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Abstract: Obsessive–compulsive disorder (OCD) is a debilitating mental health disorder charac-
terized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an
imbalance in the gut microbial composition, has been associated with various health conditions,
including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms
underlying OCD remain unclear, this review presents a growing body of evidence suggesting a
potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic,
neurobiological, immunological, and environmental factors. This review highlights the emerging
evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target
for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying
element in the neurochemical, immunological, genetic, and environmental factors leading to OCD.
The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal
transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of
adopting a holistic approach that considers the interplay between the gut and the brain to develop
interventions that account for the multifaceted nature of OCD and contribute to the advancement of
more personalized approaches.

Keywords: OCD; obsessive–compulsive disorder; microbiota; gut; gut–brain axis; probiotics; fecal
transplants; microbial reprogramming

1. Introduction

Obsessive–compulsive Disorder (OCD) is a chronic mental health disorder charac-
terized by the presence of intrusive and persistent thoughts that cause distress called
obsessions; these are followed by compulsions, which are repetitive behaviors or mental
acts that individuals feel driven to perform to calm their obsessions [1]. OCD affects
approximately 2–3% of the global population and greatly interferes with quality of life,
disturbing the daily functioning of an individual, from eating to bathing to walking or even
breathing. For example, an individual with OCD can spend thirty minutes closing a door
and verifying it is closed, with the hope that the anxiety might be calmed after a certain
number of repetitions. The decision making of individuals with OCD is greatly affected, as
every decision may be felt as a threat, leading to maximum indecisiveness [2–4]. It is a very
debilitating disorder that often hides behind another disease or disorder. Indeed, although
OCD is now recognized as an independent disorder category, it often occurs with other
disorders such as autism, attention deficit hyperactivity disorder (ADHD), depression,
general anxiety disorder, eating disorder, hoarding disorder, Tourette syndrome, panic
disorder, or schizophrenia [5]. This category includes other disorders such as hoarding
disorder, hair-pulling disorder, and skin-picking disorder [6].

The exact mechanisms underlying OCD are not yet fully understood. Research has
highlighted several associations, leading to the conclusion that a combination of genetic,
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neurobiological, immunological, and environmental factors may contribute to its develop-
ment. Indeed, studies have identified the heritability of OCD through multiple genes such
as the serotonin transporter gene (SLC6A4) and the gene encoding the dopamine D2 recep-
tor (DRD2) [7,8]. Also, OCD has been associated with neurobiological changes such as the
dysregulation of the cortico-striato-thalamo-cortical (CSTC) circuit. Brain regions involved
include the orbitofrontal cortex, the anterior cingulate cortex, and the basal ganglia, as well
as dysregulation in neurotransmitters like serotonin, dopamine, and glutamate [6,9–11].
In addition, environmental factors, such as childhood trauma, including physical and/or
sexual abuse, have been associated with an increased risk of developing OCD. Finally,
stressful life events, such as significant life changes or trauma, have been found to precede
the onset or exacerbation of OCD symptoms [6,12].

To date, cognitive behavioral therapy (CBT) and pharmacotherapy are the primary
treatments for OCD [13,14]. CBT typically involves exposure and response prevention,
where individuals are gradually encouraged to face their obsessions while refraining from
engaging in their compulsive behaviors. This helps to reduce the anxiety associated with
the obsessions and weaken the link between the obsession and compulsion. CBT has been
shown to be effective in reducing OCD symptoms and improving overall functioning [14].
On the other hand, selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, ser-
traline, and fluvoxamine, are the first-line medications for OCD treatment [13,15]. These
medications increase serotonin levels in the brain and help alleviate symptoms. Addition-
ally, combining SSRIs with antipsychotics or glutamate modulators is sometimes used for
individuals who do not respond adequately to SSRIs alone [16]. Despite the availability of
treatment options for OCD, there are significant limitations that warrant the exploration of
novel therapeutic approaches. While these interventions can be effective for some individ-
uals, many patients experience only partial responses to treatment, lingering symptoms,
and high rates of relapse [16,17]. CBT is efficient, but each treatment plan is specific to an
obsession and does not avoid the appearance of another obsession and compulsion later,
which would require another course of CBT. Additionally, there are side effects associated
with the use of medication, such as gastrointestinal disturbances and sexual dysfunction,
which can further impact treatment adherence and quality of life [18].

The limitations of current treatment options emphasize the need for innovative and
therapeutic approaches that target the etiology of OCD. To date, several factors have been
proposed to contribute to the development of OCD, and it is difficult to point to one single
cause. Nevertheless, there is one emerging avenue of investigation that presents itself as
promising and key for the understanding and treatment of OCD: the gut microbiota. The
gut microbiota comprises trillions of microorganisms residing in the gastrointestinal tract,
from bacteria to fungi to viruses, archaea, and protozoa. These microbes outnumber human
cells by a factor of 10, and the genes they express form the microbiome [19]. These are
usually classified into three categories according to their interaction with their human hosts:
beneficial, pathogens, and commensal microbes. Because they control each other’s growth,
eubiosis (the undefined but balanced composition of the gut microbiota) is essential to
prevent the overgrowth of pathogens or a lack of growth of certain beneficial microbes
from lacking. In contrast, dysbiosis refers to an imbalance in the composition or function
of the gut microbiome. It can occur when there are changes in the relative abundance of
certain microbial species or alterations in the overall diversity, resulting in the alteration of
the metabolites produced by the microbiota. Dysbiosis has been associated with various
health conditions, including metabolic disorders, mental health disorders, autoimmune
diseases, and inflammatory bowel diseases [20–33]. Interestingly, dysbiosis has been
associated with all disorders where OCD has been found as a comorbidity such as autism,
Tourette Syndrome, anxiety disorders, panic disorder, eating disorders, depression, and
hoarding disorder but also gastrointestinal diseases such as ulcerative colitis and Crohn’s
disease [34–36].

While we acknowledge that no study has pointed to the prevalence of the co-occurrence
of dysbiosis and OCD in anxiety disorders, the latest advances in the understanding of
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bidirectional communication between the gut and the brain strongly implicate the gut
microbiome as a key component for future investigations. In this review, we examine
the growing evidence that supports the possible causal role of dysbiosis in these anxiety
disorders. We also discuss the emerging clinical studies that aim to modulate the gut
microbial composition to increase its diversity and inhibit the growth of pathogens.

We will first review the molecular mechanisms involved in the microbiota–gut–brain
axis (MGBA). Then, we will gather the latest evidence that supports our rationale and
the latest evidence that shows dysbiosis in OCD and how dysbiosis fits into a model
explaining the neurochemical, genetic, immunological, and environmental basis of OCD.
Finally, we will review recent clinical interventions that support the promising potential
of two microbial reprogramming strategies: dietary interventions using prebiotics and
probiotics and fecal microbiota transplantation (FMT). We will discuss the challenges of
studying such clinical interventions in OCD and identify important considerations for
future clinical studies.

