down-
regulated DEGs, including 117 GO terms related to biological processes, 30 GO terms
related to cellular component, and 91 GO terms related to molecular function (Table S4).

The online software REVIGO (version 1.8.1) was used to perform redundancy analysis
to obtain the representative GO terms. In biological processes, the representative GO terms
enriched from up-regulated DEGs include fatty acid beta-oxidation (GO:0006635), cellular
response to estrogen stimulus (GO:0071391), embryonic hemopoiesis (GO:0035162), lipid
transport (GO:0006869), and regulation of synaptic vesicle exocytosis (GO:2000300). In
molecular function, the representative GO term enriched from up-regulated DEGs include
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acyl-CoA dehydrogenase activity (GO:0003995), fatty-acyl-CoA binding (GO:0000062),
acylglycerol lipase activity (GO:0047372), iron ion binding (GO:0005506), lipid transporter
activity (GO:0005319), and acetyl-CoA C-acyltransferase activity (GO:0003988) (Figure 6A).
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The representative biological processes enriched from down-regulated DEGs include
defense response to bacterium (GO:0042742), glycolytic process (GO:0006096), amino acid
transport (GO:0006865), metal ion transport (GO:0030001), and positive regulation of
JNK cascade (GO:0046330). The representative cellular component includes intermedi-
ate filament (GO:0005882), NADPH oxidase complex (GO:0043020), apical plasma mem-
brane (GO:0016324), bicellular tight junction (GO:0005923), and autophagosome membrane
(GO:0000421). The representative molecular function includes L-amino acid transmem-
brane transporter activity (GO:0015179), protein tyrosine kinase activity (GO:0004713),
tumor necrosis factor receptor binding (GO:0005164), ligand-gated calcium channel activity
(GO:0099604), and metallopeptidase activity (GO:0008237) (Figure 6B).

2.6. Overfeeding Up-Regulated Fatty Acid Metabolism Genes and Down-Regulated Glucose
Metabolism Genes in Zebrafish Liver

Based on the analysis of DEGs in the livers of OF zebrafish, the main signaling
pathways affected by overfeeding were fatty acid and glucose metabolisms (Figure 7).

Sixteen DEGs from the up-regulated DEGs were found in the signaling pathway of
fatty acid metabolism. Among them, plin1 was up-regulated 14-fold, which encodes a
protein that is a lipid droplet-associated protein that mainly attaches to the surface of lipid
droplets. The other 15 DEGs mainly function in processes such as fatty acid transmembrane
transport (fabp10b, slc27a2a), fatty acid beta-oxidation (hacd2, acaa1, acaa2, acadl, acadm, acads,
acadvl, echs1), ketone body production (hmgcl), cholesterol transfer (scp2a, cetp), carnitine
palmitoyltransferase (cpt2), and acetyl-CoA synthase (Figures 7 and S3, and Table 3).
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Table 3. The genes associated with fatty acid metabolism in liver.

Gene Name Fold Gene Description Function

fabp10b 2.8 fatty acid binding protein 10b, liver basic Fatty acid transporter
scp2a 2.3 sterol carrier protein 2a Cholesterol transport

slc27a2a 2.9 solute carrier family 27 member 2a Fatty acid transfer
acsf2 2.7 acyl-CoA synthetase family member 2 Fatty acyl-CoA synthase
cpt2 2.5 carnitine palmitoyltransferase 2 Carnitine palmitoyltransferase

hacd2 2.0 3-hydroxyacyl-CoA dehydratase 2 Fatty acid β-oxidation
acaa1 2.3 acetyl-CoA acyltransferase 1 Fatty acid β-oxidation
acaa2 2.3 acetyl-CoA acyltransferase 2 Fatty acid β-oxidation
acadl 2.4 acyl-CoA dehydrogenase long chain Fatty acid β-oxidation
acadm 2.6 acyl-CoA dehydrogenase medium chain Fatty acid β-oxidation
acads 2.8 acyl-CoA dehydrogenase short chain Fatty acid β-oxidation
acadvl 1.9 acyl-CoA dehydrogenase very long chain Fatty acid β-oxidation
echs1 2.0 enoyl CoA hydratase, short chain, 1, mitochondrial Fatty acid β-oxidation
hmgcl 1.6 3-hydroxy-3-methylglutaryl-CoA lyase Ketogenesis
cetp 2.1 cholesteryl ester transfer protein, plasma Cholesteryl ester transfer
plin1 14.1 perilipin 1 Lipid droplet-associated protein

