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Abstract: Infectious diseases are constantly evolving to bypass antibiotics or create resistance against
them. There is a piercing alarm for the need to improve the design of new effective antimicrobial
agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity.
This would guard public health in combating and overcoming stubborn pathogens and mitigate
incurable diseases; however, the emergence of antimicrobial peptides’ shortcomings ranging from
untimely degradation by enzymes to difficulty in the design against specific targets is a major
bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in
antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices,
synthesis and characterization, their doping and coating, and the shortfall of these approaches. This
review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical
and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The
knowledge from this development would guide the future design of these novel peptides and allow
the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment
regimens in patients to enable them to have accommodating lifestyles.

Keywords: antimicrobial peptides; doping; coating; synthesis; characterization; broad-spectrum

1. Introduction

Antimicrobial peptides (AMPs) are small peptides that are highly ubiquitous and
inhibit a wide range of bacteria, fungi, parasites, and viruses and have curative effects on
cancer and other diseases [1]. These AMPs have been developed using preclinical and
clinical strategies employing computational and experimental tools [2]. They are generally
classified as antiviral, antibacterial, anti-inflammatory, antifungal, antiparasitic, and an-
titumor peptides. AMPs possess clear and compensatory advantages over conventional
antibiotics such as slower occurrence of resistance, broad-spectrum antibiofilm functions,
and the ability to regulate host immune systems [3]. The broad-spectrum function of
AMP offers promising antimicrobial activities which would expand knowledge about the
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evolution of antimicrobial resistance. Systematic and comprehensive research has been con-
ducted on AMPs’ classification, design methods, mechanism of action, and environmental
factors affecting their activities; however, their delivery into tissues, cytotoxicity, and the
bane of antimicrobial resistance remain elusive.

Multi-drug-resistant pathogens have constantly developed new strategies to bypass
the immune system due to evolution, genetic plasticity, and mutational adaptation [4].
These “bypass” factors trigger specific responses for the pathogens to acquire genetic
material or alter gene expression to produce resistance to almost all antibiotics in clinical
practices [5]. The incidence of resistant pathogens is a major public health concern affecting
the global population of humans because of the high mortality associated with them and
the economic burden of multi-million dollars for developing sensitive molecules against
them [6]. Therefore, the understanding of the biochemical and genetic basis of resistance
would allow the development of novel molecules capable of little or no resistance by these
multi-drug resistant pathogens. AMPs underscore the molecular design of molecules
incapable of being resisted by pathogens due to their selective design and broad-spectrum
activities [7]. Therefore, the emergence and popularity of AMPs in the revolution of
medicine for complex medical approaches such as routine administration and its orthodox
acceptance for commercialization and treating resistant pathogens is not surprising.

The delivery and formulation of AMPs have been reviewed comprehensively based
on the interaction between AMPs and the host in the area of interaction and conjugation
or modification [8]. Compared with small molecule antibiotics, which have undergone
a century of development, peptide drugs have seen success only recently in the area
of delivery and formulation. The formulation and delivery of AMPs are considered as
important as the discovery of new AMP sequences [9]. The chemical structures of the
AMPs can be modified to accommodate their deliverability [10]. Modifications have been
done to enhance delivery through formulation systems such as encapsulation inside porous
materials, attachment to the surface of materials, self-assembly, covalent conjugations,
targeted delivery, and responsive release [11]. These delivery and formulation strategies,
if not done properly, are technical hurdles such that clinical applications are not effective,
largely due to the limitation of the stability and bioavailability of peptides.

Successful transfer of antimicrobial peptides from laboratory experiments to clinical
practice for safe pharmacological formulations is a great property towards mitigating their
cytotoxicity [2]. Cytotoxicity relates to the ability of a compound to exert a toxic effect on
cells, or more specifically on human cells [12]. Antimicrobials are a family of medications
that are particularly problematic in terms of cytotoxicity because their main function is to
ultimately cause microbial cell death [13]. For instance, some antimicrobial peptides may
be beneficial for preventing infected wounds at lower antimicrobially active concentrations;
yet, at greater concentrations, they may demonstrate cytotoxicity that may negatively
impact wound healing [14]. The development of antimicrobials in the future will therefore
require cytotoxic profiling.

The present review aims to elucidate the recent advances of AMPs with high selectivity
indices in terms of their delivery system, knowledge of the roles, cytotoxicity, and advances
in the era of antibiotic resistance. These would help with the development of toxicity profiles
of the AMPs to evaluate their relative activity against the cells of eukaryotic, mammalian,
and human hosts, as well as their prospective usage in medical device applications. The
awareness from this review would also reduce the risk of failure after validation from
clinical trials. Although there is a low possibility that antibiotics will be discontinued
during the development stage due to toxicity issues, withdrawals have still happened
after clinical approval, leading to patient morbidity, death, and financial loss. For instance,
temafloxacin was approved as an antibiotic in 1992 but was removed from the market
six months later due to toxicity linked to hemolytic anemia, coagulation issues, and liver
and kidney impairment [15]. The knowledge from this review would provide alternative
antibiotics in AMP designs for sensitive treatment regimens and establish the best means
to utilize and deliver them into tissues for precision medicine.
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1.1. Antimicrobial Peptide Synthesis and Characterization

AMPs play an important role in innate immunity in many species, serving as a first line
of defense against invading pathogens [16]. There is growing interest in the development
of AMPs as novel antimicrobial agents, due to their high specificity, low toxicity, and
their compensatory advantage over antibiotics in the area of microbial resistance. AMPs
are typically synthesized via solid-phase peptide synthesis (SPPS), a method developed
by Bruce Merrifield in the 1960s [17]. SPPS involves the stepwise addition of amino acid
building blocks to a resin-bound peptide chain, followed by cleavage of the peptide from the
resin and purification by HPLC or other chromatography methods. One of the challenges
in the synthesis of AMPs using this method is that many of these peptides contain amino
acids, such as cysteine, tryptophan, and arginine, that can be difficult to incorporate using
standard SPPS protocols [18]. Specialized protecting groups and coupling reagents may be
required to overcome these challenges.