2. Mechanisms of the Microbiota–Gut–Brain Axis (MGBA)

The MGBA refers to the bidirectional communication between the gut microbiota, the
gastrointestinal tract, and the central nervous system (CNS). From brain to gut, endocrine
systems such as the hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal
axes regulate the gut microbiota [37–39]. From gut to brain, the gut microbiome, consisting
of microbes, their genomes, and their products, can influence brain function through a
variety of mechanisms, summarized in Figure 1. We will describe these below as (1) the
endocrine pathway; (2) the nervous pathway; and (3) the immune pathway.
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2.1. The Endocrine Pathway

The endocrine pathway involves the release of microbiota-derived products into the
systemic circulation, issued by the metabolic activity of microbes, including short-chain
fatty acids (SCFAs), neurotransmitters, hormones, and inflammatory factors that directly or
indirectly regulate the function of the CNS.

The production of SCFAs by gut bacteria after the anaerobic fermentation of indi-
gestible polysaccharides, such as dietary fibers and resistant starch, plays a crucial role in
modulating the metabolic activity of the gut, and they are pivotal in microbiota–gut–brain
crosstalk [40–42]. A variety of SCFAs are produced depending on the nature of the dietary
fibers being digested: the most abundant are butyrate, acetate, and propionate [43,44].

Following their production, SCFAs can cross the enterocyte layer and be absorbed by
colonocytes. This happens mainly via H+-dependent or Na+-dependent monocarboxylate
transporters [44]. They can regulate gut barrier integrity and mucosal immunity through
various molecular mechanisms involving G protein-coupled receptors such as free fatty
acid receptors 2 and 3 or hydrocarboxylic acid receptors [45]. Butyrate has been shown to
promote the upregulation of proteins constituting tight junctions, such as zonula occludens-
1, claudin-5, and occulin, and the inhibition of zonulin to reduce intestinal permeability and
maintain gut barrier integrity [46–52]. A decrease in the abundance of butyrate can lead to
leaky gut syndrome, thereby influencing the immune response, as well as the integrity of
both the gut and the blood–brain barrier (BBB) [53–57]. Indeed, the expression of claudin
and occludin has also been shown to be reduced in the BBB of germ-free mice, leading to
the increased permeability of the BBB from intrauterine life to adulthood [58]. The brain’s
uptake of SCFAs has previously been shown in rats [59], and studies have shown detectable
levels of acetate, propionate, and butyrate in their cerebrospinal fluid [60]. In another study,
the brains of mice supplemented with live Clostridium butyricum had significantly higher
concentrations of butyrate than did peripheral blood [61,62]. The recolonization of these
adult mice with complex microbiota or monocolonization with SCFA-producing bacterial
strains recovered the integrity of the BBB [56,58]. Similarly, the treatment of an in vitro
model of cerebrovascular endothelial cells with propionate attenuated the permeabilizing
effects of exposure to lipopolysaccharide (LPS) [63].

Sometimes, protein fermentation in the distal portion of the intestine can lead to the
production of potentially toxic metabolites, such as ammonia, phenols, and sulfides, as
well as unique branched-chain fatty acids [64–67]. By controlling BBB integrity, SCFAs
play a pivotal role in the passage of these and other molecules and nutrients from the
circulation to the brain, playing a central role in brain development and the preservation of
CNS homeostasis [57,68–70].

2.2. The Nervous Pathway

Various gut bacteria have been shown to also produce neurotransmitter precursors and
hormones, such as dopamine, acetylcholine, γ-aminobutyric acid, noradrenaline, serotonin,
and corticotrophin-releasing hormone [71]. In addition to producing peripheral serotonin,
gut microbes can affect the transmission of central serotonin by modulating the production
of tryptophan in plasma. This has been demonstrated for Bifidobacterium infantis [72]. Ente-
rochromaffin cells can bind several microbial products and secrete serotonin into the lamina
propria, increasing colonic and blood concentrations of 5-HT [73,74]. SCFAs regulate the
expression levels of tryptophan 5-hydroxylase 1—the enzyme involved in the synthe-
sis of serotonin—and tyrosine hydroxylase, which is involved in a rate-limiting step
in the biosynthesis of dopamine, noradrenaline, and adrenaline. SCFAs thereby exert
an effect on brain neurochemistry [73–76]. The neural pathway involves bidirectional
communication between the gut and the brain via the autonomic nervous system or
the vagus nerve [77–80]. The vagus nerve serves as a major conduit for transmitting
signals between the gut and the CNS. When gut bacteria modulate the production of neu-
rotransmitters such as γ-aminobutyric, serotonin, dopamine, norepinephrine, glutamate,
and acetylcholine, these can bind to the primary afferents of the enteric nervous system
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and the vagus nerve to influence brain function and behavior. Retrograde transport also
plays an important role in gut-to-brain communication. It is now recognized that the onset
of Parkinson’s disease probably starts in the gut, with α-synuclein aggregation upon LPS
binding and the retrograde transport of aggregates through the vagus nerve to the brain.
There is accumulating evidence that SCFAs may also modulate key neuropathological
processes underlying Alzheimer’s disease by interfering with the assembly of amyloid-β
peptides into neurotoxic oligomers [81–83]. In addition, the metabolites of gut microbes,
by controlling the secretion of gut hormones such as glucagon-like peptide 1 and peptide
YY, can influence food intake, which will, in turn, influence bacterial fermentation, thereby
reinforcing the close relationship between diet and gut microbiomes [84].

2.3. The Immune Pathway
2.3.1. From Gut to Host Immune System

Changes in the gut microbiota composition can affect the production and availability
of SCFAs, thus impacting the metabolic activity of the gut [85–89]. Dysbiosis, by lead-
ing to reduced SCFA production, impaired gut barrier function, and increased intestinal
permeability, is a starting point for systemic inflammation and potential neuroinflamma-
tion [90,91]. The byproducts of microbiota metabolism can activate immune cells in the
gut, leading to the production of pro-inflammatory or anti-inflammatory cytokines [92–96].
These immune signals can then communicate with the brain and affect neural function, as
neuroinflammation is an important process shaping brain function.