Furthermore, 13 DEGs from the down-regulated DEGs were mapped to the signaling
pathway of glucose metabolism. Two DEGs with the most down-regulated fold change
were hk2 (down-regulated by 6-fold) and gyg1b (down-regulated eightfold). These down-
regulated DEGs mainly function in glycolysis (hk1, hk2, pfkla, pfkpb, aldoaa, aldocb, gapdhs,
eno1a, eno1b, pkma) and glycogen generation (gys1, gsk3bb, gyg1b). Additionally, one DEG
(pygl) involved in glycogen decomposition was up-regulated 2.5-fold (Figures 7 and S4,
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Table 4). These results suggest that the glucose content decreases in the liver cells of OF
zebrafish and that glucose uptake is blocked.

Table 4. The genes associated with glucose metabolism in liver.

Gene Name Fold Gene Description Function

hk1 1.9 hexokinase 1 Glycolysis
hk2 6.0 hexokinase 2 Glycolysis
pfkla 2.6 phosphofructokinase, liver a Glycolysis
pfkpb 2.2 phosphofructokinase, platelet b Glycolysis
aldoaa 2.0 aldolase a, fructose-bisphosphate, a Glycolysis
aldocb 3.1 aldolase C, fructose-bisphosphate, b Glycolysis
gapdhs 2.5 glyceraldehyde-3-phosphate dehydrogenase, spermatogenic Glycolysis
eno1a 4.3 enolase 1a, (alpha) Glycolysis
eno1b 2.3 enolase 1b, (alpha) Glycolysis
pkma 3.4 pyruvate kinase M1/2a Glycolysis
gys1 1.6 glycogen synthase 1 (muscle) Glycogenesis

gsk3bb 2.6 glycogen synthase kinase 3 beta, genome duplicate b Glycogenesis
gyg1b 8.1 glycogenin 1b Glycogenesis
pygl (2.5) phosphorylase, glycogen, liver Glycogenolysis

Overall, the activity of fatty acid metabolism is enhanced while the activity of glucose
metabolism is inhibited in the livers of OF zebrafish, indicating that the source of energy
supply has shifted from glucose metabolism to fatty acid metabolism in the livers of OF
zebrafish, which is consistent with the physiological phenomenon of T2DM.

3. Discussion

The main characteristic of T2DM is insulin resistance and compensatory inadequate
insulin secretion, resulting in elevated blood glucose levels. Insulin resistance refers to the
decreased response of the liver, muscles, and adipose tissue to insulin, leading to symp-
toms such as hyperglycemia, dyslipidemia, visceral obesity, and elevated inflammatory
factors [33]. Insulin levels in the blood are increased during the early stages of T2DM;
however, long-term glucose stimulation can cause toxicity to the pancreatic β-cell, leading
to ER stress and cell apoptosis in the later stages of diabetes, which results in a decline
in the ability of the β-cell to synthesize and secrete insulin, thus leading to a decrease in
insulin levels in the blood plasma [34]. Diabetics are often associated with elevated serum
cholesterol and triglycerides [7]. Thus, insulin resistance can be evaluated by measuring
triglyceride levels, cholesterol content, and glucose tolerance in the serum [35]. In this
study, after one month of overfeeding, the body length, body weight, condition factor
index, fasting blood glucose level, and serum triglycerides and cholesterol contents of male
zebrafish were significantly higher than those in the control group, indicating that we have
successfully established a T2DM zebrafish model by overfeeding.

