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Abstract: Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary
conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of
the founding member, MAST2, in 1993, three additional family members have been identified in
mammals and found to be broadly expressed across various tissues, including the brain, heart, lung,
liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular
basis of a wide range of different human diseases, including breast and liver cancer, myeloma,
inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports
on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would
explain their involvement in human diseases remain rather obscure. This review will summarize
data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context
of biomedical research as well as organismal model systems in order to provide a current profile of
this field.
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1. Introduction

Protein kinases belong to the second-largest protein superfamilies encoded by eukary-
otic genomes. The human genome encodes about 518 kinases, roughly half of which are
mapped to loci associated with genetically predisposed diseases and over 200 of which
are identified as mutated in cancer by the ‘Mutations of Kinases in Cancer’ (MoKCa)
database [1,2]. Protein kinases are key mediators in cellular signaling pathways and many
other cellular processes. Their function relies upon the transfer of a phosphoryl group onto
proteins to influence the structure, activity, stability, and/or localization of the respective
substrates. The catalytic activity of protein kinases resides within a highly conserved
kinase domain, which in eukaryotes ranges between 250 and 300 amino acids. The kinase
domain catalyzes a phosphorylation reaction by binding a substrate to its active center,
which transfers the phosphate in the gamma position of adenosine triphosphate (ATP) to
the hydroxyl group of serine/threonine (serine/threonine kinases) or tyrosine (tyrosine
kinases) side chains.

Most eukaryotic protein kinases can be grouped into seven superfamilies based on
the conservation of functional amino acid motifs and substrate specificities [1,3,4]. The
AGC protein kinase superfamily was first defined by Hanks and Hunter in 1995 as proteins
containing kinase domains most similar to PKA, PKG and PKC [4,5]. The superfamily
contains more than 10% of over 500 human kinases. A total of 42 of the AGC kinases are
modular proteins containing additional protein domains that are involved in regulating
the activity and localization of the kinase. The catalytic Ser/Thr kinase domain of AGC
kinases is composed of two lobes, which are linked through a hinge region [3,6,7]. All
14 AGC kinases whose structure has been solved adopt this bi-lobal kinase fold, where
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the beta-strand-based N-lobe and the alpha-helical C-lobe sandwich one molecule of ATP.
Interactions between a phosphorylated Ser in the C-terminal tail and positively charged
residues in the N-lobe stabilize the active conformation of the kinase domain [7,8]. The
N-lobe and the C-lobe surround the active site cleft, at which substrates interact with the
kinase domain [9,10].

Phospho-regulation through AGC kinases is vital, as exemplified by many disease-
associated mutations in genes encoding AGC kinases, pointing to the deregulation of these
kinases in various types of cancer and diabetes, as well as other inherited disorders [5].
Members of the AGC kinase family respond to various extracellular signals and are in-
volved in a range of well-characterized signaling pathways in which they phosphorylate
distinct protein substrates. Although many AGC kinases have been the focus of molecular
cell biology research to reveal their molecular mechanisms in diverse biological processes,
some groups within the AGC kinase superfamily, including the microtubule-associated
serine/threonine (MAST) kinases, remain poorly understood.

The first member of the MAST kinase family to be identified was MAST2 (originally
named MAST205). MAST kinases are modular proteins containing three evolutionary
conserved protein domains (Figure 1). The founding member, MAST2, was discovered
as a protein associated with the spermatid manchette in mouse testes and has been sug-
gested to play a role in sperm maturation [11,12]. Although the name suggests that MAST
kinases are directly associated with microtubules, a direct interaction of MAST kinases
with microtubules has not yet been demonstrated. In the case of the mouse spermatid, the
interaction of MAST2 with microtubules depended on microtubule-associated proteins
(MAPs) and required the kinase domain of MAST2, as well as a region comprising the PDZ
domain [11]. In this article, we will review the current literature on this family of protein
kinases with a special focus on structure and function, interacting proteins, involvement in
human diseases and emerging developmental model systems.
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large and Zonula occludens-1) and towards the N-terminus by a DUF (domain of 
unknown function) 1908 domain (Figure 1). The DUF1908 domain is a common feature of 
all MAST kinases; however, the function of this domain with respect to the activity of 
MAST kinases remains poorly understood. The DUF1908 domain (PFAM ID PF0826) is 
about 275 amino acids long, and within the human MAST kinases, this size differs only 
slightly. The predicted structure of the DUF1908 domain can be divided into an 
unstructured N-terminal half and a structured C-terminal half containing 8 alpha-helixes 
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Figure 1. Domain arrangement of human MAST kinases. This cartoon demonstrates the domain
composition and arrangement of the four family members of MAST kinases in humans. From N-
to C-terminus, the DUF 1908 domain is followed by the serine/threonine kinase domain (drawn
without its C-terminal extension) and the PDZ domain in the C-terminal half of the protein.