A good example of this is bacterial lipopolysaccharides (LPS), also known as endo-
toxins, which are components of the outer membrane of Gram-negative bacteria. They
are typically produced as part of the bacterial growth and replication process [97]. These
endotoxins trigger a pro-inflammatory cascade in the mucosa, mediated by toll-like recep-
tor 4 and cytokines such as tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) [97].
The LPS-induced pro-inflammatory cascades have been shown to be inhibited by the
butyrate inhibition of histone deacetylase (HDAC) [98]. This intracellular signaling has
been found not only in the gut and associated immune tissue but also in the peripheral
nervous system and CNS [51,99–102]. Perturbations of the gut microbiota caused by an-
tibiotics in experimental animal models systemically produced altered immune responses
with pro-inflammatory profiles [103]. In early life, if the microbiota is depleted using
antibiotics, this results in an inflammatory response in the CNS with pro-inflammatory
cytokine secretion and altered microglial morphology, which could be reversed by bu-
tyrate treatment [104–110]. Indeed, butyrate has been shown to control the maturation of
mucosa-associated lymphoid tissue and the differentiation of lymphocytes, characterized
by the presence of macrophages and B and T cells. Similarly, acetate treatments of microglia
primary culture in vitro have been shown to reduce inflammatory signaling by downreg-
ulating the expression of IL-1β, IL-6, and TNF-α and the phosphorylation of p38 MAPK,
JNK, and NF-κB [111]. The precise signaling involved in the effects of SCFAs on microglia
remains unclear, and histone acetylation or epigenetically regulated gene expression is
considered the main mechanism [112].

2.3.2. From Host Immune System to Gut Microbiota

Several studies investigating the relationship between immunoglobulin A (IgA) and
the gut microbiome have concluded that the adequate production of IgA is essential for the
colonization of certain “good” bacteria such as Bifidobacterium and Bacteroides [113–121].
On the other hand, microbial acetate produced by gut microbes is also able to regulate IgA
reactivity to commensal bacteria, thus highlighting a bidirectional relationship between
gut microbes and the immune system [70,122–125].

IL-22 and IL-17 have been shown to stimulate gut intraepithelial cells into producing
antimicrobial peptides such as α-defensins and β-defensin 1, which can quickly inacti-
vate microorganisms entering the host through a leaky gut [126,127]. Furthermore, mice
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transgenic for defensins have exhibited an altered microbiota composition [128–131]. Thus,
antimicrobial peptides affect the microbial composition.

3. Dysbiosis and the Neurobiology Basis of OCD
3.1. Dysbiosis in OCD

While there is a wealth of research associating the gut microbiome with other neu-
ropsychiatric disorders that may involve OCD-like behaviors, such as autism and ADHD,
studies exploring the gut microbiome in OCD specifically remain scarce [132–134]. Never-
theless, the potential role of the gut–brain axis in the pathophysiology of OCD has been
highlighted by several studies, suggesting that alterations in gut microbiota composition
may impact brain function and behavior, including obsessive–compulsive symptoms. Our
search through PubMed, Scopus, and Embase yielded many reviews but only a few emerg-
ing clinical studies. Table 1 lists clinical studies that specifically looked at the gut microbiota
in OCD, most of them published in the past two. Although clinical interventions targeting
dysbiosis and focusing specifically on OCD are scarce, a few studies are worth mentioning.
A recent scientific report by Domenech et al. (2022) reported dysbiosis in the gut and
oropharyngeal microbiomes of OCD patients [135]. They noted an increase in bacteria
from the Rikenellaceae family, associated with gut inflammation, and a decrease in bacteria
from the Coprococcus genus. Lower bacterial diversity in the gut of OCD patients has been
observed, consistent with the lower gut α-diversity in PANS/PANDAS patients reported
by Quagliariello et al. [136] and in OCD by Turna et al. [137]. The latter observed a decrease
in species richness/evenness and a lower relative abundance of three butyrate-producing
genera (Oscillospira, Odoribacter, and Anaerostipes) in OCD patients [138]. Furthermore,
lower α-diversity has also been reported in subjects with ADHD [139–141] and in studies
of ASD individuals [28,29,142–145]. Despite the small sample sizes and the variability in
methodologies used, the studies presented in Table 1 highlight the emerging field of study
in the treatment of OCD [135–138,146–150].

These findings not only demonstrate the importance of further exploring the gut–
brain axis in OCD but also suggest a possible causal link between changes in the gut
microbiota and the development of obsessive–compulsive-like behaviors. Overall, while
there is emerging evidence suggesting a correlation between gut microbiota dysbiosis and
OCD, there is a genuine need for further research specifically investigating the relationship
between OCD and the microbiota before establishing a causal relationship and determining
the clinical implications.

The below hypothetical model places gut dysbiosis at the center of all factors previ-
ously associated with OCD, interacting with the neurochemical, immune, genetic, and
environmental bases of OCD (Figure 2). Below, we will detail evidence in support of
this model.

Table 1. Dysbiosis in OCD.

Sample Type Observations Year Ref.

36 OCD patients and
35 controls Blood

ELISA:

- Significantly higher mean serum claudin-5 in
OCD may contribute to the role of the
blood–brain barrier in the pathogenesis
of OCD.

- Serum zonulin level was not different from
the control group in OCD patients.

May 2022 [146]
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Table 1. Cont.

Sample Type Observations Year Ref.

64 OCD patients
(30 women and 34 men)
and 51 controls (31 women
and 20 men)

Saliva
Blood

Human study
rRNA-gene-based PCR sequencing:

- Significant increase in Actinobacter and
Firmicutes in OCD.

- Significant decrease in
Fusobacteria-to-Actinobacteria ratio in OCD
patients compared with controls.

- No differences in Bacteroidetes, Proteobacteria,
or Fusobacteria.

- No differences were observed in
Firmicutes-to-Bacteroidetes ratio in OCD
and controls.

Quantitative methylation analysis, PyroMark Q24:

- Significant correlation between the levels of
DNA methylation and the abundance of
Actinobacteria but not between the epigenetic
mark and Firmicutes levels.

Mar 2022 [147]

6 Wistar rats (ISO with
anxious-like phenotype
and controls)

Animal study
LC–MS/MS analysis:

- Total SCFA levels significantly reduced one
week after isolation in ISO rat feces when
compared with the control group.

- Significant decrease in butyrate
concentration, whereas acetate, propionate,
and valerate levels were not affected by
social isolation.

38 OCD patients
(20 females, 18 males) and
33 controls (18 females,
15 males)

Oropharyngeal swab
samples (tonsils, throat)

Fecal

LEfSe analysis:

- Significant increase in the relative abundance
of Rikenellaceae (Alistipes genus) in OCD.

- Significant decrease in the levels of
Prevotellaceae in OCD samples compared
with controls.

- Different distribution of order Clostridiales:
increase in Oscillibacter, Anaerostipes, and
Flavonifractor and decrease in Agathobacter,
Coprococcus, Lachnospira, Howardella,
Romboutsia, Butyricicoccus, and Clostridium
compared with controls.