The establishment of a T2DM model is mainly achieved by breaking down the sensi-
tivity of tissues towards insulin, resulting in impaired glucose absorption and consequent
elevation of blood glucose levels. Adult zebrafish were alternately immersed in water
or 2% glucose solutions for 28–30 days, inducing increased fasting blood glucose levels,
retinal damage, and impaired bone cell function [36–38]. Larvae zebrafish from 3 hpf
(hours post-fertilization) to 5 dpf (days post-fertilization) that were alternately immersed in
4% and 5% glucose solutions can induce diabetic-like retinopathy [39]. Zebrafish immersed
in a gradually increasing glucose solution—with 50 mM glucose solution immersion for
4 days, 100 mM glucose solution immersion for 3 days, and immersion in 200 mM glucose
solution for 13 days—have exhibited symptoms of increased body weight and elevated
blood glucose levels [40]. After immersing adult zebrafish in a 111 mM glucose solution for
14 days, the blood glucose level increased, the amount of glycated protein in the eyes also
increased, but the transcription level of insulin receptors in the muscles decreased and the
response to exogenous insulin was impaired [41].
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Overweight or obese is also an important factor in the development of T2DM [42,43];
thus, an alternative method to establish a diabetes model in zebrafish is performed through
overfeeding or high-fat feeding. Adult zebrafish that were overfed a commercially available
fish food can exhibit symptoms of diabetes such as decreased glucose tolerance and reduced
insulin expression [23,32]. Feeding zebrafish with 10% cholesterol and immersing them in
a 2% glucose solution simultaneously for 19 days resulted in more symptoms of diabetes in
zebrafish larvae, such as significant increases in insulin, glucagon, glucose, triglyceride, and
cholesterol levels [44,45]. In obese individuals, adipose tissue releases more non-esterified
fatty acids, glycerol, hormones, pro-inflammatory cytokines, and other factors. These can
induce insulin resistance, accelerate pancreatic damage, and ultimately lead to T2DM [46].
In addition, insulin resistance in adipose tissue can lead to mitochondrial dysfunction,
resulting in the production of ROS and inflammatory cytokines, as well as the release of
adipokines, cytokines, chemokines, excessive lipids, and toxic lipid metabolites into the
bloodstream. These substances further exacerbate insulin resistance in other tissues [47,48].
Moreover, insulin resistance in liver tissue leads to an increase in the accumulation of fatty
acids in the liver [49]. In a previous study, the gene expression profiling of liver–pancreas
in the overfed zebrafish was analyzed, and the pathways common to human T2DM were
revealed [23]. In this study, we have found that the elevation of fasting blood glucose
level was accompanied by a large number of lipid droplets accumulating within the
livers of overfed male zebrafish. Mouse fed with high-fat diet show impaired glucose
tolerance, insulin resistance, increased body weight, increased levels of triglycerides in
plasma and liver, and hepatic steatosis [50]. Most of these characteristics were observed
in male zebrafish after overfeeding for four weeks in this study. However, the underlying
molecular basis of diabetes induced by overfeeding remains largely unknown. Therefore,
we further performed transcriptome analyses to investigate novel changes in the livers of
overfed zebrafish.

After four weeks of overfeeding, male zebrafish showed a significant increase in
fasting blood glucose levels, while female zebrafish did not exhibit significant changes
in fasting blood glucose levels even after being overfed for a duration of eight weeks.
Discrepancy studies conducted worldwide have also found that there is sexual dimorphism
in the incidence of diabetes, with a higher incidence rate among males than females [51]. It
can be speculated that the reason for this may be excessive estrogen leading to a greater
likelihood of insulin resistance in females [52].

Further studies are needed to uncover the mechanisms by which estrogen and testos-
terone contribute to the sexual dimorphism in diabetes between males and females.

Excess fatty acids in the liver need to be either consumed through β-oxidation or
converted into cholesterol or triglycerides, and then transported to other parts of the body
via apolipoprotein [53]. Excess triglycerides and cholesterol in the liver are packaged in
lipid droplets [54]. Perilipin 1, expressed by plin1, is a lipid droplet-associated protein
that primarily attaches to the surface of lipid droplets. Its functions include increasing the
size of lipid droplets and regulating triglyceride levels [55]. In this study, we found the
expression of this gene was up-regulated 14-fold in the livers of the overfed zebrafish.