2. Domain Composition of MAST Kinases

Members of the MAST kinase family are modular proteins characterized by a con-
served domain composition and arrangement. The central Ser/Thr kinase domain is
flanked towards the C-terminal end by a PDZ domain (post-synaptic density protein, disc
large and Zonula occludens-1) and towards the N-terminus by a DUF (domain of unknown
function) 1908 domain (Figure 1). The DUF1908 domain is a common feature of all MAST
kinases; however, the function of this domain with respect to the activity of MAST kinases
remains poorly understood. The DUF1908 domain (PFAM ID PF0826) is about 275 amino
acids long, and within the human MAST kinases, this size differs only slightly. The pre-
dicted structure of the DUF1908 domain can be divided into an unstructured N-terminal
half and a structured C-terminal half containing 8 alpha-helixes (Figure 2). A striking
feature of the N-terminal domain of MAST kinases is the fact that their overall sequence
is highly enriched serine, tyrosine and threonine residues, which are potential targets for
posttranslational modifications including phosphorylation.
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http://www.pymol.org/pymol; accessed on 5 December 2022). Lower panel: Multiple amino acid 
sequence alignment of DUF1908 of MAST kinases in different species using MAFFT (Snapgen; GSL 
Biotec, San Diego, CA, USA). The helices are marked in red. Conserved amino acids are highlighted 
in gray and dark red, respectively. A threshold of 55% was chosen for consensus. The bars above 
the consensus sequence indicate the degree of conservation; the darker and higher the bar, the 
higher the conservation. The sequences and domain annotations of the proteins were obtained from 
InterPro [16]. 

The PDZ domains, in contrast to DUF1908, are well studied and occur in proteins of 
a variety of organisms such as bacteria, yeast, plants, and metazoans, including 
Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens [17]. PDZ domains are 
often found in multidomain proteins and contain 80–100 amino acids that are arranged in 
five beta strands and two alpha helices [18–20]. Within a given protein, single or several 

Figure 2. Primary sequence comparison and structural comparison of DUF1908 domains in selected
MAST kinases. Top panel: AlphaFold predicted 3D models of DUF1908 of MAST kinases in humans,
Drosophila (D.) melanogaster, Caenorhabditis (C.) elegans and Hydra (H.) vulgaris [13–15]. Alpha helices are
shown in red. The 3D structures were oriented and labeled using the PyMol software (Schrödinger,
L.; DeLano, W. PyMOL [Internet]. 2020. Available online: http://www.pymol.org/pymol; accessed
on 5 December 2022). Lower panel: Multiple amino acid sequence alignment of DUF1908 of MAST
kinases in different species using MAFFT (Snapgen; GSL Biotec, San Diego, CA, USA). The helices
are marked in red. Conserved amino acids are highlighted in gray and dark red, respectively. A
threshold of 55% was chosen for consensus. The bars above the consensus sequence indicate the
degree of conservation; the darker and higher the bar, the higher the conservation. The sequences
and domain annotations of the proteins were obtained from InterPro [16].

The PDZ domains, in contrast to DUF1908, are well studied and occur in proteins of a variety
of organisms such as bacteria, yeast, plants, and metazoans, including Caenorhabditis elegans,
Drosophila melanogaster and Homo sapiens [17]. PDZ domains are often found in multidomain
proteins and contain 80–100 amino acids that are arranged in five beta strands and two alpha
helices [18–20]. Within a given protein, single or several copies of PDZ domains can occur;
MAST kinases contain only one PDZ domain in the carboxy-terminal half of the protein
(Figure 3). PDZ domains are major hubs for protein-protein interactions, and their binding
specificity is often based upon conserved amino acid motifs at the very carboxy-terminus
of ligands [19]. PDZ domains can be divided into three classes based on their binding

http://www.pymol.org/pymol
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specificities. Class 1 PDZ domains recognize the binding motif X-S/T-X-V/I/L (where
X represents any amino acid). MAST2-PDZ is an example of this class, as it recognizes
this motif in its ligand PTEN [21]. Class 2 PDZ domains recognize a motif of four amino
acids, alternating between a hydrophobic and a variable amino acid, and the third class
recognizes the motif X-D/E-X-
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[22,23]. Another mode of binding allows the complexation
of PDZ domains with each other, thus causing PDZ-based dimerization, which occurs
mainly in proteins that have more than one PDZ domain [24,25]. Homodimer formation
was also observed for proteins with only one PDZ domain; notably, this mode of binding
was reported for MAST2-PDZ [21,22]. This self-association due to PDZ binding suggests
an influence of this domain on the regulation of MAST kinases through dimerization.
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Figure 3. Primary sequence comparison and structural comparison of PDZ domains in selected
MAST kinases. AlphaFold-predicted 3D models of PDZ domains of MAST kinases in humans,
Drosophila (D.) melanogaster, Caenorhabditis (C.) elegans, and Hydra (H.) vulgaris [13–15]. Alpha helices
are shown in red, and beta sheets in blue color. The 3D structures were oriented and labeled using
the PyMol software (Schrödinger, LLC, New York, NY, USA). The structure of all four human MAST
kinases was also solved experimentally (MAST1: https://doi.org/10.2210/pdb3ps4/pdb; MAST2:
https://doi.org/10.2210/pdb2kyl/pdb; MAST3: https://doi.org/10.2210/pdb3khf/pdb; MAST4:
https://doi.org/10.2210/pdb2w7r/pdb) (accessed on 14 July 2023). The structural models based
on AlphaFold and based on experimental data do not exhibit appreciable differences. Lower panel:
Multiple protein amino acid sequence alignment of PDZ domains of MAST kinases in different
species using MAFFT (Snapgen; GSL Biotec). For further detail see the legend of Figure 2.