- Depletion of Lachnospira pectinoschiza
correlated with OCD severity on the
obsession subscale.

- No significant difference before vs. after
behavioral therapy.

Jan 2022 [135]

28 Wistar rats: compulsive
high drinkers (HD) or low
drinkers (LD)

Fecal
Blood

PCR–DGGE analysis:

- Lower bacterial diversity in compulsive HD
rats as compared with LD rats, irrespective
of diet.

- TRP depletion induced a reduction in
bacterial evenness in HD rats.

- TRP depletion induced a reduction in
peripheral plasma 5-HT levels in both HD
and LD rats.

- Possible implication of reduced microbial
diversity in compulsive behavior via the
serotonergic system.

May 2021 [148]
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Table 1. Cont.

Sample Type Observations Year Ref.

4 groups of 6 male Wistar
rats, OCD-induced with
D2 agonist quinpirole, and
1 group of 6 rats as control

Brain tissue

Intervention: Treatment with L. casei Shirota
(109 CF/g, daily for 4 weeks) and fluoxetine.

Behavioral test:

- Decrease in OCD-like behaviors in OCD rats
after being fed with L. casei Shirota (explored
all boxes, including center), similar to
negative control and fluoxetine-treated.

qPCR:

- Increase in Bdnf expression in brain tissue in
OCD rats after being fed with L. casei Shirota,
similar to negative control and
fluoxetine-treated.

- Decrease in Htr2a expression in OCD rats
after being fed with L. casei Shirota, similar to
negative control and fluoxetine-treated.

Dec 2020 [149]

21 OCD
22 controls

Blood
Fecal

- Lower species richness/evenness
(α-diversity, Inverse Simpson) and lower
relative abundance of three
butyrate-producing genera (Oscillospira,
Odoribacter, and Anaerostipes) in OCD.

- Increased mean CRP in OCD, with
moderate-to-strong associations with
symptomatology.

- No change in IL-6 or TNF-α.

Oct 2020 [138]

11 deer mice (8 females, 3
males) per group
2 groups: large
nest-building natural
OCD (LNB) and normal
nest building (NNB)

Fecal

16sRNA:

- Normal-phenotype animals showed a higher
loading of Prevotella and Anaeroplasma.

- Natural OCD phenotype demonstrated a
higher loading of Desulfovermiculus,
Aestuariispira, Peptococcus,
and Holdemanella.

Mar 2020 [150]

21 OCD patients and
22 controls -

- Increased gastrointestinal symptom severity
in OCD compared with controls.

- Increased prevalence of IBS in OCD
compared with controls.

Nov 2019 [137]

30 PANS/PANDAS
patients Fecal

16sRNA:

- Significant increase in Bacteroidetes in
PANS/PANDAS (Bacteroides, Odoribacter, and
Oscillospira proposed as biomarkers)

- Negative correlation between genera
belonging to Firmicutes phylum and
anti-streptolysin O

- Targeted metagenomics:
- Increase in several pathways concerning the

modulation of the antibody response to
inflammation.

- Decrease in pathways involved in brain
function.

Apr 2018 [135]

3.2. Dysbiosis and Hyperactivity in the Cortico-Striato-Thalamo-Cortical Circuit (CSTC)

The CSTC projects from the orbito-frontal-cortical region (OFC) to the striatum and
then onward to thalamic sites before looping back to the cortex. It is responsible for reward-
and motivational-related processes, executive function, motor and response inhibition,
and habit-based behavior [151]. Two pathways within this circuit, direct and indirect,
should have opposing net effects on the thalamus, and this balance is critical for the
initiation and suppression of behavior [151]. Any imbalance is thought to contribute to
OCD pathology. Indeed, overactivity in the direct pathway results in hyperactivity in
the feedback loop, creating overall hyperactivity within the circuit. Several studies have
noted an increased activation of the OFC and the striatum and caudate regions [6,152–160].
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This hyperactivity is believed to involve the neurotransmitters serotonin, glutamate, and
dopamine [76,153,161].
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Figure 2. Hypothetical model of the microbiological basis of OCD. A direct (oral) and an indirect
(sensory) pathway can affect the gut microbial composition, which, in turn, can modulate (yellow
arrows) immunological, genetic, and metabolic factors in the host. Those factors interact with each
other (red arrows), resulting in structural, neurochemical, and immunological changes in the brain,
leading to hyperactivity.

3.2.1. Serotonin

Adams et al. (2005) pointed to the increased binding of 5-HT2AR, the receptor to sero-
tonin, in the caudate nuclei of unmedicated OCD patients, possibly due to the compensatory
effects of low levels of serotonin within the CSTC circuit [154]. Simpson et al. (2020) showed
that an earlier onset of OCD was associated with increased 5-HT2AR availability in the
circuit [155]. This is supported by successful treatments using serotonin receptor inhibitors
(SRI). Nevertheless, mechanisms through which SRIs ameliorate symptoms are still not well
understood, and only 40–60% of patients improve following SRI intervention [156,157].

The gut microbiota plays a crucial role in the production of serotonin. Specific gut
bacteria, such as the Lactobacillus and Bifidobacterium species, have been found to produce
serotonin in the gut [158]. Changes in the composition of the gut microbiota can disrupt this
serotonin production process, leading to imbalances in serotonin levels. Certainly, several
gut bacteria (such as Clostridium, Burkholderia, Streptomyces, Pseudomonas, and Bacillus)
play a role in the metabolism of tryptophan [153,158,159]. Although in normal conditions
peripheral serotonin cannot freely cross the BBB, its precursor, tryptophan, can cross the
BBB through specialized transport mechanisms to then be converted into serotonin by
local neurons. Furthermore, dysbiosis can both influence the availability of tryptophan
and disrupt the BBB, allowing other molecules inside the brain. Certain gut bacteria can
metabolize tryptophan, affecting its availability for serotonin production [153,159–163].
Changes in gut microbial composition can alter tryptophan metabolism, potentially
impacting serotonin levels in the brain. As a result, dysbiosis-induced alterations in
the gut microbiota could result in reduced serotonin synthesis in the brain, potentially
contributing to mood disorders and behavioral changes.
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Gut dysbiosis can also influence the serotoninergic system in the brain through other
mechanisms. For instance, the gut microbiota can affect serotonin signaling by influencing
the expression and activity of serotonin receptors in the brain. Dysbiosis-related changes in
the gut microbial composition have been associated with alterations in serotonin receptor
expression and function. A study by Hsiao et al. (2013) [164] explored the impact of gut
dysbiosis on serotonin signaling. They investigated mice with gut microbiota imbalances
and observed abnormal serotonin receptor expression patterns in specific brain regions.
These changes were associated with behavioral abnormalities, including altered social
interactions and increased anxiety-like behavior. This suggests that dysbiosis-induced
disruptions in the gut microbiota can influence serotonin receptor function, potentially
contributing to mood disorders and behavioral dysregulation.