In addition, we found that multiple other genes in the entire metabolism from fatty
acid transport to fatty acid β oxidation are significantly up-regulated. For instance, the
genes slc27a2a and fabp10b were up-regulated by 2.9-fold and 2.8-fold, respectively. The
gene slc27a2a encodes a member of the long-chain fatty acyl-CoA synthetase family and is
involved in lipid biosynthesis and fatty acid degradation [56]. The fabp10b encodes a fatty
acid binding protein (FABP), which primarily promotes the uptake, intracellular transport,
and metabolism of fatty acids [57]. It transports fatty acids from the cell membrane to their
metabolic sites for β-oxidation and synthesis of triglycerides and phospholipids. Thus,
the up-regulated of the slc27a2a and fabp10b can facilitate the transport of fatty acids from
outside the cell to the inside in overfed male zebrafish. Moreover, sterol carrier protein 2a
(scp2a) mainly regulates the transport of intracellular lipids, promoting the synthesis of
triglycerides and cholesterol from exogenous fatty acids. The main function of cholesteryl
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ester transfer protein (cetp) is to transport cholesteryl esters and triglycerides, regulating the
reverse transport of cholesterol and transferring excess cholesterol in peripheral tissues to
the liver for metabolism and digestion. In this study, we found the expression of these two
genes in the livers of overfed zebrafish were up-regulated 2.3-fold and 2.1-fold, respectively.

Among the KEGG enrichment analysis results for up-regulated DEGs, there were
five signal pathways related to fatty acid metabolism. The most important hub pathways
in the KEGG enrichment results were fatty acid degradation and fatty acid metabolism.
The hub genes that mapped to fatty acid degradation and fatty acid metabolism were
hadh, ehhadh, acat1, hadhaa, acads, and echs1. Among them, the most up-regulated gene is
acads, which encodes Acyl CoA dehydrogenase and participates in the first step of fatty
acid beta-oxidation. These hub genes can be used as potential molecular markers for
diagnosis of diabetes at the early stage. In the GO enrichment analysis for up-regulated
DEGs, the representative GO term was fatty acid β-oxidation, which includes 13 raw GO
terms. Further analysis revealed that these up-regulated expression genes were mainly
involved in fatty acid transport, fatty acid oxidation, and cholesterol transport.

The expression levels of acsf2 and cpt2 were up-regulated 2.5-fold and 2.7-fold, respec-
tively, in the livers of overfed zebrafish. Long-chain fatty acids first need to be catalyzed
into acyl-CoA by acyl-CoA synthetase family member 2 (acsf2), and then transferred into the
mitochondrial inner membrane by carnitine palmitoyltransferase 2 (cpt2). After multiple
enzyme-catalyzed reactions, the long-chain fatty acids are converted to acetyl-CoA, which
can enter the tricarboxylic acid cycle for oxidation. Additionally, the genes of multiple
enzymes involved in fatty acid β-oxidation were significantly up-regulated in the livers of
overfed zebrafish, including Acyl CoA dehydrogenase (acadvl, acadl, acadm, acads), Enoyl
CoA hydratase (echs1), 3-Hydroxyacyl CoA dehydrogenase (hacd2), and β-ketothiolase
(acaa1, acaa2). The product of the β-oxidation of fatty acids, acetyl CoA, can further trans-
form into ketone bodies and be transported to other tissues to provide energy for the
body [58]. HMG-CoA lyase, encoded by the hmgcl, plays an important role in ketogenesis
and the gene was up-regulated 1.6-fold in the livers of overfed diabetic zebrafish. Fatty
acid β-oxidation is primarily regulated by the PPARα signaling pathway [59]. We found
that PPARα pathway has been significantly enriched from up-regulated genes, and 15 up-
regulated DEGs in the livers of overfed zebrafish were mapped to this signaling pathway.
These data above indicate that overfeeding can enhance the fatty acid metabolism of the
zebrafish liver. The up-regulation of these genes related to fatty acid metabolism results
in an increased metabolic burden on the mitochondria, leading to the production of ROS,
and mitochondrial dysfunction. Mitochondrial dysfunction and oxidative stress are largely
involved in T2DM [60,61].