The core domain of the MAST kinase family is a Ser/Thr kinase domain divided into
two subdomains. Since the MAST kinases belong to the AGC kinase family, the amino
acid sequences of the human MAST kinase domains show a high degree of conservation
compared to AGC kinases, for example, from 34% to 36% sequence identity and 54% to 59%
amino acid sequence similarity when comparing PKA, PKC and PKG (Figure 4). Moreover,
the catalytic domain of the MAST kinases shares with the AGC kinases all highly conserved
motifs such as DFG, APE and HRD, which are important for ATP binding and magnesium
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transfer and are therefore essential for kinase activity and activation [3–5]. However, there
is one exception, which is not found in other AGC kinases: the first glycine within the
conserved glycine-rich loop (GXGXXG), is replaced by a serine in MAST kinases [11]. This
exchange of glycine for a serine allows speculation about possible phosphorylation at
this site, which could influence the regulation of the kinase activity. The structure of the
modulatory C-terminal tail region of MAST kinases is also well conserved (Figure 5). The
comparison of the sequence of the C-terminal tail of the human MAST kinases with PKA
and PKG revealed a 42–57% amino acid similarity and 29–43% identity. In summary, the
overall structure of the MAST kinase domains exhibits a high degree of structural and
sequence conservation with other members of the AGC kinase family.
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3. Substrates and Interactors of MAST Kinases

A range of different MAST kinase-interacting proteins have been reported, some of
which represent potential substrates of MAST kinases (Table 1). MAST1, 2 and 3 were all
shown to bind to the lipid phosphatase PTEN (Phosphatase and Tensin homolog) [26,27].
PTEN is a key regulator of cell growth and cell survival, and as such, represents an im-
portant tumor suppressor in humans [28]. The interaction of PTEN with MAST2 was
shown to facilitate the phosphorylation of PTEN in vitro [26]. Phosphorylation of the
carboxy-terminal domain of PTEN reduces its activity and prevents PTEN from degrada-
tion, suggesting that MAST2 regulates PTEN activity and stability in vivo [29]. This MAST
kinase-dependent inhibition of PTEN activity was also observed in multiple myeloma
cell lines, where knockdown of MAST4 leads to reduced PTEN activity and increased
activity of proteins involved in the mTOR signaling pathway [30]. The PTEN/MAST2
interaction might also play an important role in neuronal homeostasis. In human neurob-
lastoma cells, complex formation of PTEN and MAST2 was reported to suppress neurite
outgrowth [31,32]. This mechanism also plays an important role during a rabies virus
infection, where the glycoprotein (G protein) of the rabies virus (RABV) competes with
PTEN to interact with MAST2 through its class 1 PDZ binding site [21,33].

Another MAST kinase binding partner and potential substrate is the Na+/H+ ex-
changer NHE3 [34]. NHE3 is a major Na+/H+ exchanger that functions in the apical
membrane domain of renal and intestinal epithelial cells, in particular in the renal proximal
tubules [35]. The interaction of MAST2 with NHE3 requires the PDZ domain of MAST2.
Co-expression of MAST2 and NHE3 in opossum kidney cells caused an inhibition of pH
recovery, suggesting that MAST2 inhibits NHE3’s ion transport function. The mechanism
of this regulation might involve the phosphorylation of NHE3 by MAST2 [34].

The earliest studies on MAST kinases suggested that these proteins are part of large
multi-protein complexes and that MAST2 presumably binds to MAPs [11]. In addition
to PTEN and NHE3, many other proteins have been reported to interact with MAST
kinases (Table 1). MAST1 has been found to bind β2-syntrophin, a component of the
dystrophin/utrophin network within the plasma membrane cortex at neuromuscular
synapses [36]. The interaction of MAST1 and β2-syntrophin involves the PDZ domains of
both proteins, and it was proposed that MAST kinases might link the dystrophin complex
via β2-syntrophin with the microtubule network. Additionally, protocadherin LKC (ex-
pressed in liver, kidney and colon tissues) (PCLKC) protein was reported to bind MAST2
through its PDZ domain [37]. The interaction of MAST2 with PCLKC resembles a canonical
interaction between the PDZ domain of MAST2 and a carboxy-terminal PDZ-binding motif
in PCLKC. Interestingly, this member of the atypical cadherin superfamily acts as a tumor
suppressor by inducing contact inhibition in epithelial cells and is frequently lost in cancer
cells [37].

Proteins involved in immune responses have been found to interact with MAST2,
including TRAF6, a component of the NF-κB pathway [38]. The interaction with TRAF6
is dependent on the amino-terminal region of MAST2 and is presumed to function in the
regulation of immune responses. In this context, it is interesting that the induction of
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proinflammatory cytokines, including interleukin 12 (Il12) by LPS involves MAST2 [38,39].
Xiong and colleagues (2004) proposed that the association of MAST2 with TRAF6 might
result in the inhibition of TRAF6-dependent NF-κB activation. Signaling through NF-
κB controls gene transcription in response to extracellular signals, which in turn affects
important cellular functions, in particular during immune responses and inflammation, and
its incorrect regulation has been linked to many human diseases (see below). A potential
role for MAST3 in inflammatory bowel disease may be explained by the misregulation of
the same pathway [40]. However, the details of how MAST2 affects the activity of TRAF6,
or PCLKC function, remain to be resolved.