3.2.2. Glutamate

The glutamate system is the major excitatory neurotransmitter system in the brain.
Studies have shown that untreated OCD patients have elevated glutamate concentrations in
the caudate region as compared with healthy individuals; these normalized after 12 weeks
of SRI treatment, suggesting that the availability of serotonin at the frontal region of the
circuit might modulate the concentration of glutamate in the caudate part [165]. Because
there are important glutamatergic projections between the frontal cortical part and the
striatum, it was proposed that the SRI treatment allowed for an increase in serotonin levels
that, in turn, inhibited glutamate levels in the caudate. In contrast, with low levels of
available serotonin, the inhibitory effects within the circuit are reduced, which would allow
for elevated glutamate activity in the circuit [165,166]. Increased glutamate concentrations
have also been observed in the cerebrospinal fluid (CSF) of untreated OCD patients [167].
Unsurprisingly, the modulation of glutamate via n-acetyl cysteine showed improvements
in double-blind placebo-controlled studies for the obsessive–compulsive-related disorders
trichotillomania and skin-picking disorder [168,169].

The gut microbiota has been shown to influence the glutamate system through two
main mechanisms. Firstly, certain gut bacteria, such as the Lactobacillus and Bifidobac-
terium species, are capable of producing and metabolizing glutamate, thereby influencing
its levels in the body. Dysbiosis-induced changes in the composition of the gut microbiota
can lead to alterations in glutamate production and metabolism, potentially impacting
glutamate signaling in the brain. The significance of gut bacteria in glutamate metabolism
has been demonstrated [170,171]. Specific bacterial enzymes have been identified that are
involved in glutamate production, as germ-free mice lacking these bacteria have lower
levels of brain glutamate compared with control mice, indicating the influence of specific
gut bacteria on brain glutamate levels.

Secondly, dysbiosis can affect the expression and function of glutamate receptors and
transporters in the brain. Changes in the gut microbiota can lead to modifications in the
expression of glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors, and
glutamate transporters, such as EAAT3. In their investigation of the impact of gut dysbiosis
on glutamate-related pathways, Sharon et al. (2019) found that mice with disrupted gut mi-
crobiota exhibited altered NMDA receptor and EAAT3 transporter expressions in the brain,
along with neurobehavioral abnormalities [110]. These findings suggest that dysbiosis-
induced changes in the gut microbiota can influence the function of glutamate receptors
and transporters, potentially influencing glutamate neurotransmission in the brain.

3.2.3. Dopamine

Imaging studies have revealed increased dopamine levels in the basal ganglia of
OCD patients and enhanced binding to the dopamine transporter [172]. One study found
increased density in the dopamine transporter of the left caudate and the left putamen of
untreated OCD patients [173]. The antipsychotic drugs that are sometimes offered to OCD
patients who resist SRI treatments block subcortical dopamine receptor activity and are
proposed to target the habit system and compulsive behaviors.
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The gut microbiota can also influence the dopamine system. Some gut bacteria,
including certain strains of Enterococcus and Lactobacillus, are capable of producing and
metabolizing dopamine. Dysbiosis-induced changes in the gut microbial composition can
impact dopamine production and metabolism. The influence of dysbiosis on the expression
and function of dopamine receptors and transporters in the brain has been an area of
growing research interest. Several studies have demonstrated that changes in the gut
microbiota composition can indeed lead to alterations in dopamine receptor expression and
dopamine transporter activity. One study conducted by Bercik et al. (2011) explored the
effects of the gut microbiota on central levels of brain-derived neurotrophic factor (BDNF)
and behavior in mice [174]. They found that germ-free mice, lacking gut microbiota,
displayed altered dopamine receptor expression in specific brain regions compared with
control mice with normal gut microbiota. In another study, Dinan et al. (2013) investigated
the role of psychobiotics, a novel class of bacteria with potential mental health benefits, on
neurotransmitter systems, including dopamine [175]. They found that certain psychobiotics,
such as the Lactobacillus and Bifidobacterium strains, had the ability to modulate dopamine
receptor expression and dopamine transporter activity, highlighting the impact of specific
gut bacteria on the dopaminergic system [176–178].

3.3. Dysbiosis and the Immune Basis of OCD

Inflammation and immune dysregulation have been implicated in the pathogene-
sis of OCD. Preliminary studies have noted abnormal concentrations of IgA in children
with OCD. IgA mediates microbial composition and homeostasis at the mucosal level via
the prevention and promotion of bacterial growth, which both influence bacterial gene
expression [115].

There is also evidence for the role of immunological processes in the pathophysiology
of OCD [9,139,179–181]. Commonly known as the “autoimmune OCD subtype”, Pediatric
Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections, or
PANDAS, is characterized by OCD that appears after a streptococcal infection, such as
scarlet fever or strep throat [179]. The dramatic surge of symptoms, which happens
overnight, includes motor obsessions and compulsions. In addition, children experience
mood issues and anxiety attacks. In this context, a streptococcus A infection is clearly
a manifestation of dysbiosis, which activates these immunological processes. Through
molecular mimicry, streptococcal bacteria are believed to induce an autoimmune response
that attacks the brain via neuroinflammation. Indeed, several studies have found cross-
reactive antibodies targeting the brain in children with PANDAS, as well as microglial
activation [9,179,182–186].

3.4. Dysbiosis and the Genetic Basis of OCD

The neurobiological basis of overactivity involving serotonin, glutamate, and dopamine
is thought to be mainly rooted in genetic factors on the one hand, with a heritability of
27–65%, and environmental factors on the other [187]. Twin studies have shown that OCD
can run in families [10,186]. Epigenetic alterations have been suggested to be particularly
relevant in OCD. Investigations into the peripheral DNA methylation signatures of OCD
are scarce, but DNA methylation patterns have been described [186].

Among the genes under investigation, notable examples include serotonergic genes
(HTR2A, 5HTTLPR, SLC6A4), glutamatergic genes (SLC1A1, DLGAP3, SAPAP3), and
dopaminergic genes (SLC6A3, DRD4) [10,11,187–189]. Recently, there has been a growing
focus on the role of epigenetic mechanisms such as gene methylation, histone deacetylation
(HDAC), and histone acetylation (HAT) in psychiatric disorders. Efforts have been made to
develop treatment strategies targeting these mechanisms. Studies comparing DNA methy-
lation patterns in OCD patients and control groups have revealed distinct methylation
profiles in the promoter regions of genes such as MAOA, GABA, MOG, BDNF, LEPR,
OXTR, SLC6A4, and SLC6A3 [190]. In a recent study, a statistically significant correlation
was observed between certain obsessions/compulsions and polymorphisms in HDAC2,
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HDAC3, and HDAC4 in an OCD group (p < 0.05) [191]. Indeed, gut microbes have been
found to inhibit the histone deacetylase, an enzyme that facilitates the transcription of
genes by removing the acetyl group from histone proteins on DNA [192].