Another method employed in the synthesis of AMPs is the biological method which
is very efficient and involves the use of recombinant techniques to produce them [19].
This method has been used to produce a 30–50 amino acid residue AMP such as defensin.
However, this process has been found to have many drawbacks, including low production
yields, an inability to remove the source’s inherent toxicity, and a failure to incorporate
non-biological components. To address these issues, such peptides have been fused with
thioredoxin, chloroplast expression systems, and other cell vectors [20]. This prevents cell
lysis and promotes the creation of disulfide bonds. Another method for producing AMPs
is known as enzymatic hydrolysis, which entails using one or more enzymes to hydrolyze
a particular protein to produce short peptide sequences in the form of hydrolysates [21].
These peptides with antibacterial characteristics were created by hydrolyzing the protein
found in Salvia hispanica seeds using alcalase and flavorzyme. Another approach is called
“microbial fermentation”, which entails hydrolyzing a target protein using an enzyme
secreted by a microbe to separate proteins into peptides for antimicrobial screening analysis.
Because it is simpler to scale up and is more predictable within a short reaction time,
enzymatic hydrolysis is preferred to the use of microorganisms to carry out the hydrolyzing
process steps known as microbial fermentation [22].

Once synthesized, AMPs are typically characterized using a variety of techniques, in-
cluding mass spectrometry, high-performance liquid chromatography (HPLC), and circular
dichroism (CD) spectroscopy [23]. Mass spectrometry is a powerful tool for confirming
the identity and purity of synthetic peptides, as well as for quantifying peptide concentra-
tion [24]. HPLC can be used to separate and purify the peptide from impurities, while CD
spectroscopy can provide information about the secondary structure of the peptide [25]. In
addition to these techniques, biological assays may be used to evaluate the antimicrobial
activity of AMPs against specific bacterial or fungal strains [26]. These assays often involve
exposing the microorganisms to the peptide and measuring the inhibition of growth or the
killing of the cells. The synthesis and characterization of AMPs requires careful attention
to both chemical and biological aspects of the peptide to produce a potent and effective
antimicrobial agent.

1.2. AMPs in the Era of Antibiotic Resistance

Antibiotics are low molecular weight compounds that can either be produced by
microorganisms, natural products, or synthetically, possessing antagonistic effects on the
development of other microorganisms [27]. They either inhibit bacterial growth or com-
pletely kill bacteria by impairing the synthesis and function of the cytoplasmic membrane,
impairing protein and nucleic acid synthesis, or inhibiting cell wall synthesis [28]. Since
the discovery of the first antibiotic (penicillin) in the 1920s, several other antibiotics such as
cephalosporins, chloramphenicol, tetracycline, glycopeptides, and amino glycopeptides
have been developed [29]. These antibiotics have been reported to increase the expected
lifespan and significantly reduce mortality rates in humans and animals [30]. For instance,
the use of antibiotics increased the average lifespan in the US from 52 years in 1920 to
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80 years in the 2000s [31]. Furthermore, the preventive administration of antibiotics to
healthy children in communities with high child mortality rate increases their survival.
Unfortunately, the enormous success achieved in the past decades has been jeopardized by
excessive, uncontrolled, and overprescription of antibiotics, resulting in the development
of bacterial strains resistant to antibiotic treatment [32].

Antibiotic resistance is a process in which bacteria evolve and develop resistance
to drugs that were previously effective in treating infections [29]. It is one of the most
serious threats to all aspects of life, including human health, plant health, and veterinary
medicine [32]. Globally, there are approximately 2.8 million cases of antibiotic-resistant
infections, resulting in 1.28 million deaths per year wasting more than 1.5 billion EUR due
to treatment [33]. Furthermore, the UK antimicrobial resistance review recently reported
that if antimicrobial resistance is not controlled, it will result in an estimated 10 million
deaths and an economic loss of 100 trillion GBP annually by 2050 [34]. With the increasing
rate of antibiotic resistance and the high cost of developing new drugs, there is an urgent
need to develop alternatives to traditional antibiotics.

AMPs have sparked tremendous interest as potential future antibiotics [35]. They
are naturally synthesized in cells of all living organisms, constituting a crucial part of the
host’s innate defense mechanisms, which gives them several advantages over conventional
antibiotics, including (1) the presence of short amino acid sequences makes them easier
to synthesize, (2) they have multiple mechanisms of action making it difficult for bacteria
to develop resistance to them, (3) they have a different mode of action from those of tradi-
tional antibiotics, (4) they kill bacteria rapidly since they are not affected by its resistance
phenotype, (5) they are highly water soluble with good thermal stability [36,37]. The an-
tibacterial activity of AMPs is enhanced by their cationic and amphiphilic (hydrophobic and
hydrophilic) properties [1]. Generally, they have a net positive charge ranging from +2 to
+9 due to the presence of high levels of basic amino acids such as lysine and arginine. They
also have approximately 50% hydrophobic amino acids [38]. The cationic antimicrobial
peptide forms electrostatic interactions with the anionic bacterial membrane, causing mem-
brane disruption. Similarly, AMPs’ hydrophobic and hydrophilic properties increase their
ability to interact with the lipid tails of the LPS and hydrophilic heads of phospholipids on
the bacterial membrane. These interactions impair membrane permeability, resulting in
metabolite leakage and bacterial cell death [39].

The structure of the bacterial membrane plays a major role in the mechanism of action
of AMPs against bacterial cells. The membranes are composed of biomolecules such as
lipopolysaccharides (LPS), phospholipids, peptidoglycans, and acidic polysaccharides
that accord it a net negative charge [40]. These biomolecules differ in each bacterial
strain. Gram-negative bacteria contain an impermeable outer membrane as a result of
high levels of LPS, making them more antibiotic-resistant compared to Gram-positive
bacteria. They also have an inner membrane made up of phospholipids [41]. In contrast to
Gram-negative bacteria, Gram-positive bacteria lack an outer membrane but have thicker
cell walls composed of peptidoglycans in which there are large amounts of teichoic acids
(glycopolymers containing phosphodiester-linked polyol repeat units) that increase the
negative charge on their surface [42]. AMPs primarily target bacteria cell membranes and
adsorb to the negatively charged bacterial membrane via electrostatic interactions [39].
Adsorption to the bacterial surface enables them to permeate the outer membrane into
the inner membrane via a complex series of interactions such as hydrophobic interactions,
hydrogen bonds, and electrostatic interactions. These disrupt the electrochemical gradient,
causing an influx of water into the cell, electrolyte leakage, and eventually cell lysis and
death [43].