Analyses of the phosphoproteome of 14-3-3 revealed that MAST2 directly interacts
with 14-3-3 proteins in a phosphorylation-dependent manner [41]. 14-3-3 proteins are
ubiquitously expressed in eukaryotic organisms and display a plethora of interacting
proteins that are involved in numerous biological processes [42]. There are 7 isoforms
found in humans: β, γ, ε, ζ, η, θ and σ [43]. However, direct interaction between MAST2
and 14-3-3 has been demonstrated by Western assays using an antibody binding to the
N terminus of 14-3-3 β, and it remains currently unclear whether the other isoforms also
interact directly with MAST2.

Table 1. MAST kinase interacting proteins *.

MASTK Interactor Phosphosite 1 Interaction Domain 2 References

MAST1 USP1 - PDZ [44]

MAST1 Cdh1 - PDZ [44]

MAST1 CHIP - K317, K545 [45]

MAST1 MEK S221 - [46]

MAST1 c-Raf - - [46]

MAST1 HSP90 - - [45]

MAST1
MAST2 SNTB2 - PDZ [36]

MAST1
MAST2
MAST3

PTEN C-term. PDZ [26]

MAST1
MAST2

MAPs
MAPs - KD + aa 948–1212 [11,47]

MAST2 TRAF6 - N-term. [38]

MAST2 RABV-G - PDZ [21]

MAST2 CFTR - PDZ [48]

MAST2 NHE3 n.d. PDZ [34]

MAST2 PCLKC - PDZ [37]

MAST2 14-3-3 - - [41]

MAST3 ARPP-16 S46 - [49]

MAST4 Sox9 S494 - [50]
* The table summarizes published interactions of MAST kinases with other proteins. Where known, the phospho-
rylation site (Phosphosite) 1, if the interactor was identified as a substrate, and the interaction site 2 within MAST
kinases are listed. An empty field (“-”) indicates that a phosphorylation site or interaction domain has not been
described. MASTK = MAST kinase; KD = kinase domain; n.d. = not determined.

A well-confirmed substrate of MAST3 is ARPP-16 (cAMP-regulated phosphoprotein
of molecular weight 16 kDa), an alternatively spliced variant of ARPP-19 [49]. ARPP-16 and
ARPP-19 proteins represent cAMP-regulated phosphoproteins, as they are substrates of
PKA and highly expressed in the medium spiny neurons in the striatum of the brain [51–53].
MAST3 is part of a complex in which it competes with PKA for the ARPP16-dependent
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regulation of protein phosphatase 2A (PP2A) in the striatum. PP2A activity is inhibited by
the phosphorylation of serine 46 of ARPP-16 by MAST3 [49,54]. In contrast, the phosphory-
lation of serine 88 in ARPP-16 by PKA leads to a decreased phosphorylation of serine 46
and prevents the inhibition of PP2A [52]. Moreover, MAST3 is regulated by PKA through
phosphorylation at threonine 389 [54]. In summary, these results demonstrate the important
role of MAST3 in the regulation of PP2A in neuronal cells.

MAST kinases have also been reported to interfere with transcriptional regulation.
Sox9 belongs to the family of high-mobility group domain transcription factors and is
an important regulator in the differentiation of mesenchymal stromal cells into chondro-
cytes [55–57]. In this system, MAST4 acts as a negative regulator, as by phosphorylating
Sox9 at serine 494, Sox9 is targeted for degradation through the proteasome. This MAST4-
dependent degradation of Sox9 suggests an essential role for MAST4 in the differentiation
of mesenchymal stromal cells [50]. The ETS transcription factor family member ERM
(Ets-related molecule) is one essential component of the gene regulatory network in sper-
matogonial stem cell self-renewal, and it is controlled by the fibroblast growth factor (FGF) 2.
Phosphorylation of ERM by MAST4 at serine 367 enhances the transcription of ERM-target
genes, suggesting that MAST4, together with the FGF2 signaling pathway, is involved in
spermatogonial stem cell self-renewal by regulating the transcription factor ERM [58].

4. MAST Kinases in Human Disease

As discussed in the previous section, members of the MAST kinase family interact
with a large variety of distinct binding partners, which may act as potential regulators
or substrates. In mice, the genes encoding MAST kinases are widely expressed across
various tissues such as the brain, heart, spleen, lung, liver, skeletal muscle, kidney and
testis, suggesting a large diversity of functions [59]. Consistent with their broad expression
patterns, malfunctions of MAST kinases are implicated in a wide range of human diseases
affecting distinct tissues and organs, including breast cancer, inflammatory bowel disease,
neuronal disorders and cystic fibrosis (Table 2) [21,31,33,34,40,48,60–63].

4.1. Association of MAST Kinase Mutations in Cancer

Somatic alterations in the genes for MAST1 and MAST2 were discovered and charac-
terized in material obtained from breast cancer samples [60,64]. An increased risk for breast
cancer was also reported to be associated with nine SNPs (single nucleotide polymorphism)
found in MAST2 [61]. On the molecular level, three types of gene fusions were found for the
MAST1 gene (with ZNF700, with taDA2A, and with NFIX) and two types were discovered
in the case of the MAST2 gene (with ARIDA1a and GPBP1L1) in different transcriptomes
from breast cancer samples and breast cancer-derived cell lines [60]. Overexpression of
these fused gene products lead to enhanced proliferation in a benign breast cell line and
RNAi-mediated knockdown of MAST2 in a cancer cell line with MAST2 gene fusions
led to reduced growth and reduced tumor formation in mice xenografts. Together, these
studies implicate the MAST1 and MAST2 gene fusions in the development of invasive
breast carcinomas.