The metabolism of glucose in cells is primarily carried out through glycolysis [62].
However, the expression levels of the genes encoding the enzymes involved in glycolysis
were significantly down-regulated in the livers of overfed zebrafish. These enzymes mainly
include hexokinase (hk1, hk2), phosphofructokinase (pfkla, pfkpb), fructose bisphosphate
aldolase (aldoaa, aldocb), glyceraldehyde phosphate dehydrogenase (gapdhs), enolase (eno1a,
eno1b), and pyruvate kinase (pkma). The genes gyg1b, gsk3bb, and gys1, which encode
protein associated with glycogen synthesis, are significantly down-regulated in the livers
of overfed zebrafish. The expression of gyg1b, which codes for a glycogen protein with
glucosyltransferase activity, is decreased sixfold, and its catalytic product is the substrate of
glycogen synthase. The gene gys1 encodes glycogen synthase, which is down-regulated
1.6-fold in the livers of overfed zebrafish. Glycogen synthase kinase (gsk3bb), which ac-
tivates glycogen synthase, is down-regulated 2.6-fold. However, the gene pygl, which
catalyzes glycogen breakdown, is up-regulated 2.5-fold in the livers of overfed zebrafish,
indicating a decrease in glucose content and impaired glucose uptake in liver cells due
to overfeeding.

In this study, four insulin receptor subunits (irs1, irs2a, irs2b, irs4a) and two insulin
receptors (insra, insrb) were identified in the zebrafish liver through transcriptome. Among
them, irs1 and insra were up-regulated, while irs2a, irs2b, irs4a, and insrb were down-



Int. J. Mol. Sci. 2023, 24, 11994 14 of 19

regulated. However, the fold changes of these six genes were all less than 1.5 and statistically
not significant (p-value > 0.05) (Table S5). It is reported that the decreased phosphorylation
of insulin receptors was important for the blockade of insulin signaling pathways in insulin-
resistant cells [63]. Mice with heterozygous loss of the insulin receptor had normal glucose
and insulin tolerance [64]. These studies suggest that the phosphorylation of insulin
receptors plays a more important role in insulin signal transduction than altered expression
levels of insulin receptors. In addition, numerous studies over the past years have linked
the formation of lipid droplets and increased contents of cholesterol and triglyceride to
insulin resistance in the liver [65–68]. In this study, an excessive accumulation of lipid
droplets and increased levels of triglycerides and cholesterol occurred in the livers of
overfed zebrafish, indicating the development of insulin resistance in a certain extent.

In summary, we uncovered changes in signaling molecules related to fatty acid and
glucose metabolism in the livers of overfed zebrafish by using high-throughput transcrip-
tome sequencing and bioinformatic analysis techniques. Overfed male zebrafish exhibited
enhanced fatty acid metabolism and suppressed glucose metabolism, suggesting the devel-
opment of insulin resistance and diabetes.

4. Materials and Methods
4.1. Methods of Overfeeding Experiments

The AB strain zebrafish used in this study were maintained under standard laboratory
conditions at 28 ◦C with a light/dark cycle of 12/12 h.

The method of overfeeding protocol performed in this study was based on a published
work [23]. Four-month-old wild type male zebrafish were selected according to their weight
and body length and randomly divided into the overfed group and the control group, with
20 zebrafish in each group. The control group was fed once a day (9:00 a.m.) under a
regular condition and the overfed group was fed four times a day (9:00 a.m., 11:00 a.m.,
15:00 p.m., and 17:00 p.m.). Feed 4.08 g/20 tails each time.

The crude fat, crude protein, crude ash, and crude fiber contents in the main compo-
nents of frozen red worms were 4.07%, 52.73%, 19.2%, and 9.56%, respectively. The calorie
content is 3.2254 kcal/g.

4.2. Blood Collection and Measurement

The method for blood collection from zebrafish was the same as the protocol in the
previous article [69]. The adult zebrafish were fasted for 18 h before blood collection. The
level of blood glucose was measured using a glucose meter, Accu-Chek Performa, according
to the manufacturer’s instructions.

4.3. Staining with Oil Red O and Histology

The liver tissues from the control and overfed groups were fixed in 4% paraformalde-
hyde (PFA, Beyotime Biotechnology, Shanghai, China) at 4 ◦C overnight. After fixation,
the samples were stained with Oil Red O as previously described [70]. Photographs of the
tissue sections were taken using an Aperio VERSA Brightfield, Fluorescence & FISH Digital
Pathology Scanner from Leica (Wetzlar, Germany). Quantitative analysis was performed
using ImageJ software.