Three models (as previously described with diagrams by Bakare et al., (2021) [44]
have been proposed to explain the membrane disruption activities of AMP; namely, the
toroidal pore model involves the arrangement of AMPs perpendicularly to the membrane
by interacting with the hydrophilic region and lipid bilayer, and then bending to form
worm-like pores; the carpet-like model proposes a detergent-like disruption of the bacterial
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membrane caused by the parallel aggregation of peptides in a carpet-like manner around
the bacterial membrane; and the barrel-stave model suggests accumulation of AMPs around
the bacterial membrane in the form of a transmembrane pore, resulting in an outflow of the
cytoplasm and subsequent collapse of the cell membrane [45,46]. Despite the enormous
success of AMPs in killing bacteria, the following issues limit their full utilization: (i) they
can also degrade the host cell membrane resulting in hemolysis, (ii) they are only stable at
a specific pH, (iii) high production costs, (iv) tendency to be easily degraded by proteases,
(v) the presence of metal ions in the cell, such as iron, inhibits their actions. Therefore, the
factors mentioned above must be considered when designing AMPs to obtain the desired
efficacy [46].

1.3. AMPs as Novel Antibacterial Agents with High Selectivity Indexes (SI)

The development of novel antibacterial agents with high selectivity indexes is an
important area of research that holds great promise for the treatment of bacterial infections
while minimizing the risk of toxicity and resistance development. The selectivity index is
the ratio that measures the window between cytotoxicity and antibacterial activities [47].
A high selectivity index indicates that the drug is more selective for bacteria and has less
toxicity to human cells [47]. High selectivity index AMPs are positively charged. They can
distinguish between the anionic membrane of bacteria and the membrane of mammalian
cells based on the different cell membrane compositions [48]. The development of new
antibacterial peptides with strong selectivity indexes is an intricate and ongoing field of
research. Achieving a high selectivity index is important to reduce toxicity and adverse
effects on the host cells [49]. The objective is to design peptides that demonstrate remarkable
selectivity for bacterial cells while causing negligible to no harm to human cells, offering a
promising alternative to traditional antibiotics [50].

It takes a multidisciplinary approach that incorporates peptide chemistry, micro-
biology, structural biology, and computational approaches to discover and/or improve
high-selectivity index peptides. Novel techniques such as isomerization, peptide lipidation,
glycosylation, cyclization, other biomimetic terminal modifications, and multimerization
can be used to engineer AMPs to increase their stability, activity, and targetability [51].
In a study by Mangmee et al., (2021) [48], six selected AMPs that had not previously
been reported to exhibit anti-Salmonella activity were tested for their antibacterial ability
against clinical Salmonella isolates, and the one (peptide Kn2-5R) that had potential action
was employed as a template. The template was changed to produce four physicochem-
ical variations, including D-enantiomerization, amidated C-terminal, enhanced positive
charge, or increased hydrophobicity. They discovered a correlation between an increase in
hydrophobicity and a decrease in SI.

Timón et al., (2019) [52] demonstrated that an increase in the positive charge of AMPs
enhances their selectivity index towards bacteria. The findings revealed that introducing
lysine substitutions in the hydrophilic region of VmCT1, a peptide found in scorpion venom,
led to an overall increase in positive charge. This increase resulted in higher antimicrobial
activity values, ranging from 0.1 to 6.3 µmol L−1, compared to the original VmCT1 peptide,
which ranged from 0.8 to 50 µmol L−1. Conversely, when lysine substitutions were made in
the hydrophobic region of the helical structure, the antimicrobial activity values decreased.
However, substituting lysine at the center of the hydrophobic face generated an analogue
with antiplasmodial activity equivalent to that of VmCT1 (0.8 µmol L−1). This study
demonstrated that by increasing the overall positive charge of VmCT1 peptides, it is
possible to modulate their biological activities and decrease cytotoxicity. Furthermore,
depending on the position of the added charge on the peptide, the AMP could display
activity against different types of microorganisms which demonstrates that a single peptide
template can be engineered to target various microorganisms.

Carratalá et al., (2020) [53] modified the terminal functional groups of the diphenylala-
nine (FF) peptide nanotube. Specifically, changing the terminal groups to amino (–NH2),
carboxylic acid (–COOH), or both, and switching to D-isomers, resulted in an increase in
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the molecule’s ability to selectively target Gram-positive biofilm infection and in a decrease
in its toxicity to mammalian cells. NH2-FF-COOH and NH2-ff-COOH nanotubes, contrary
to NH2-FF-NH2, were able to selectively target bacterial cell membranes and penetrate the
biofilm despite being neutrally charged. This study showed that altering AMPs’ terminal
amino and carboxylic acid groups as well as their isomerization could enhance potency
without the need to increase their positive charge.

Several approaches can be taken to develop novel antibacterial agents with high
selectivity indexes. One approach is to target specific bacterial proteins or pathways that are
essential for bacterial growth and survival but are not present in human cells [54]. This can
be achieved through the use of high-throughput screening of compound libraries or rational
drug design. Another approach is to modify existing antibacterial agents to improve
their selectivity indexes [55]. This can be done by optimizing the pharmacokinetic and
pharmacodynamic properties of the drug, such as its absorption, distribution, metabolism,
and excretion (ADME), as well as its potency and spectrum of activity. In addition, the use
of combination therapies can also improve selectivity indexes by targeting multiple bacterial
pathways simultaneously, which can reduce the likelihood of resistance development and
increase the efficacy of the treatment [55].

Recent advances in genomics and proteomics have also provided new opportunities
for the discovery of novel antibacterial agents with high selectivity indexes. For example,
the identification of new bacterial targets and the development of new screening technolo-
gies have led to the discovery of novel classes of antibiotics, such as lipopeptides and
oxadiazoles [56]. Designing membrane-active peptide antibiotics with therapeutic potential
presents a problem in that it is difficult to maintain effective antibacterial activity while
minimizing unacceptable cytotoxicity for host cells. Any rational attempt to increase this
selectivity must take into account the peptides’ mode of interaction with membranes and
the factors that contribute to their capacity to differentiate between bacterial and eukaryotic
cytoplasmic cells. Due to all of these factors, AMPs frequently exhibit high selectivity for
bacterial over host cells and have a relatively low propensity to elicit resistance [57]. In ad-
dition to having significant pro-defensive effects on host immune cells, endogenously gen-
erated AMPs have the propensity to act on many targets in bacteria (Table 1 contains AMPs
from databases such as APD3 with their codes (https://aps.unmc.edu/database/anti
(accessed on 1 June 2023)) [58].

Table 1. Novel antimicrobial peptides (AMPs) with anti-inflammatory functions.