Other genes have been found to be associated with OCD in some studies, such as the
oxytocin receptor (OXTR) gene [192–196]; the monoamine oxidase A (MAOA) gene [197];
the brain-derived neurotrophic factor (BDNF) gene [198]; the gamma-aminobutyric acid B
receptor 1 (GABBR1), estrogen receptor 1 (ESR1), and myelin oligodendrocyte glycoprotein
(MOG) genes; and, again, the brain-derived neurotrophic factor (BDNF) gene [199].

The growing body of evidence implicating gut microbes in epigenetics places dys-
biosis at the center of our model. However, not all clinical observations can be explained
by the genetic hypothesis alone. For example, several studies failed to find significant
associations between the dopamine transporter gene (SLC6A3) and OCD [200–203] or
dopamine receptor 2 (DRD2) and the dopamine receptor 3 (DRD3) and OCD [202,204,205].
This suggests that other mechanisms are involved in the observed increase in dopamine in
the CSTC circuit.

3.5. Dysbiosis and the Environmental Basis of OCD

In this proposed model, childhood trauma and stressful life events can modulate the
gut microbiota composition and thus trigger dysbiosis. This has been proposed to happen
via the hypothalamic–pituitary axis [37–39,206,207]. Lifestyle changes, particularly diet,
and the recurrent use of antibiotics in the early stages of life can be determinants in the
early development of the gut microbiota and the development of neurodevelopmental
disorders [207–210]. Indeed, gut microbiota and brain maturation, including myelination,
occur synchronically between birth and three years of age, and the gut microbiota has
been found to play a critical role in myelination [211,212]. The gut microbiota includes
bacteria that can synthesize various neurotransmitters besides serotonin. For instance, Lac-
tobacillus and Bifidobacterium produce GABA, Escherichia, and Bacillus; Saccharomyces
spp. generate norepinephrine; Bacillus synthesizes dopamine; and Lactobacillus produces
acetylcholine [213–215]. Thus, the disruption of the microbiota in the early years can impact
the normal functioning of the gastrointestinal tract and affect the overall health of the indi-
vidual, and it is likely to elevate the occurrence of diverse mental disorders [27,142,216,217].

4. Microbial Reprogramming Strategies
4.1. Prebiotics, Probiotics, and Postbiotics

If dysbiosis is a central element in the development of OCD, then it would be expected
that the manipulation of the gut microbiota might influence its occurrence and offer po-
tential options for its treatment. This does in fact appear to be the case, and in this section,
we gather clinical evidence of the use of probiotics and fecal microbiota transplants in the
treatment of OCD.

A probiotic is a live organism that, when ingested in adequate amounts, exerts a health
benefit on the host [218]. Probiotics use dietary fibers or resistant starch as nutrient sources
(or prebiotics) to produce beneficial metabolites (postbiotics). The term synbiotic is used
to refer to the mixture of both prebiotics and probiotics [219]. Dietary fibers and resistant
starch, therefore, play an essential role in fermentation and postbiotic production [220–222].
Westernized diets are characterized by a relatively low intake of dietary fiber, which could
explain the presence of dysbiosis in most modern diseases and disorders. Dietary fibers
also include plant-based carbohydrates, such as polyphenols, and non-carbohydrate com-
pounds, such as lignin. Probiotics such as Lactobacillus, Bifidobacterium, and Akkermansia
can use these compounds to produce SCFAs, which, in turn, promote various beneficial
effects in the host [143,223–228].

Over the last decade, a number of studies have shown promising results for the use
of probiotics in the treatment of OCD. However, while a growing number of studies have
investigated the potential value of probiotics in treating autism and ADHD, investigations
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of probiotic interventions for OCD are still at their very early stages, with most studies
being performed on animal models.

Kantak et al. (2014) found that two-week pretreatments with Lactobacillus rhamnosus
GG had the ability to reduce obsessive–compulsive disorder in mice. The results were
comparable to treatment with fluoxetine [228].

In 2018, Tabouy et al., using Shank3 KO mice (a model used to study neurodevelop-
mental disorders such as autism), found Lactobacillus reuteri to be in a decreased relative
abundance in the Shank3 KO. The treatment of Shank3 KO mice with Lactobacillus reuteri
induced a significant decrease in repetitive behaviors in both males and females [229].

In a study conducted by Szklany et al. (2020), male mice receiving (from the day of
birth onwards) a prebiotic mixture composed of short-chain galactooligosaccharides (sc-
GOS) and long-chain fructo-oligosaccharide (lcFOS) exhibited changes in the serotonergic
system [230]. These neurological modulations were associated with behavioral changes,
such as a reduction in anxiety and repetitive behavior during development and increased
social interest in adulthood compared with mice fed a control diet. The brains of the treated
group exhibited altered mRNA expression in astrocytic glial fibrillary acidic protein and
microglial integrin alpha M. There was also enhanced mRNA expression in BDNF in the
prefrontal cortex. Additionally, analysis of the cecal content of the treated animals revealed
relatively increased levels of SCFA, such as butyric acid, and decreased levels of valeric,
isobutyric, and isovaleric acid [230].

Another animal study conducted by Sanikhani et al. (2020) demonstrated the effective-
ness of Lactobacillus casei Shirota in treating OCD in a rat model. After daily administrations
of L. casei Shirota (10 9 CFU/mL for four weeks), the probiotic showed beneficial effects, pos-
sibly effected through the modulation of genes related to serotonin. Following concurrent
treatment with L. casei Shirota and fluoxetine, the expression level of Bdnf significantly in-
creased, while the expression of Htr2a (serotonin receptor 2A) decreased in the orbitofrontal
cortex tissues of all rats involved in the study [149].

In 2021, Sunand et al. [231] found that selected probiotic strains and complex treat-
ments with probiotics significantly ameliorated microbial diversity; repetitive behaviors;
and the concentrations of NF-a, BDNF, and 5-HT.