Alterations in MAST kinase gene expression have been revealed as a major feature
of the relationship of this family of protein kinases with cancer. MAST2 was identified
in a screen for pro-survival factors in a cDNA library of a glioblastoma cell line. Further
studies showed that MAST2 overexpression promotes cell survival and cell growth, and the
knock-down of MAST2 led to reduced tumor growth in a xenograft tumor mouse model,
supporting a role of MAST2 in tumor progression that is characteristic of an oncogene [65].
Altered RNA levels of MAST kinases are associated with liver cancers and circular MAST1
RNA is upregulated in hepatocellular carcinoma and may serve as a diagnostic marker [66].
MAST2 mRNA is upregulated in liver cancer and expands the diagnostic spectrum of
the disease [67]. MAST1, MAST2 and MAST3 were all found to bind to the crucial tumor
suppressor Adenomatous polyposis coli (APC); however, the functional significance of this
interaction has yet to be investigated [68].
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MAST4 was identified as an estrogen response gene that was upregulated in female
patients with multiple myeloma (MM) associated with low osteolytic lesions [69]. A recent
investigation confirmed this association and revealed a mechanistic insight into the role of
MAST4 in MM [30]. MM can be accompanied by characteristic lytic bone lesions derived
from malignant plasma cells accumulating in the bone marrow, a syndrome called MM
bone disease (MMBD). Estrogen levels are correlated with the extent of the disease, raising
the hypothesis that estrogen may enhance the severity of myeloma. The search for estrogen
response genes revealed, among others, MAST4. The study further showed that MAST4
is a negative regulator of MMBD and that the levels of MAST4 in MM cells negatively
correlate with the severity of MMBD; high estrogen pathway activation levels correlated
with high levels of MAST4 [30]. Pathway analyses suggested that MAST4 regulates the
PI3-Kinase and mTOR pathways and that MAST4 colocalizes and co-immunoprecipitates
with PTEN in MM cells. MAST4 knockdown resulted in an upregulation of Pi3-Kinase and
mTOR signaling. Furthermore, the MAST4 gene harbors an estrogen receptor-responsive
element in the enhancer of the gene, providing further evidence that MAST4 is indeed a
target of estrogen receptor transcriptional activity.

Since the MAST kinases are known to be associated with different cancer types, further
studies addressed the biological role of these kinases and identified MAST1 as a key regula-
tor for cisplatin resistance in human cancer cells. Cisplatin is one of the most commonly
used chemotherapeutic agents, as it blocks cell proliferation by inhibiting DNA replica-
tion [70]. A major complication of cisplatin chemotherapy is the upregulation of the ERK
mitogen-activated protein kinase (MAPK) cascade, which contributes to cisplatin resistance
by inhibiting cisplatin-induced apoptosis [71]. MAST1 was found to form a complex with
components of the ERK pathway, including MEK1 and its upstream kinase, cRaf. Cisplatin
interferes with this complex formation and causes the dissociation of cRaf but not MAST1,
which then activates MEK1 by phosphorylation at serine 221 [46,72]. The regulation of
MAST1 is based on the heat shock protein 90 (hsp90) and the E3 ubiquitin ligase CHIP.
The direct binding between MAST1 and hsp90 increases the stabilization of MAST1, as
the ubiquitination of lysines 317 and 545 of MAST1 by CHIP is inhibited [45]. A recent
study revealed that the stability of MAST1 is also enhanced by the deubiquitinase USP1 in
cisplatin-resistant cancer cells [44]. Together, these findings suggest that Hsp90, MAST1
and USP1 may be excellent targets for cisplatin-resistant cancer cells, as their inhibition will
enhance cisplatin sensitivity and result in increased cell death. The negative side effects of
cisplatin-based chemotherapy are also associated with increased inflammatory responses,
which can be ameliorated by glucosteroid receptor (GR) agonists. A recent study found that
MAST1 transcription is upregulated through GR activation and thus mediates resistance
through the aforementioned reprogramming of the ERK pathway [73].

4.2. MAST Kinases in Neuronal Diseases

Rabies infections are deleterious viral infections of the brain. MAST1 and MAST2 were
shown to interact with the glycoprotein of the virulent rabies virus in infected cells, and
the binding was shown to inhibit normal MAST2 localization to apical membranes [33,63].
An interaction between the PDZ domain of MAST2 and the C-terminal residues of the
glycoprotein of the rabies virus was required for the survival of infected neuronal cells, a
signature of virulence [33,63]. Rabies virus glycoprotein was reported to disrupt interaction
between PTEN and MAST2 [21]. PTEN was shown to bind to the PDZ domains of MAST1,
MAST2 and MAST3, and phosphorylation of PTEN in vitro by MAST2 indicates that PTEN
may be a substrate of MAST kinases [26]. The PDZ domain of MAST2 binds both PTEN
and glycoprotein with similar affinity, and the viral glycoprotein disrupts the interaction
of MAST2 with PTEN. The presence of glycoprotein decreased the nuclear localization of
PTEN, which results in increased neuronal survival after infection with the rabies virus [21].
Therefore, the MAST kinases may be an important regulator of PTEN localization and
activity in neuronal cells.
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The aforementioned interaction between MAST2 and PTEN inhibits PTEN function
by preventing neuronal outgrowth and regeneration. This mechanism might explain the
enhanced neuronal survival following rabies virus infection. In support of this idea, an
RNAi screen designed to identify protein kinases that regulate growth cone collapse, neurite
retraction and neurite outgrowth showed that RNAi knockdown of MAST2 promotes
neurite outgrowth and inhibits (lipopolysaccharide (LPS)-induced) neurite retraction in
rat primary midbrain neurons [31]. Therefore, an overall function of MAST2 might be to
control PTEN localization and activity in the nervous system, suggesting that the MAST
kinases are involved in regulating processes that are often disrupted in neuronal disorders.