AMP Database Codes Specific Names Sequences Specific Functions References

AP00351 Citropin 1.1 GLFDVIKKVASVIGGL Peptidoglycan breakdown for its access to the
cytoplasmic membrane [59]

AP00557 Cathelicidin 1 RVKRVWPLVIR
TVIAGYNLYRAIKKK

Bind and disrupt negatively charged
membranes resulting in cell death [60]

AP00952 Pexiganan acetate GIGKFLKKAKKF
GKAFVKILKK

Disturbance/disruption of the cell membrane
permeability [61]

AP01210 Jelleine-I PFKLSLHL Improvement of intestinal mucosa tight
junction [62]

AP01328 Epinecidin-1 GFIFHIIKGLFHAGKMIHGLV Immunomodulatory and wound-healing
functions [63]

AP01372 CXCL14

SKCKCSRKGPKIRYSDVKKLE
MKPKYPHCEEKMVIITTKS
VSRYRGQEHCLHPKLQSTK
RFIKWYNAWNEKRRVYEE

Inhibition of colorectal cancer migration,
invasion, and epithelial-to-mesenchymal
transition (EMT) by suppressing NF-kappaB
signaling

[64]

AP01550 Dybowskin-2CDYa SAVGRHGRRFGLRKHRKH Promotion of cell proliferation [65]

AP01590 porcine beta-defensin 2 DHYICAKKGGTCNFSP
CPLFNRIEGTCYSGKAKCCIR

Alleviation of inflammation via interference
with the TLR4/NF-κB Pathway [66]

AP01751 Papiliocin RWKIFKKIEKVGRNVRD
GIIKAGPAVAVVGQAATVVK

Possession of broad-spectrum antibacterial
activities [67]

AP01794 Temporin-1CEa FVDLKKIANIINSIF Possession of broad-spectrum antibacterial
activities [68]

AP01976 Coprisin
VTCDVLSFEAKGIA
VNHSACALHCIALRKK
GGSCQNGVCVCRN

Prevention of Clostridium difficile-mediated
acute inflammation and mucosal damage
through selective antimicrobial activity

[69]

https://aps.unmc.edu/database/anti
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Table 1. Cont.

AMP Database Codes Specific Names Sequences Specific Functions References

AP02095 secretory leukocyte
protease inhibitor

SGKSFKAGVCPPKKSAQ
CLRYKKPECQSDWQCPG
KKRCCPDTCGIKCLDPV
DTPNPTRRKPGKCPVTY
GQCLMLNPPNFCEMDG
QCKRDLKCCMGMCGK
SCVSPVKA

Protection of tissues by inhibiting the
proteases, such as cathepsin G, elastase, and
trypsin from neutrophils; chymotrypsin and
trypsin from pancreatic acinar cells; and
chymase and tryptase from mast cells

[70]

AP02202 Cathelicidin-PY RKCNFLCKLKEKLRTV
ITSHIDKVLRPQG

Inhibition of the activation of Toll-like receptor
4 (TLR4) inflammatory response pathways
induced by lipopolysaccharide (LPS)

[71]

AP02569 Hc-CATH KFFKRLLKSVRRAV
KKFRKKPRLIGLSTLL

Hc-cath exerts an antimicrobial effect against
P. aeruginosa and S. aureus and promotes
Galleria survival

[72]

AP02570 GL13K GKIIKLKASLKLL
GL13K exhibits bactericidal activity against
planktonic bacteria and low toxicity against
mammalian cells

[73]

AP02621 SibaCec GKLTKDKLKRGAKKAL
NVASKVAPIVAAGASIAR

SibaCec can function as an immune regulator,
inhibiting the host defense system against
infection

[74]

AP02626 Cl-CATH2 LIQRGRFGRFLGRI
RRFRPRINFDIRARGSIRLG

Cl-CATH2 exerts broad-spectrum but
moderate antimicrobial activities [75]

AP02629 dCATH KRFWQLVPLAIKIYRAWKRR
Activation of autophagy, which enhances
antimicrobial effects against diverse
pathogens

[76]

AP02703 Periplanetasin-5 MKTFLRLYRSLINKVLH
Control of inflammation by inhibiting
phosphorylation of MAPKs, and reduction of
degradation of IκB.

[77]

AP02901 Cathelicidin-PP ASENGKCNLLCLVKK
KLRAVGNVIKTVVGKIA

Reduction of bacterial load in clinically
relevant infection models [78]

2. AMPs with Anti-Inflammatory Properties

Due to AMPs being involved in the first line of defense against pathogenic infection,
they are often involved in antimicrobial and anti-inflammatory processes. Due to their
ubiquitous nature in most living organisms as well as their therapeutic role, much research
has been conducted on them [79]. Recent studies have been undertaken to produce AMP
analogues to enhance the antimicrobial and anti-inflammatory properties of these peptides.
Another study produced three analogues of the AMP CXCL14-C17 and the analogues were
able to act on antibiotic-resistant bacteria and could have promising anti-inflammatory prop-
erties due to the inhibition of the tumor necrosis factor (TNF) and interleukin (IL-1β) [80].
Similarly, a study has been shown to produce two analogues (Mt6 and D-Mt6) of the AMP
MAF-1 [81]. The analogues were observed to be stable and active against A. baumannii
under many physiological settings as well as decreased TNF and IL-1β expression which
suggests improved anti-inflammatory properties. Furthermore, D-Mt6 showed positive
activity against lipopolysaccharide-induced inflammation through different mechanisms
which included neutralizing lipopolysaccharide ability to produce inflammatory cytokines
and suppressing the MAPK signaling. The aforementioned studies highlight the opportu-
nity to improve existing AMPs to improve their anti-inflammatory properties instead of
searching for new AMPs, which could become costly and labor-intensive. AMPs with simi-
lar properties as represented in the APD3 database (https://aps.unmc.edu/database/anti
(accessed on 1 June 2023)) can be found in Table 1.

When altering or producing these AMP analogues, proper strategies need to be con-
sidered to produce a peptide with enhanced properties, thus reducing the need for multiple
iterations to obtain the enhanced properties desired. A study by Klubthawee and colleagues
(2020) used a rational approach by using key structural physiochemical parameters to de-
sign novel hybrid peptides [82]. The peptide named PA-13 showed the best results due to its
effectiveness across many parameters. Most importantly, the peptide inhibited the Toll-like
receptor activation which led to the inhibition of the release of inflammatory cytokines and
decreased further severe inflammation. Key considerations that should be noted when
designing analogues of AMPs include the desired biological function of the AMP as well as
the environment it will need to function in. Other AMPs with anti-inflammatory properties