In 2022, Alghamdi et al. [232], using an animal model of autism induced by propionic
acid, found that subjects with cognitive dysfunction had altered levels of neurotransmitters
in their brains. However, in the group of animals treated with probiotics, neurotransmitter
levels were 1.2-fold higher compared with the control group. In the same study, the alpha-
melanocyte-stimulating hormone (α-MSH) was monitored. α-MSH acts on melanocortin
type 4 receptors (MC4R), a receptor that interacts with neurochemical systems that regulate
socioemotional behaviors, including oxytocin and dopamine. Oxytocin can influence social
cognition by modulating various neurochemical systems, including serotonin, glutamate,
dopamine, and GABA neurotransmitters in specific brain regions, such as the hypotha-
lamus, amygdala, and hippocampus. The study observed significantly lower levels of
α-MSH in animals treated with propionic acid compared with the controls. However, this
effect was reversed by the administration of bee pollen and a mixed probiotic bacteria
preparation called ProtexinR, which contains beneficial bacteria such as Bifidobacterium
infantis, Bifidobacterium breve, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus
casei, Lactobacillus rhamnosus, and Streptococcus thermophiles. The concentration of the mixed
probiotic bacteria in ProtexinR was 1 billion CFU per gram [232].

Pochakom (2022) investigated supplementation with Lacticaseibacillus rhamnosus HA-11
(Lr) and Ligilactobacillus salivarius HA-118 (Ls) in the BTBR T+ Itpr3tf /J (BTBR) mouse model
of autism (10 9 CFU/mL in drinking water for 4 weeks) [233]. Supplementation with Lr,
but not Ls, increased the microbial richness and diversity and increased the concentrations
of beneficial neuroactive compounds, such as 5-aminovaleric acid and choline. Both the Lr
and Ls treatments reduced behavioral deficits in social novelty preference, but no changes
in hyperactivity or repetitive behaviors were observed [233]. This suggests that not all
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probiotic microbes result in the same outcomes, and a more complex mix of microbes might
actually be required to target various behaviors.

Sen et al. 2022 [234] found that the daily oral administration of Blautia stercoris MRx0006
attenuated social and repetitive behaviors in a mouse model of autism. The study showed
that MRx0006 increases the expression of oxytocin and its receptor in hypothalamic cells
in vitro and hypothalamic oxytocin mRNA in mice while altering the metabolome profile.
It was proposed that biotherapy using Blautia stercoris would be a viable treatment option
for autism.

Studies on human subjects are rarer but encouraging. A double-blind randomized
controlled trial focused on the effect of a synbiotic called Synbiotic 2000, composed of
three anti-inflammatory lactic acid bacteria and four anti-inflammatory fibers, on patients
with ADHD [218]. One of the measured outcomes was repetitive behavior. Synbiotic 2000
reduced both the total score of autism symptoms and restricted, repetitive, and stereotyped
behaviors, as compared with a placebo [229]. Similarly, in a case report on a child with
autism, Sacharomyces boulardii was shown to reduce OCD behavior [235].

4.2. Fecal Microbiota Transplants

Fecal microbiota transplantation (FMT), or the transfer of fecal matter from a healthy
donor to a patient, has emerged as another promising therapeutic approach for restoring a
healthy gut microbiome and achieving beneficial effects in various diseases [236]. Currently,
there are no FMT studies that have been performed specifically to treat OCD. However,
several studies have noted significant changes in microbial ecology, metabolism, and
behavior observed in patients after FMT, most of them providing strong support for FMT
as a therapeutic method to treat OCD [237–242].

Kang et al. (2017) published an important follow-up after the publication of the first
clinical trial results using FMT on autistic children [243]. Spectacular improvements were
observed in GI symptoms, autism-related symptoms, and gut microbiota diversity with
a higher abundance of Bifidobacteria and Prevotella, and these were sustained after two
years [237]. The autism-related symptoms even exhibited further improvement, suggesting
that the fecal transplants might have initiated further changes during the two-year period.
These findings underscore the long-term safety and effectiveness of FMT as a potential
therapy for gut-dysbiosis-associated disorders. Although the focus of the study was not
OCD behavior, it is particularly relevant considering the close relationship between gut
dysbiosis and brain dysfunction. For example, Kilinçarslan et al. (2020) found that the
severity of several factors, including obsession, decreased after FMT in patients with
inflammatory bowel disease [244]. This suggests that the restoration of a healthy gut
microbial community through FMT can have positive effects on psychological symptoms
associated with certain diseases. Alghamdi et al. (2022) conducted a study in a rodent
model of autism and included the use of FMT from healthy donor rats, which resulted in
a significant increase in α-MSH levels by 2.7 fold (compared with 1.2 fold for probiotics)
and an increase in the brain levels of neurotransmitters (1.6 fold) and substance P (2.2 fold)
to above that of the controls [232]. These results suggest that FMT might be superior to
probiotics in initiating metabolic changes; however, further clinical studies are needed to
compare both the efficacy and safety of FMT and probiotics.

Although not focusing on OCD but on autism, a very interesting recent study by
Wang et al. (2023) highlights important changes after fecal transplants [245]. Fecal mi-
crobiota samples from ASD children and healthy donors were transplanted into a mouse
model of ASD. The researchers conducted 16S rRNA gene sequencing on fecal samples
and untargeted metabolomic analysis on samples to identify differences in gut microbial
communities and metabolic pathways related to ASD behaviors. mRNA sequencing analy-
sis was also performed on colon and brain tissues after sacrificing the animals to identify
enriched signaling pathways and potential molecular mechanisms. The study revealed
metabolite changes related to serotonergic and glutamatergic synapse pathways. They also
demonstrated that these were associated with behavioral changes in ASD: there was an
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increase in ASD-like behaviors in mice that received FMT from ASD donors but a decrease
in such behaviors in mice that received FMT from healthy donors. Indeed, the colonization
of certain bacterial genera, such as Bacteroides, Odoribacter, Turicibacter, and Alistipes, was
correlated with an improvement in behavior after FMT, but this did not specifically point
to OCD behavior. However, the changes in serotoninergic and glutamatergic pathways
might also predict positive outcomes for future OCD studies.

The close link between gut dysbiosis and brain function underscores the importance of
targeting the gut microbiota for therapeutic interventions. FMT offers a unique opportunity
to restore a healthy gut microbial community and potentially alleviate symptoms associated
with various disorders. These findings highlight the potential benefits of FMT in improving
mental health conditions and support the further exploration of this therapeutic approach.

5. Discussion

The correlation between gut dysbiosis and the vast majority of modern diseases is now
firmly established [134,141,246–252]. The gut microbiome might actually play a significant
role in the development and manifestation of OCD, providing a comprehensive explanation
for the multiple factors previously associated with the disorder. The gut microbiome can
influence genetic, neurobiological, and environmental factors indirectly, thereby impacting
the pathophysiology of OCD.