Both MAST1 and MAST2 have been found to interact with β2-syntrophin, coupling
MAST2 via its PDZ domain to the dystrophin/utrophin network at the neuromuscular
junction (NMJ) [36]. The NMJ and neuronal postsynaptic densities are composed of
receptors, receptor clustering elements, cytoskeletal components and signal transduction
molecules. The interaction between β2-syntrophin and MAST2 may function to link the
dystrophin and utrophin networks to cellular signaling pathways.

4.3. MAST Kinases in Cystic Fibrosis and Diarrhea

MAST kinases are also linked to cystic fibrosis and secretory diarrhea. MAST2 was
shown to form a complex with the key factor associated with cystic fibrosis, the cystic
fibrosis transmembrane conductance regulator (CFTR) [48]. CFTR represents the arguably
best-known anion channel specific for the transport of chloride (Cl–) and bicarbonate
(HCO3

–) through the apical membranes in most, if not all, epithelia-producing mucus, in-
cluding the lung and intestine. CFTR interacts with several proteins, including PDZ domain
proteins, which CFTR binds through its conserved C-terminal PDZ-binding motif [74–78].
The PDZ-based interactions of CFTR with PDZ-domain proteins play important roles in
the biosynthesis and membrane transport of the protein [79,80]. The Golgi-associated PDZ
protein CFTR-associated ligand (CAL) regulates the cell surface levels of CFTR and can
promote lysosomal degradation of CFTR [81,82]. The binding between CFTR and CAL is
sensitive to competitive binding to other PDZ domain proteins, including MAST2; indeed,
high levels of MAST2 expression have been shown to increase CFTR surface levels, while
knock-down of MAST2 inhibits CFTR function [48].

Besides its functional importance in cystic fibrosis, CFTR also represents a major
chloride and hydrogen carbonate ion channel in the intestinal mucosa to control ion and pH
homeostasis in the gut [78]. In addition, MAST2 also binds to and phosphorylates another
important intestinal ion channel, the Na+/H+ exchanger NHE3 [34]. The phosphorylation
by MAST2 was shown to inhibit NHE3 activity. NHE3 is important to maintain normal
gastrointestinal physiology and its malfunction leads to impaired absorption and can
increase the fluidity of diarrhea [48]. The results, which show that MAST2 regulates NHE3
as well as CFTR function suggest MAST2 as a potential cross-regulator that can assemble
both channels and maybe other proteins into a macromolecular complex, thereby increasing
its impact on intestinal physiology.

4.4. MAST Kinases in Male Fertility

Since MAST2 was the first of the MAST kinases to be discovered in the testis in mice,
it was not surprising that MAST2 was reported to be associated with infertility in hu-
mans [11,12]. A study that suggested recurrent copy number variations as the cause of
idiopathic nonobstructive azoospermia showed that, among other copy number variations,
the presence of duplication of MAST2 is a risk factor for this severe form of male infertil-
ity [83]. Besides MAST2, MAST4 is associated with spermatogenesis in mice as it controls
the self-renewal of spermatogonial stem cells by phosphorylating the transcription factor
ERM. Knockout of MAST4 results in a reduced sperm number and the typical phenotype
of SCO (Sertoli cell-only syndrome), which represents a form of male infertility [58].
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4.5. MAST Kinases in Inflammation

Both MAST2 and MAST3 were associated with mechanisms that are required for
NF-κB activity. MAST3 was found to be a factor in inflammatory bowel disease (IBD)
tissues to increase Toll-like receptor (TLR) 4-dependent NF-κB activity and knock-down of
MAST3 resulted in reduced NF-κB activity [40]. A follow-up study reported that MAST3
acts on the NF-κB pathway by changing the expression of several genes in the gut of IBD
patients and might thereby trigger immune reactions [62]. However, the direct target of
MAST3 in this process remains to be determined. Nevertheless, these studies highlight the
potential involvement of MAST3 in the pathogenesis of IBD.

In B-cells, the expression of MAST2 was shown to be under the control of the class II
MHCII transactivator, a key regulator of the MHCII response [84]. Furthermore, MAST2
regulates LPS-induced NF-κB regulation by forming a complex with TRAF6 (TNF receptor-
associated factor 6), which results in NF-κB inhibition and a reduction of inflammatory
responses [38,39]. Thus, MAST2 and MAST3 might have opposite effects on NF-κB reg-
ulation depending on different stimuli: MAST2 exhibits an inhibitory influence in LPS-
dependent NF-κB regulation, while MAST3 may be enhancing NF-κB target activation in
TLR4-dependent NF-κB regulation.

Table 2. Overview of MAST Kinase-associated human diseases **.