https://aps.unmc.edu/database/anti
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include citropin 1.1, cathelicidin 1, pexiganan acetate, jelleine 1, epinecidin 1, and porcin
beta-defensin 2, to mention just a few (Figure 1). Utilizing computational techniques for
database retrieval, AMPs have been found to have broad-spectrum antibacterial and anti-
inflammatory actions as well as well-described physicochemical features that are effective
against illnesses [83].
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Figure 1. The anti-inflammatory mechanism of CXCL14-C17 on various antibiotic-resistant bacteria.
Rajasekaran et al., (2019) [80], recorded that in lipopolysaccharide (LPS)-stimulated RAW264.7 cells
the release of “bacterial LPS” instigated an induction of proinflammatory genes, such as the genes
associated with nitric oxide (NO) production, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and
monocyte chemoattractant protein (MCP)-1. This induction of proinflammatory genes resulted in
the overproduction of proinflammatory cytokinins ultimately leading to the sepsis of the RAW264.7
cells. However, the authors likewise depicted that with the presence of CXCL14-C17 AMP, in
conjunction with the antimicrobial properties, these AMPs possess on bacteria (methicillin-resistant
Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRPA), and vancomycin-
resistant Enterococcus faecium (VREF)), the induction of proinflammatory genes was blocked, reducing
the occurrence of sepsis. Thus, CXCL14-C17 illustrated both antimicrobial and anti-inflammatory
properties against invading microbial infections.

2.1. Role of AMPs in Medicine

Multi-drug-resistant pathogens represent a considerable risk and dynamic issue to
both patients and society, thus posing significant global health and economic burden [84].
It is vital to find new medicines with novel mechanisms of action that are less likely to
cause bacterial resistance and thus give rise to the growing problem of antibiotic resistance.
AMPs, sometimes referred to as host defense peptides, have recently attracted a lot of
attention as potential next-generation antibiotics [85,86]. As a result, research has shown
that AMPs are generated from both natural and synthetic sources, emphasizing their ability
to not only kill resistant microbial pathogens, but also proposed other benefits such as
wound healing, anti-tumor, and regulating of the immune system [87]. Here, we review
literature describing the involvement of AMPs in advancing research in medicine and
evaluating their properties in antibacterial activity followed by their application in some
infectious diseases.
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Antibacterial peptides have long shown significant promise in medicine, dating back
to 1939, when René Dubos discovered gramicidin, the first clinically tested antibacterial
agent that has been reported to protect mice against pneumococcal disease [88]. The
discovery of gramicidin from a soil Bacillus strain is believed to have helped revive the
stalled interest in penicillin and launched the era of antibiotics. Following René Dubos’
discovery, multiple AMPs were isolated and characterized from various species, including
both prokaryotic and eukaryotic kingdoms, with most AMPs exhibiting broad-spectrum
antimicrobial action against bacteria, fungi, and viruses [89]. While the first advancement
in identifying human-derived AMPs came from Zeya and Spitznagel [90], they did so by
identifying cationic proteins contained in leukocyte lysosomes. Their protein exhibited
broad-spectrum antibacterial activity against several microorganisms, suggesting that it
can combat a wide range of infections. This demonstrated selectivity for certain bacteria,
hinting that personalized therapies for diverse illnesses are possible [91]. AMPs are still
being discovered to date, with over 3000 human AMPs discovered in the Antimicrobial
Peptide Database (APD3) (https://aps.unmc.edu/database/anti (accessed on 1 June 2023)).
The introduction of the APD3 database greatly advanced the field of AMP research as it
was able to provide a consolidated and curated database of AMPs [92].

The availability of such a large database improves knowledge and prospective ap-
plications of AMPs, including their investigation of AMPs’ physicochemical parameters,
potential efficacy against SARS-CoV and other infectious illnesses, as well as insights into
their mechanism of action and structure–activity connections. It is important to note that
AMP identification and characterization is a continuous research area, that was further
advanced during the SARS-CoV outbreaks, as most researchers were looking for novel
antiviral medications to prevent COVID-19 sickness [93].

Other research work further advanced AMPs research by providing a protein pep-
tide database that includes AMPs and their interactions with various proteins [94]. The
significant findings in the Pirtskhalava et al., (2021) [94] study lie in the development of a
protein peptide database that includes AMPs and their interactions with other proteins. The
mention of AMPs targeting SARS-CoV supports the possible use of AMPs as therapeutic
candidates against SARS-CoV. While research on AMPs and COVID-19 showed promising
results, it is crucial to remember that they are still in the early phases, and further research,
including preclinical and clinical trials, is needed to examine their effectiveness, safety, and
potential for clinical use against SARS-CoV-2. This would aid in determining whether the
AMPs used have a comparable impact on colistin, an antibacterial drug that is effective in
combating multidrug-resistant bacterial infections [95]. It is now being used as a last-resort
therapy for multidrug-resistant bacterial infections, particularly due to the higher risk
that involves its side effects which include kidney toxicity, neurotoxicity, and respiratory
complications.

2.2. Nanotechnology-Based Delivery Systems for AMPs

Nanotechnology is the process of modifying matter at a size close to the atomic level
to create novel structures, materials, and gadgets [96]. The technique offers advances
in science across a wide range of industries, including manufacturing, consumer goods,
energy, and medicine [97]. Nanotechnology makes it possible to avoid first-pass metabolism
by delivering medications that are not particularly water-soluble [98]. Nanotechnology
allows AMPs to undergo absorptive endocytosis, confers the ability to stay in the blood
circulation for an extended period, and increases the oral bioavailability of drugs [99]. This
results in less fluctuating plasma levels and minimized side effects. Nanotechnology has
emerged as a promising approach for improving the efficacy and safety of AMPs [100].
These systems involve the use of nanoparticles, liposomes, or other nanoscale carriers to
deliver AMPs to their target sites [101]. One advantage of nanotechnology-based delivery
systems is that they can protect AMPs from degradation by enzymes and other factors in
the body, which can improve their stability and prolong their activity [102]. In addition,
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these systems can enhance the bioavailability of AMPs by improving their absorption and
distribution in the body.

Nanoparticles, such as polymeric nanoparticles, lipid nanoparticles, and metal nanopar-
ticles, have been used to deliver AMPs to their target sites [103]. These nanoparticles can
be designed to have specific properties, such as size, surface charge, and surface chemistry,
that can affect their interactions with cells and tissues [104]. Liposomes, which are spherical
structures composed of a lipid bilayer, have also been used to deliver AMPs. Liposomes
can encapsulate AMPs within their aqueous core or lipid bilayer, providing protection
from degradation and enhancing their bioavailability [105]. In addition, other nanoscale
carriers, such as dendrimers and carbon nanotubes, have been explored for the delivery
of AMPs [106]. These carriers can also be designed to have specific properties that can
improve their interactions with cells and tissues. Nanotechnology-based delivery systems
represent an exciting area of research that holds great promise for the development of more
effective and targeted antimicrobial therapies [107]. This would enable a sensitive and
precise screening technique for AMP development against infections or the treatment of
diseases in patients for early treatment regimens before or after the onset of symptoms,
allowing them to adopt adapting lifestyles.