We have seen that SCFAs can improve gut–brain health via a number of pathways,
including maintaining the gut barrier integrity; producing mucus; protecting against
inflammation; and communicating with the brain via the vagus nerve and neurohor-
mones [34,253,254]. However, the gut’s bacterial composition is determined by multiple
factors, including genetics, immune status, drugs (e.g., metformin), antibiotic courses, diet,
pollutants, etc. [207]. Thus, studies investigating the gut microbiota composition must con-
sider multiple variables. Furthermore, the various methods for the collection, storage, and
handling of microbiological materials add even more variability to these studies [255,256].
Microbial reprogramming strategies, using either probiotics or FMT, may also encounter
significant challenges arising from interindividual variations and even temporal variations
within a single individual.

The host’s genetic background can modulate bacterial colonization, particularly ge-
netic variants such as single nucleotide polymorphisms, which could explain the interper-
sonal variability in circulating levels of SCFA observed after fiber intake. Variations in
genes coding the receptors of SCFAs, such as GPR41, GPR43, and GPR109A, have been
proposed to have a significant impact on metabolism in general [96,257,258]. Additionally,
genes responsible for transportation, such as the SLC16A family of monocarbohydrate
transporters, effector genes like MUC2 involved in colon mucus production, and regulatory
genes like NRF2, which regulate the expression of proteins related to antioxidant defense
mechanisms, may have significant implications for health outcomes. These effects could
arise from the compromised absorption of short-chain fatty acids or their intracellular
functions [259].

The impact of probiotics on human health has been studied through clinical trials and
resulted in numerous suggested health indications and claims [260–265]. Nevertheless,
there are also studies with contradictory findings, resulting in conflicting, ambiguous
conclusions regarding the efficacy of probiotics [266,267]. One of the main reasons for these
conflicting results (and also the main challenge for future studies) is that, in contrast to
animal models, humans exhibit significant heterogeneity in terms of diet, age range, genetic
background, and gut microbiome composition [268,269]. As a result, they may respond
differently to the same probiotic intervention. In fact, several studies on probiotics have
emphasized the importance of precision in considering host-related factors, microbiome
characteristics, and dietary influences, as these factors play a crucial role in determining
the varied outcomes observed [270,271]. More specifically, the extent of gut colonization by
probiotics can vary significantly between individuals. This variability in colonization levels
can contribute to the diverse effects of probiotics on both the hosts themselves and their gut
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microbiomes [272]. This is understandable since pre-existing microbes can influence each
other’s growth and that of the newly ingested microbes. If dysbiosis is already present,
such as in atopic dermatitis or milk hypersensitivity, dysbiosis can alter the effects of the
probiotic intervention on the host [273,274]. These permissive microbiomes are also more
susceptible to compositional and functional changes in response to probiotics, resulting
in the distinct enrichment of pathways in the gut [275]. Microbiomes that facilitate the
colonization of probiotic bacteria are associated with improved clinical responses in various
models of colitis and depression [276–278].

Therefore, differences in the initial conditions of the host and their gut microbiome, as
well as variations in environmental exposures, can lead to contrasting outcomes between
individuals who receive the same probiotic supplement [279,280]. In addition, for in vitro
studies, the characteristics of probiotic bacteria, such as adhesion, hydrophobicity, and autoag-
gregation, may vary depending on the source from which they were isolated [281,282].

Environmental factors, as described in our model, influence the gut microbiome and,
thus, the response to probiotics. Dietary polyunsaturated fatty acids, for instance, have
been found to modulate the adhesion of probiotics in laboratory settings [279]. Similarly,
diet can impact clinical outcomes, as preterm infants fed with human milk demonstrate
a reduced risk of late-onset sepsis and a shorter time in achieving full enteral feeding
compared with formula-fed infants [283].

Consequently, we consider FMT interventions to be an option with less variability in
terms of results. This is because, with FMT, an entire community of microbes, including
fungi, is transplanted. However, the downside of this is that we do not currently have
enough data to predict, manage, or control the eventual risks patients are exposed to when
transplanted with the gut microbiome of another healthy individual. Indeed, FMT has
shown promise with positive outcomes for various diseases [237,240,254,284,285]. However,
the escalating problem of antibiotic resistance poses a threat to the use of FMT. Sample
screening must follow rigorous guidelines as antibiotic resistance becomes a criterion for
donor stool selection. For FMT to become a successful approach in disease treatment and
management, advances are necessary in defining the composition of fecal samples and
methods of administration. There must also be a shift toward personalized fecal sample
selection. The future of a safe FMT probably resides in our ability to further elucidate
what the phrase “healthy microbiome” really means. New analytical techniques, such as
machine learning, might become necessary tools to integrate into omics studies in order to
find the best FMT for OCD [286].

6. Conclusions

We presented a model where dysbiosis plays a pivotal role in the pathogenesis of
OCD. To validate this model, and to shed more light on the potential role of gut microbes
in the pathogenesis and treatment of OCD, more clinical studies are needed. Exploring
the gut microbiome as a target for intervention in OCD holds promise for several reasons.
Indeed, this is an opportunity to address the limitations of current treatments and poten-
tially improve treatment outcomes for individuals who experience resistance to current
approaches. In addition, the gut microbiome represents a modifiable factor that can be
influenced in various ways, including dietary interventions, probiotics/prebiotics, and
even fecal microbiota transplantation.

Although the use of probiotics and FMT in medicine has been used empirically for
centuries, it was only once research acknowledged the importance of the role of the gut
microbiota in health and diseases that clinical studies started developing its use. Most
studies have used Bifidobacteria, such as B. longum, B. breve, and B. infantis, and Lacto-
bacilli (L. helveticus and L. rhamnosus), with doses between 108 and 1010 colony-forming
units for about 4 weeks. These probiotics have shown efficacy in improving psychiatric
disorder-related behaviors including anxiety, depression, ASD, ADHD, and OCD.

However, research in this area is still in its early stages, and more studies are needed
to optimize the methods and assess the efficacy and safety of microbial reprogramming
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in OCD. Further investigation and clinical trials will pave the way for more personalized
and effective interventions for individuals with OCD, perhaps through the development of
disorder-specific probiotic mixtures, making microbiome therapeutics a significant part of
the precision medicine field.

Given the significant impact of OCD on individuals’ lives and the limited effectiveness
of current treatments, it is crucial that we urgently direct our efforts toward studying
the role of the gut microbiota in OCD. By bridging the knowledge gap and conducting
rigorous clinical interventions, we can uncover new insights into the pathogenesis of OCD
and develop innovative therapeutic strategies. These advancements have the potential to
revolutionize the field, offering hope and improved outcomes for individuals affected by
this debilitating disorder. We call upon the scientific community to prioritize and support
research in this vital area, as it represents a crucial step toward personalized and effective
interventions in OCD.
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