4.4. Measurement of Total Cholesterol and Triglyceride

The levels of total cholesterol and triglycerides (TG) were determined with com-
mercial kits according to the manufacturer’s instructions. The total cholesterol assay kit
(A111-1-1) and triglyceride assay kit (F001-1-1) were purchased from Nanjing Jiancheng
Bioengineering Institute.

4.5. Sample Collection and Analysis for RNA-Sequencing

Zebrafish were fasted overnight and then sacrificed after being overfed for four weeks.
The livers of three zebrafish as one sample were collected and subjected to total RNA
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extraction using TRIzol Reagent (Invitrogen, Waltham, MA, USA), and each group contains
three independent samples. The methods for sample quality analysis, preparation of the
RNA library, and RNA-seq were as previously described [70]. Six sequencing libraries
were then constructed and sequenced. Library construction and high-throughput RNA-
sequencing were performed by experts at the Analytical and Testing Center at the Institute
of Hydrobiology, Chinese Academy of Sciences (http://www.ihb.ac.cn/fxcszx/, accessed
on 29 November 2022).

4.6. Bioinformatics Analysis

The bioinformatics analysis was conducted as previously described [71]. Briefly, the
raw data were first filtered by Trimmomatic (version 0.38) to remove joints and low-quality
data, and clean reads were obtained. These high-quality clean reads were then mapped to
the reference genome (Danio rerio GRCz11) obtained from the NCBI assembly database
using HISAT2 (version 2.1.0) [72] to obtain the BAM formation of the aligned files. Then,
the counts of reads were summarized using the read summarization program feature-
Counts [73]. These counts were used for gene differential expression analysis using the
Bioconductor DESeq2 package [74]. Low abundance genes (number of summed reads < 10)
were filtered before differential expression analysis. Genes with a fold change ≥ 1.5 and a
p-value ≤ 0.05 were considered to be differentially expressed genes (DEGs).

KOBAS-i was performed for the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) enrichment analysis of DEGs [75]. The dot plots for KEGG
enrichment results and bar plots for GO enrichment results (p-value ≤ 0.05) were generated
by ggplot2 in R-studio. The RStudio (Version 1.4.1717) was used to calculate the Jaccard
coefficients between two KEGG signaling pathways based on the number of shared genes
from the enrichment analysis results, and the network diagram were created by Cytoscape
(version: 3.8.2) software. The Cytoscape plug-in cytoHubba [76] was used to analyze
hub signaling pathways and genes by the MCC (maximal clique centrality) method and
exported the visualization. The REVIGO tool was used to cluster and prune GO terms
based on the p-value obtained from KOBAS-i [77].

4.7. Statistical Analysis

Statistical analysis was performed using Microsoft Excel software for Windows (Mi-
crosoft Office 2013, Microsoft, Redmond, WA, USA). The data in this study were an-
alyzed statistically using the independent samples t-test. The data are presented as
mean ± standard deviation.

5. Conclusions

In this study, a zebrafish diabetes model was established by overfeeding. Compared
with the control group, the body length, body weight, and condition factor index of
zebrafish increased significantly after four weeks of overfeeding. The fasting blood glucose
level increased significantly, and a large number of lipid droplets accumulated in the liver.
The triglyceride and cholesterol contents in serum and liver also increased significantly.
Through transcriptome sequencing of the livers of overfed zebrafish, 16 up-regulated DEGs
were found to function in the signaling pathway of fatty acid metabolism, including the fatty
acid transport, fatty acid oxidation, and ketogenesis. In addition, 13 down-regulated DEGs
were involved in glycolysis and glycogenesis of glucose metabolism signaling pathway,
indicating insulin resistance and inhibition of glucose entry into liver cells of overfed
male zebrafish. These findings clarified the molecular basis of overfed -induced zebrafish
diabetes and provided a foundation for further study of the pathogenesis and treatment of
diabetes in a zebrafish model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241511994/s1.
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