3. AMP-Doped and AMP-Releasing Biomaterials and Coating

AMPs are a promising class of natural antibiotics that can be used to combat infections.
One strategy for enhancing the activity of AMPs is to incorporate them into biomaterials or
coatings or to use these materials as a platform for the controlled release of AMPs [108].
AMP-doped biomaterials involve the incorporation of AMPs into a polymer matrix or
other material, such as hydrogels, nanoparticles, or films [109]. This can be achieved
through various techniques, such as electrospinning, self-assembly, or covalent coupling.
AMP-doped biomaterials have been shown to have excellent antimicrobial activity against
a variety of pathogenic organisms, including drug-resistant strains [110]. AMP-releasing
biomaterials involve the controlled release of AMPs from a polymer matrix or other material.
This can be achieved through various mechanisms, such as diffusion, degradation, or
stimuli-responsive release. AMP-releasing biomaterials have the advantage of providing
sustained antimicrobial activity over an extended period while minimizing the risk of
toxicity and resistance development [111].

Coatings are another approach for incorporating AMPs into biomaterials which can be
applied to the surface of medical devices, implants, or other materials to provide a barrier
against bacterial colonization and infection [112]. AMP-based coatings are highly effective
against a variety of bacteria, including those that are resistant to conventional antibiotics.
These materials slowly release the peptides over time, providing a sustained antimicrobial
effect [102]. This approach has shown promise in reducing the risk of implant-related
infections and other medical device-related infections. On the other hand, AMPs releasing
coatings can be applied to the surface of medical devices or implants to provide a rapid
antimicrobial effect upon contact with pathogens [108]. These coatings can be designed to
provide broad-spectrum protection against a range of bacteria and viruses. AMP-based
biomaterials and coatings offer a promising solution to prevent infections and improve
health outcomes which require constant optimization in their design and application for
different medical devices and coatings.

3.1. AMPS and Mesenchymal Stem Cells

Mesenchymal stromal cells or stem cells (MSCs) are plastic adhering spindle-shaped
cells that can be obtained from adipose tissue, placenta, bone marrow, and various other
perivascular niches. These cells have been reported to possess traits similar to stem cells
due to their differentiation and regeneration abilities [113]. MSCs have also gained a lot
of attention in cancer research, being linked to tumor development. It has been reported
that MSCs can locate and alter the behavior of tumors and either act as a promoter or
suppressor of cancer cells [114]. Additionally, these cells have also been shown to regulate
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the activity of immune cells involved in tumor regression. One of the mechanisms used by
MSCs to exhibit their influence on cells within their environment includes the production
of AMPs [115].

This has piqued the interest of researchers that these cells-containing AMPs have
biological flexibility (cellular differentiation capacity) and therefore to an extent, metabolic
flexibility in terms of their gene products. In a study by Haman and colleagues, the
authors reported the depolarization of the cellular membranes of E. coli and S. aureus
in response to Equine-derived AMPs [116], thereby highlighting the potential of these
AMPs in treating bacterial-associated skin infections. Additionally, a human bone marrow-
derived AMP, cathelicidin- LL-37, had an inhibitory effect on the growth of several bacterial
species namely E. coli, P. aeruginosa, and S. aureus [117]. Hepcidin 25 (hep-25), an AMP
produced by hepatocytes and MSCs, has also been shown to have strong bactericidal
activity against several strains of P. aeruginosa, Stenotrophomonas maltophilia, Enterococcus
faecium, Staphylococcus. aureus, and Staphylococcus epidermidis, some of which are multidrug-
resistant [118]. Furthermore, neutrophil gelatinase-associated lipocalin (NGAL) byproducts
produced by bone marrow MSCs (BMSC) have been shown to bind with metalloproteins
such as bacterial siderophores. This binding contributes to strong antibacterial activity as
the bacteria are unable to obtain nutrients [119]. These studies highlight the major potential
of MSCs and their derived AMPs for future advancements in medicine.

However, there are some limitations associated with MSCs and therefore the AMPs
they produce. Studies have shown that in vitro isolation of MSCs does not necessarily
present a completely homogenous population of stem cells [120]. It could be proposed that
in their microenvironment, MSCs are in the presence of other cellular populations. In this
environment, there are fluctuations in the presence of proteases, micro RNAs, intracellular
conditions, cell-to-cell signaling, and hypoxia [121]. These environmental factors may
influence the future capabilities of MSCs as in biology, the environment often drives genetic
selection. This may affect the phenotypic characteristics of matured MSCs. The variation
in the characteristics and differential potential of MSCs from different mammalian tissues
further support the notion of micro-environmentally driven MSC phenotypic potential [122].
Therefore, more attention needs to be drawn to obtaining homogenous populations of
MSCs as well as linking the characterization and differential capacities to the source of the
AMPs.

The use of single nucleotide polymorphisms (SNP)-genotyping for the identification of
environmentally driven variation between MSCs has been well described in genetics. The
use of this approach has proven useful in the field of precision medicine for understanding
the contribution of genetic variation to altered phenotypic pathobiology and response
to treatments [123]. These polymorphisms between MSCs may provide insight into the
future application of those cells. Furthermore, coupling these outputs with transcriptomics
and proteomic research could evaluate the contribution of the aforementioned variation
to functional genetic products. These may be used as future molecular markers for the
selection of MSCs with an intended application [124]. Additionally, given that these
omics technologies are moving towards single-celled approaches, future studies should
investigate heterogeneity amongst supposed homogeneous populations of MSC cells. In
their study, a single-celled multi-omics approach was used to identify transcripts and
proteins involved in the differentiation of homogeneous monocytes differentiate into
macrophage-like cells [125]. Using these approaches, comprehensive application of MSCs
as well as their AMPs can be drawn potentially on a single cell/population basis in response
to an experimental environment.

3.2. AMPs and Biofilms

Biofilms refer to communities of microorganisms that either adhere to surfaces or are
suspended in liquids such as flocs [126]. They are surrounded by a self-produced extra
polymeric substance (EPS) that is composed of polysaccharides, proteins, glycoproteins,
glycolipids, metabolites, and extracellular DNA (eDNA) [127,128]. The development of
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biofilms begins with the initial attachment of planktonic bacteria to surfaces and the forma-
tion of microcolonies. Following adhesion, EPS synthesis starts, which leads to the early
formation of the biofilm architecture. The glycopeptides, glycolipids, and lipopolysac-
charides found within the EPS help to keep biofilms intact [128]. Maturation of biofilm
architecture, and the dispersal of single cells from mature biofilms, can initiate the cycle
again [127].