Disease Subgroup 1 MASTK Disease 2 Cause 3 References

Infertility MAST2 Nonobstructive azoospermia Gene Duplication [83]

Cancer MAST4

Multiple myeloma bone disease Overexpressed [30]

Acral melanoma Various deleterious
mutations [85]

Ductal carcinoma
in-situ

Invasive breast cancer
Upregulated [86]

MAST3 Prostate cancer Gene conversion [87]

MAST2 Cutaneous melanoma Translocation [88]

MAST2
Esophageal cancer
Pancreatic cancer

Sarcomas
Overexpressed [65]

MAST2 Liver cancer Overexpression [67]

MAST2 Chronic myeloid
leukemia

Insertion of exon 8 in a
BCR-ABL1
fusion gene

[89]

MAST2 Breast cancer Translocation [64]

MAST2
Breast cancer Gene fusion [60]

MAST1

MAST1 Breast cancer High levels of DNA
methylation [90]

MAST1 Non-small-cell lung cancer Upregulated [91]

MAST1 Pheochromocytoma,
paraganglioma

Overexpression by
hypomethylation [92]

MAST1 Hepatocellular
carcinoma Upregulated circRNA [66]

MAST1 Uterine corpus endometrial
carcinoma Upregulated [93]
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Table 2. Cont.

Disease Subgroup 1 MASTK Disease 2 Cause 3 References

MAST1 Lung cancer
S81Y

C291F
V316E

[94]

Cardiovascular
Diseases MAST2 Venous thrombosis R89Q [95]

Neuronal diseases MAST3 Developmental and
epileptic encephalopathy

S101F
S104L
G515S
L516P

[96]

MAST3 Developmental and
epileptic encephalopathy

G510S
G515S [97]

MAST4
Juvenile myoclonic epilepsy

(JME) T347M
[98]

Childhood absence epilepsy P1201R

MAST1
Intellectual disability, speech

delay, hypotonia, facial
dysmorphism, autism

S93L [99]

MAST1 Cerebral palsy,
intellectual disability P500L [100]

MAST1 Intellectual disability P1177R [101]

MAST1
Neurologic abnormalities,
developmental disability,

mental retardation
Deletion [102]

MAST1 Intellectual disability L1180R [103]

MAST1 Congenital bilateral
Perisylvian syndrome Deletion of Q223 to D230 [104]

MAST1

Mega-corpus-callosum
syndrome with cortical
malformations without

cerebellar
Hypoplasia

G522E [105]

MAST1

Mega-corpus-callosum
syndrome with cerebellar

hypoplasia and
cortical malformations

L278del
E194del
K276del
G517S

E697del

[47]

Inflammatory bowel
disease MAST3 Crohn’s disease (CD) and

ulcerative colitis (UC) S861G [40]

Others MAST4 Asthma (horses) Overexpressed [106]

MAST3 Hepatic steatosis Intronic variant [107]

MAST3 Rheumatoid arthritis Overexpressed in
fibroblast-like synovial cells [108]

MAST2 Type 2 diabetes
mellitus A1463T [39]

MAST2 Rabies infection

Viral glycoprotein prevents
complex formation

(MAST2-PDZ and PTEN) and
promotes neuronal survival

[21,33,63,109,110]

** The table summarizes human diseases associated with MAST kinases (MASTK). Diseases were assembled into
subgroups 1 and the exact disease 2 name and its cause 3 are indicated.
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5. MAST Kinases in Model Organisms

The human MAST kinases exhibit a remarkably conserved modular domain composi-
tion and arrangement (Figure 1). Using BLAST search analyses, homologs of MAST kinases
were found in organisms of the metazoan kingdom. BLAST searches against annotated
proteins demonstrate a high degree of amino acid sequence conservation of the MAST
kinase domain in vertebrates, insects, nematodes and simple metazoans (Figure 6). All
MAST kinase homologs identified in this survey encode proteins with one DUF1908, one
Ser/Thr kinase domain and one PDZ domain as identified using the domain detection
tool SMART [111,112]. Interestingly, in both exemplar nematodes (Caenorhabditis elegans,
Ascaris suum) the DUF1908 domain is split into two subdomains. This split of the DUF1908
domain was not found in any other class than nematodes. It is also noticeable that due to
evolutionary gene duplication, higher-evolved species such as humans, mice, and frogs
possess four MAST kinases, while simpler species such as insects, nematodes, and simple
metazoans comprise only one MAST kinase. Since the overall domain composition and
structure are highly conserved and the human genome encodes four MAST kinases, model
organisms provide simple and genetically tractable experimental systems to investigate the
molecular mechanisms of MAST kinase function in vivo.
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Figure 6. Phylogenetic analyses of MAST kinases. Maximum likelihood phylogenetic tree showing
the relation of MAST, MAST-like and putative MAST kinases with similar protein domain archi-
tecture from simple organisms like Trichoplax adhaerens, Hydra vulgaris to higher organisms such as
Homo sapiens and Mus musculus. The protein domain annotations were identified by SMART [113]
and the alignment was performed by using MAFFT version 7 [114] and RAxML was used for phylo-
genetic analysis [115]. All bootstrap values are shown, and the tree image was drawn using the iTOL
web server [111,112].