The lifestyle of a bacterium embedded in a biofilm differs remarkably from its free-
living counterparts [129]. Biofilms serve as a survival strategy developed by prokaryotes to
respond to environmental stresses such as predator attacks, chemical treatments, nutrient
limitations, oxidative stress, hypoxia, and drought. This difference can be observed in terms
of the population characteristics of internal cells, physical and chemical properties of the
extracellular matrix (ECM), and intercellular interactions [130]. They are not only essential
for the survival of bacteria but also have a wide range of impacts on human health.

It is widely acknowledged that microorganisms living within biofilms are less sus-
ceptible to antimicrobial agents and host immune defenses [131]. Bacteria embedded in
these bacterial communities often have a 1000-fold increased tolerance to antibiotics [132].
Consequently, diseases caused by biofilms pose significant challenges in terms of treatment.
Roughly 65–80% of infectious diseases are estimated to be associated with biofilms [133].
Medical device-associated infections, bacterial contaminations during food processing
and storage, and biofouling in industrial production mainly originate from the failure of
bacterial biofilm eradication. Most antibiofilm agents available to date have been antimi-
crobial agents with bactericidal effects, which are ineffective for treating biofilm-related
infections and can lead to microbial resistance when used for a long time [134]. Hence, it is
important to design or screen novel antibiofilm agents that can effectively prevent biofilm
formation or eradicate existing biofilms. In recent years, there has been growing interest in
exploring alternative strategies to combat biofilm-associated infections [135]. The results of
these studies have led to AMPs being considered as an alternative drug to conventional
antibiotics [54].

Natural occurring or synthetic AMPs have been shown to prevent the formation of
biofilms and eradicate already existing ones [136]. There are two main targets for the
disruption of biofilm formation: dispersal of the biofilm EPS or the elimination of the
bacteria that reside within the EPS. Typically, the effectiveness of antibiotics in eradicating
bacteria embedded in a biofilm is greatly diminished, often requiring 1000-fold concen-
trations because the antibiotics cannot translocate into the EPS and therefore do not reach
the bacterial cells. Conversely, AMPs offer potential as anti-biofilm agents due to their di-
verse mechanisms, such as disrupting cell membranes, inhibiting protein function, binding
with DNA, and neutralizing polysaccharides such as lipopolysaccharide and lipoteichoic
acid [128]. Certain AMPs can traverse the biofilm EPS via pores or openings within the
lipid component, while others can disperse biofilms. Examples of such peptides include
temporin B and indolicidin that are capable of traversing the pores of lipid membranes and
citropin capable of dispersing biofilms.

AMPs possess inherent properties that make them effective against biofilms. Research
has shown the ability of AMPs to disrupt biofilm formation, inhibit biofilm growth, and
eradicate preformed biofilms [137]. AMPs can penetrate the biofilm matrix, interact with
microbial cells, and exert their antimicrobial effects through multiple mechanisms. These
mechanisms include membrane disruption, pore formation, inhibition of biofilm matrix
production, and modulation of microbial signaling pathways. The multifunctional nature
of AMPs enables them to target various components of biofilms, making them effective
against a wide range of pathogens. Combining AMPs with conventional antimicrobial
agents has shown promising results in combating biofilm-associated infections [138]. The
synergistic interactions between AMPs and antibiotics can enhance the overall antimicrobial
activity and overcome the resistance mechanisms of biofilms. AMPs can potentiate the
activity of antibiotics by permeabilizing the biofilm matrix, enabling better penetration of
the antimicrobial agent. Additionally, some studies have reported that AMPs can restore
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the susceptibility of antibiotic-resistant biofilms, making them susceptible to conventional
therapy [139,140].

Advancements in peptide engineering and design have facilitated the development
of novel AMPs with enhanced efficacy against biofilms [2]. Rational design strategies,
such as sequence modification, incorporation of non-natural amino acids, and optimization
of physicochemical properties, have been employed to improve the antimicrobial activ-
ity, stability, and selectivity of AMPs. Furthermore, the combination of AMPs with other
biofilm-disrupting agents, such as enzymes and nanoparticles, has shown synergistic effects
in biofilm eradication. The therapeutic potential of AMPs against biofilm infections has
been investigated in various in vivo models [138,141]. These studies have demonstrated the
efficacy of AMPs in reducing biofilm burden, preventing biofilm formation, and promoting
wound healing. Moreover, some AMPs have successfully progressed to clinical trials, high-
lighting their potential as future therapeutic options for biofilm-associated infections [142].
However, challenges such as high manufacturing costs, limited stability, and potential
cytotoxicity need to be addressed for the clinical translation of AMPs.

3.3. Cytotoxicity of AMPs

Over many years, chemotherapy was shown to be the most influential and most
effective in the treatment of cancer, yet the drugs commonly employed were unable to
discern healthy cells from cancerous cells, commonly resulting in the damage of healthy
cells and resulting in major side effects [143]. Hence, the investigation into the potential use
of AMPs has been gaining popularity in the treatments of cancer and bacterial infections.
However, there have been major limitations accompanying the clinical application of
AMPs [144]. One of the leading limitations restricting the implementation of AMPs into
clinical use is the cytotoxic nature of AMPs towards not only cancerous cells but also
healthy cells, hence their capacity to discern cancerous cells from healthy cells proposed a
similar problem that current chemotherapy drugs presented. Therefore, the major topics
of AMPs research has been focused on the discovery and development of a multitude
of AMPs which has increased capabilities to contest a broader spectrum of bacterial and
cancerous cell membranes [145,146].

Membranes of bacterial pathogens and cancerous cells have been key targets for AMP
research, and recent studies have shown that to perform as a broad-spectrum AMP and
to achieve AMPs with a higher affinity to these membranes, the peptide sequences of
AMPs should be augmented [145]. In a study by a group of authors, it was proposed that
partial D-amino acid substitution at the protease cleavage site of AMPs might be vital in
not only reducing the cytotoxicity of AMPs to healthy cells by improving the potency of the
AMP’s antimicrobial properties but also improving their proteolytic stability [146]. A study
adopted this proposed idea and evaluated the potential of this approach in reducing the
cytotoxicity of a clinical AMP, WLBU2, towards the host cell. These authors developed a
novel engineered cationic AMP (eCAP) of WLBU2, by implementing a D-enantiomerization
approach (a substitution of L-WLBU2 with D-WLBU2) [147]. It was noted that this novel
form of D-WLBU2 exhibited a broad activity against multidrug-resistant (MDR) bacteria.
In the majority of the cases of AMP research, the in vivo data are typically not investigated,
hence Di et al. (2020) [147] deemed it important to determine whether D-enantiomerization
of WLBU2 in vitro activities was translatable to in vivo efficacy. The authors recorded that
coupled with broad antimicrobial activity, the novel D-WLBU2 exhibited a reduction in
toxicity and increased stability in isolated human erythrocytes and blood leucocytes (both
were included to observe the effects of D-WLBU2 on both nucleated and nonnucleated
cells). The study thus indicated that the proposed approach of D-enantiomerization of
WLBU2 successfully achieved reduced host toxicity while simultaneously reducing MDR-
induced respiratory infection. In a different study by Beaudoin et al. (2018) [148], these
authors took the approach of designing a synthetic cationic AMP (CAP), by generating
numerous peptides which had a diverse array of charged patterning. The authors indicated
that these alterations increased the amphipathic nature of 6K-F17, in such a way that it
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imitated the design of natural CAPs [148]. In addition, the synthetic CAP displayed high
antimicrobial activity against P. aeruginosa infection and no toxicity to mammalian cells. On
the other hand, Hou et al., (2022) [143], focusing on oral squamous cell carcinoma (OSCC),
demonstrated that another cationic AMP, NRC-03, exhibited a potent and selective cyto-
toxicity towards negatively charged cancerous cells, by inducing mitochondrial oxidative
stress-mediated altered mitochondrial function and apoptosis in OSCC cells.

The previous studies mentioned above revolved around developing and designing
AMPs with enhanced selectivity towards negatively charged harmful cells; however, the
mechanism by which these AMPs induced cytotoxicity in these cells was not elucidated.
Gong et al., (2019) [145] demonstrated that cationic AMPs destroyed pathogenic bacteria
(Gram-negative and Gram-positive) utilizing inducing membrane structural damage result-
ing in cytoplasmic leakage. The authors demonstrated, by using neutron reflection (NR),
that cationic AMPs were more damaging to anionic and unsaturated phospholipids. It
was concluded that the more anionic phospholipids bacterial pathogens possess, the more
susceptible they were to cationic AMPs. The study by Hou et al., (2022) [143] elucidated
the direct effects of cationic AMPs on negatively charged cells. The authors illustrated
that NRC induced cancer cell death by targeting the mitochondria (an important organelle
in tumour initiation and progression). These NRC-03 AMPs were shown to enter the
OSCC cells and attach to the OSCC mitochondria. Here, these AMPs then disrupted the
cyclophilin-dependent (CypD) regulation of the mitochondrial channel (mPTP), which led
to the constant opening of the mPTP channel, releasing an increasing amount of reactive
oxygen species (ROS) into the cytosol of the OSCC cells. Hence, it was concluded that
NRC-03′s mode of inducing cytotoxicity in OSCC cells was through inducing CypD-mPTP
axis-mediated mitochondrial oxidative stress, leading to apoptosis and cell death.

The selective cytotoxicity of a cationic AMP toward the OSCC cells described by
Hou et al., (2022) [143] together with the abovementioned studies involves either the devel-
opment or designing of cationic AMPs (Figure 2). These studies reveal that the majority
of AMPs enhanced selective cytotoxicity (ability to differentiate between normal cells and
either bacterial pathogen or cancerous cells) which revolves around AMPs’ charged state.
AMPs normally recognize their targets through electrostatic interactions [149]. Cancerous
cells with a majority of phosphatidylserines on their surfaces, and pathogenic bacterial mem-
branes (Gram-negatives comprising of lipopolysaccharides and Gram-positives comprising
of lipoteichoic acid) all present a highly negatively charged surface, compared to normal
healthy host cells, and due to their (bacterial pathogens and cancerous cells) high density of
electronegative charges, cationic AMPs (positively charged surfaces) exhibit a strong attrac-
tion and interaction to these cells [150]. Hence, there is a need for increasing the capacity
to differentiate between these unwanted cells and the host’s healthy cells. Furthermore,
because these interactions are not mediated by specific receptors, the D-enantiomerization
of AMPs does not interrupt the binding capacity of AMPs. Hence, cationic AMPs have
paved the way to decrease host cytotoxicity while simultaneously maintaining the effective-
ness of AMPs’ cytotoxic nature toward cancerous cells and multidrug-resistant bacterial
pathogens.
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Figure 2. Representation of the molecular mechanisms of NRC-03-induced apoptosis and cell death
in oral squamous cell carcinoma (OSCC) cells. The cationic nature of NRC-03 grants this cationic
AMP to purposefully target negatively charged cancer cells, such as OSCC. NRC-03 easily enters the
cancerous cells and has three main targets within these cells. They were shown to be bound to the cell
membrane, nucleus, and mitochondria. Two pathways thus ensue wherein the cell death/apoptotic
pathway NRC-03 bound to the nucleus results in DNA fragmentation while the cell-membrane-
bound NRC-03 has been shown to increase the prevalence of blebbing. More importantly, Hou
et al., (2022) [143], noted that NRC-03-induced expression of CypD has been shown to cause the
prolonged opening of the mPTP channel, which leads to the increased efflux of calcium (Ca2+) and
Reactive Oxygen Species (ROS) into the cytosol. This prolonged CypD-dependent opening of the
mPTP channel thus caused mitochondrial dysfunction, swelling, and rupture, supplementing cell
death in the OSCC cells. Hence, Hou et al., (2022) [143], stated that the molecular mechanism of
NRC-03-induced cell death is mainly caused by the mitochondrial oxidative stress-mediated altered
mitochondrial function.
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4. Conclusions

The importance of AMPs is enormous due to their compensatory advantages over
conventional antibiotics. These benefits show the need to improve the design of these novel
peptides. The present review holistically approached this by taking cognizance of the recent
development of AMPs in terms of synthesis, characterization, benefits, cytotoxicity, coating,
and doping, as well as their delivery into tissues. This would allow adequate protection
against microorganisms and disease transmission for effective and sensitive inhibition of
their growth. Additionally, the search for new treatments for human illness, elimination of
the spread of pests, and ease of delivery all benefit from using AMPs. To address a variety
of issues relating to pathogen resistance and the lack of sensitivity of antibiotics, these
underutilized AMPs and their products hold enormous promise as a novel source of drug
development for treating human infections and other disorders.
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