Mice serve as excellent model systems to examine the effect of human disease-related
mutations within genes encoding human MAST kinases and to analyze their impact on
the activity, regulation and localization of the kinase. MAST kinases are broadly expressed
in the central nervous system [59]. Mutations in human MAST1 are associated with the
mega-corpus-callosum syndrome, which includes cerebellar hypoplasia and cortical mal-
formations in humans. One of these mutations, deletion of Lysine 278 (L278del), was
introduced into a transgenic mouse line [47]. In heterozygous animals, an increase in the
apoptosis of neurons and an enlarged corpus callosum were observed. The L278del in
MAST1 was associated with reduced protein levels of the MAST2 and MAST3 kinases,
suggesting that the regulation of MAST kinases may be regulated by interdependent mech-
anisms. Interestingly, the deletion of the MAST1 gene in mice is viable, suggesting that
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MAST1 either is not essential or the other members of the MAST kinases may compensate
for the lack of MAST1 [47]. In support of the latter idea, it was reported that the individual
deletion of either MAST kinase gene is not lethal but rather leads to distinct phenotypes.
For example, the knockdown of MAST1 results in a decreased heart weight; the knockout
of MAST2 causes an increased bone density and bone mineral content, and mice where
MAST3 is deleted display behavioral problems resulting in hyperactivity as well as de-
veloping a cataract and increased circulating alkaline phosphatase level [116]. Mice with
a truncated MAST4 kinase (E726stop) show a craniofacial phenotype caused by dental
malocclusions [117] and complete knockdown of MAST 4 is associated with an osteoporosis
phenotype [50]. In addition, the knockdown of MAST4 reveals its role in spermatogenesis
as it leads to decreased testes size and sperm number and the typical phenotype of Sertoli
cell-only syndrome (SCO) [58].

In simpler model organisms such as nematodes (Caenorhabditis elegans) or insects
(Drosophila melanogaster), the MAST kinases are expressed by a single gene. This is an
advantage, as mutations cannot be compensated for by other MAST kinase family members
in the genome. In C. elegans, the MAST kinase homolog KIN-4 is involved in the control of
thermotaxis in conjunction with the stomatin homolog MEC-2 [118] and the diacylglycerol
kinase DGK-1 [119,120]. In this system, the roles of KIN-4, DGK-1 and MEC-2 regulate
presynaptic mechanisms, which control the release of neurotransmitters at the synapse
of thermosensory neurons [121]. The C. elegans Kin-4 has also been shown to be required
for longevity through a mechanism involving binding of PTEN and its contribution to
the insulin/IGF-1 signaling pathway in the regulation of lifespan [122]. It is interesting
to note that PTEN is also a known interaction partner of human MAST kinases; how-
ever, an association between human MAST kinases and the regulation of lifespan is yet
unknown [26].

In the genetic model organism Drosophila melanogaster, a single MAST kinase homolog
was identified as a recessive female sterile mutation called drop out (dop) [123,124]. Fe-
males homozygous for the mutant dop1 allele lay eggs, but the embryos exhibit severe
morphogenetic defects early in embryogenesis. The developmental stage at which dop
mutant embryos become abnormal is called cellularization, a process that transforms the
syncytial blastoderm into a polarized blastoderm epithelium [125,126]. The phenotype of
dop mutant embryos includes severely reduced membrane growth and a dropping of the
nuclei out of the cortical cytoplasm, and most embryos fail to undergo gastrulation and
further development [124]. The analyses of the cell biological role of dop in cellularization
revealed that the membrane growth defect is associated with the mislocalization of sev-
eral membrane proteins that are essential for the assembly of membrane cortex domains
during cellularization [126,127]. These proteins include the apical scaffold protein and
Par-3 homolog Bazooka (Baz) and the adherens junction protein E-cadherin [123]. Another
membrane subdomain, the furrow channel marked by Slam, the small GTPase Rho1 and
the scaffold protein dPatJ exhibited an overlap with a lateral membrane marker Discs large
(Dlg) suggesting a requirement of Dop for compartmentalization of the plasma-membrane
associated cortex [123]. Interestingly, all known phenotypes of dop mutants share the
common feature that the defects can be linked to impaired dynein-dependent transport
along microtubules. This includes the apical transport of lipid droplets in the embryo,
the apical transport of ribonucleoprotein particles, the apical transport of Baz and the
apical transport of Golgi-derived membrane reservoirs that fuel membrane growth in
cellularization [123,128–130]. Genetic and biochemical studies revealed that Dop possibly
regulates the dynein complex by phosphorylating the dynein intermediate chain (Dic) [123].
A domain function analysis in flies suggests that the DUF1908 and the PDZ domains might
have regulatory functions, and further studies should reveal how the kinase activity of the
fly MAST kinase homolog is controlled in embryogenesis, which may reveal important
general properties of MAST kinase regulation in general.
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6. Conclusions and Outlook

MAST kinases are involved in an increasing number of diverse biological processes
ranging from acute and chronic human diseases to stem cell maintenance and longevity.
The modular structure of MAST kinases enables interaction with many distinct proteins, fa-
cilitating substrate recognition and binding and bearing the potential for regulatory inputs.
In several instances, competitive interactions appear as a theme in the pathophysiological
aspects of MAST kinases. Within the past 10 years, the first defined molecular mechanisms
that link MAST kinase function to a particular protein substrate phosphorylation event that
causes specific biological responses have emerged. More detailed mechanistic studies in
human diseases, including the use of model organisms, are likely to reveal MAST kinase
interactors and substrates that play crucial roles in various signaling pathways regulating
distinct cellular functionalities.
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